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Abstract

We analyse the entry decisions of competing firms in a two-player stochastic real option

game, when rivals earn different but correlated uncertain profitabilities from operating. In

the presence of entry costs, decision thresholds exhibit hysteresis, the range of which is de-

creasing in the correlation between competing firms. A measure of the expected time of each

firm being active in the market and the probability of both rivals entering within a finite time

are explicitly calculated. The former (latter) is found to decrease (increase) with the volatility

of relative firm profitabilities implying that market leadership is shorter-lived the more uncer-

tain the industry environment. In an application of the model to the aircraft industry, we find

that Boeing�s optimal response to Airbus� launch of the A380 super carrier is to accommodate

entry and supplement its current product line, as opposed to the riskier alternative of commit-

ting to the development of a corresponding super jumbo.
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1. Introduction

When a firm has the opportunity to invest under conditions of uncertainty and

irreversibility (partial or complete) there is an option value of delay. By analogy

to financial options, it might be optimal to delay exercising the option, (proceeding
with the investment), even when it would be profitable to do so now, due to the hope

of gaining a higher payoff in the future as uncertainty is resolved.

This insight, first applied to the analysis of natural resource extraction by Tour-

inho (1979) and Brennan and Schwartz (1985), improves upon traditional investment

appraisal approaches (NPV-based criteria) by allowing the value of delay and the

importance of flexibility to be incorporated into the assessment. 1 Subsequently, a

substantial number of papers have explored this idea. Among others, McDonald

and Siegel (1985, 1986) and Dixit (1989) price option values associated with entry
and exit from a productive capacity while Pindyck (1988) values the operating flex-

ibility that arises from capacity utilisation. Paddock et al. (1988) concentrate on

valuing offshore petroleum leases and Pindyck (1993) values projects where different

sources of cost uncertainty are involved. Majd and Pindyck (1987) value projects

with a substantial time-to-build element while Dixit and Pindyck (1994) provide a

survey of the literature, as well as many applications.

However, real investment opportunities, unlike financial options, are rarely held

by a single firm in isolation. Most investment projects (in one form or another)
are open to competing firms in the same industry or line of business, subject of

course to the core competencies of each firm. In some extreme cases, competing firms

will be equally capable of undertaking the same project or investing in a new market.

In such cases, the timing of the investment becomes a key strategic consideration

which has to be optimised by taking into account the competitor�s optimal responses.

In this paper, we aim to elucidate the factors driving strategic entry decisions by

competing firms. We do so by considering optimal entry strategies in a two-firm, in-

finite-horizon stochastic game. In a market that can only accommodate one active
firm, the idle rival has the option to claim the market by sinking an unrecoverable

investment cost. Its optimal exercise decision has to incorporate the possibility that

in the future, the rival firm could reclaim the market again by exercising a corre-

sponding entry option, if optimal to do so.

We allow competing firms to have different operating capabilities. Namely the op-

erating profitabilities that the rival firms can exert from operating the market are as-

sumed to follow different (but possibly correlated) diffusion processes. Each firm�s
optimal entry strategy, by incorporating its rival�s optimal response, will ultimately
depend on the parameters of both diffusions. To our knowledge, the task of solving a

two-state-variable strategic game has not be undertaken before in the real options lit-

erature. We are able to do so by, first transforming the game into a central planner
1 The reconciliation of traditional investment appraisal techniques and real option valuation paradigms

is an area of active research. For some recent results, see Teisberg (1995) and Kasanen and Trigeorgis

(1995).
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optimisation problem and second, by exploiting the homogeneity of the setting, to re-

duce its dimensionality.

We find that the presence of fixed entry costs produces hysteresis in the entry de-

cisions of competing firms in the spirit of Dixit (1989). 2 In our setting, this means

that if the conditions that urged one firm to exercise and claim the market from
its active rival completely reverse, we should not expect to see an immediate corre-

sponding exercise strategy from the other firm. Market conditions have to change

further until the rival firm finds it optimal to exercise its entry option. This hysteresis

effect is found to be positively related to investment entry costs and uncertainty, but

negatively related to the correlation of rival firms operations. As fixed costs are elim-

inated from the model, hysteresis disappears, and optimal exercise strategies are

shown to collapse to a simple, yet intuitive, current yield or profitability criterion.

We also calculate explicitly the median time that each firm will remain active in
the market, as well as the probability that both competing firms will become active

within a finite time horizon and we explore their dependence on uncertainty and in-

vestment costs. Interestingly, higher volatility in the market is shown to imply lower

median active times for each competing firm. The probability that both rivals will

become active in a finite horizon strictly increases with volatility, implying that the

more uncertain the market environment, the more short-lived is market leadership.

Highly volatile industries (e.g., biochemical, pharmaceutical) seem to conform to the

model�s predictions. Using market data, we then apply the model to the aircraft man-
ufacturing industry. Our interest in this market originates from the fact that it is

mainly a two-firm industry, with long periods of market domination by one of the

rivals, large irreversible investment decisions, high profitability uncertainty and di-

rect strategic competition. Moreover, this industry is currently undergoing major

changes after the decision of one firm to capture the market segment for the very

large aircrafts by making a huge investment. Our application in Section 5 assesses

the optimal rival reaction.

Turning to the relation of the paper to some recent literature on the theme, opti-
mal real option exercise policies under duopolistic strategic competition has been the

focus of work by Smets (1991), Grenadier (1997) and Lambrecht and Perraudin

(2003). Unlike their work, we allow each competing firm�s decision to be subject

to a firm-specific stochastic variable, as well as its competitor�s. Like Lambrecht

and Perraudin (2003) who deal with the biochemical industry, our model can be ap-

plied in a real business market. Gauthier (2002) also deals with optimal switching

policies, in a single-firm context, with switching barriers exogenously imposed. Fi-

nally, our paper also draws from the seminal papers by McDonald and Siegel
(1986) and Dixit (1989), both of which are in a single-firm context.

The rest of the paper is organised as follows: Section 2, describes the basic two-

firm stochastic game and extensively presents the concepts that allow it to be trans-

formed to an one-agent, one-variable optimisation problem. Section 3 solves

the problem in order to determine the equilibrium optimal strategies of rivals, while
2 Hysteresis is defined as the delay in an effect reversing itself when the underlying cause is reversed.
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Section 4 presents probability calculations and examines the sensitivity of the results

to key model parameters. Section 5 applies the model to the aircraft manufacturing

industry while the last section concludes.
2. The model

2.1. The basic setting

We study a market which is only big enough for one firm (a natural monopoly)

and two competing firms, i and j, that can potentially monopolise it sequentially.

Each firm has its own production technology and thus can command a different op-

erating profitability from being the active firm in the market. Let Sit, Sjt stand for the
net operating profitability flow that each firm can command in the market at time t,
and assume that
3 Su

McDo

scale p

(profit

then th

where

flows a

also be

still Sðt
d

param

flows u

the pre
dSi
Si

¼ ðli � diÞdt þ ri dZi;

dSj
Sj

¼ ðlj � djÞdt þ rj dZj;

ð1Þ
where li;j and di;j, ri;j > 0 are constants. 3 The future operating profitability of each

firm is uncertain and exposed to exogenous shocks, specified as the increments of

standard Brownian motions dZi, dZj. These shocks can either be firm-specific (e.g.,

an improvement in entrepreneurial skills, a cost-reducing innovation in one firm�s
production technology) or industry-wide (e.g., an unexpected shift in market de-

mand or a change in customers� tastes, etc.). To reflect the possibility of common and

firm-specific economic factors driving the profitability of competing firms, we allow
Si, Sj to be exposed to correlated Brownian motions, i.e., dZi dZj ¼ qdt, where q is
ch diffusion processes are frequently used for present values instead of cash flows. For example,

nald and Siegel (1986) denote V ðtÞ the stochastic present value of revenues from operating a fixed-

roject. Our assumption in (1) is essentially equivalent, since if the project yields a random cash

ability) flow SðtÞ
dS
S

¼ adt þ rdz

e expected present value V ðtÞ is

V ðtÞ ¼ E
Z þ1

t
SðuÞe�lu du

� �
¼ SðtÞ

l � a

E denotes the real-world expectations operator and l is the risk-adjusted rate at which future cash

re discounted. For the project value to be bounded, we require d � l � a > 0. Expectations could

taken under the risk-neutral measure, in which case the discount rate would be r but the value is
Þ. Thus V , being a constant multiple of S, also follows a geometric Brownian motion with the same

eters a and r (see Dixit and Pindyck (1994, p. 178)). We model the uncertainty in the profitability

sing (1), and directly substitute l � d for a. Of course, the analysis could readily be replicated using

sent values Vi ; Vj as the state variables.
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the correlation coefficient, assumed constant. Firms i, j, if idle, can enter the market

by investing a fixed cost of Ki, Kj, respectively.

In the absence of any considerations like severe entry barriers, we should expect

competition to drive the most ‘‘efficient’’ of the two rivals to dominate and operate

the market. We do not address operating efficiency of competing firms per se here,
but we assume that the net operating profitabilities defined in (1) essentially represent

the ability of each firm to operate the market efficiently. Thus if, for example, firm i is

currently idle but Si is higher than Sj, we would expect the underlying economic

forces to shift the market from j to i once the latter decides to commit resources,

at least in the long-run. In our simple economy, this shift can occur instantaneously.

Because of the uncertainty in future operating profitabilities in (1), no matter

which firm is in the market currently, both firms have a chance of being the market

‘‘monopolist’’ for some (non-overlapping) period of time in the future, depending on
their operating parameters, namely ðl; d; r;KÞ. The major aims of this paper are: (a)

to study the entry decisions of rivals in this simple two-player, infinite-horizon game

and define optimal strategies, and (b) to quantify these periods of time, as well as the

probability of becoming active, for each rival firm as a function of its parameters.
2.2. Solution technique

In the presence of uncertainty (Eq. (1)) and sunk costs (Ki, Kj), it has been stressed

in the real options literature that there is an option value of delay. Each firm in our

model, when idle, has the option to sink an investment cost and claim the market

from its rival. The exercise strategy of a firm would specify the optimal stopping time

for sinking this investment cost and claim the benefits from operating. What compli-

cates the problem is that one firm�s exercise strategy should take into account that its
rival can claim the market back by subsequently exercising its own entry option. In

our two-player game, firms� exercise strategies have to be simultaneously determined

as part of an optimal equilibrium behaviour.

However, our problem of finding equilibria in our two-firm game can be con-

verted to a much simpler one, thanks to a result in Slade (1994). Slade (1994) spec-

ifies the conditions under which a general N -player game where agents act

strategically is observationally identical to a central planner�s optimisation problem.

Her intuition is as follows: in a perfectly competitive industry with a large (possibly
infinite) number of agents, each pursuing selfish objectives, the market behaves as if

an agent was maximising an objective function (social welfare). Thus, an N -player

game with strategic agents can be transformed into a ‘‘fictitious’’ objective function,

whose maxima are Nash equilibria of the game. 4

In our context, assume the existence of a fictitious central planner who, at any

point in time, can instantaneously delegate the market to the most profitable of
4 Slade strengthens her argument by showing that Nash equilibria of the game that are not maxima of

the function are generically unstable. See also Baldursson (1998), who applies Slade�s (1994) result in his

study of irreversible investment under uncertainty in oligopoly.
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the two firms. Obviously, the central planner will want firm i (firm j) to be active in

the market when Si is high (low) and/or Sj is low (high). However, every time the

planner decides to change the active firm in the market, switching costs Ki!j � Kj

or Kj!i � Ki (depending on the direction of the ‘‘switch’’) are incurred. The central

planner is risk neutral and wishes to maximise her expected present value of profits
from the market, net of switching costs. By specifying the rules for optimal switching

between firms, our planner essentially defines the exercise strategies of competing

firms. The planner�s optimisation problem is one of stochastic dynamic program-

ming and we will develop the solution using the option pricing analogy.

Without loss of generality, let firm j be currently the active firm in the market and

define Fj!iðSi; SjÞ as the planner�s option to cease firm j operating, and to activate

firm i in the market. Over the range of states Ij � fSi; Sj : j activeg the asset of

the switching opportunity must be willingly held. The return of this asset comprises
of (a) the expected capital gain, ðE½dFj!iðSi; SjÞ�Þ=dt, as the value of Fj!iðSi; SjÞ
changes with Si, Sj plus (b) a dividend, Sj, the flow of operating profit from firm j
which is currently active. The total return must then equal the normal return, i.e.,
E½dFj!iðSi; SjÞ� þ Sj dt ¼ rFj!iðSi; SjÞdt;
where r is the riskless interest rate, assumed constant.

By applying Ito�s lemma to calculate the expectation and in the light of (1), this

asset equilibrium condition becomes a second-order partial differential equation that

Fj!iðSi; SjÞ must satisfy
1

2
r2
i S

2
i

o2Fj!i

oS2
i

 
þ 2qrirjSiSj

o2Fj!i

oSioSj
þ r2

j S
2
j
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oS2
j

!
þ ðr � diÞSi

oFj!i

oSi

þ ðr � djÞSj
oFj!i

oSj
� rFj!i þ Sj ¼ 0: ð2Þ
The time partial derivative in (2) is zero due to the perpetual nature of the game.

Correspondingly, over the range of states Ii where it is optimal for firm i to be
active in the market, the planner�s option to exchange firm i with firm j in the mar-

ket, Fi!jðSi; SjÞ, will satisfy
1

2
r2
i S

2
i

o2Fi!j

oS2
i

 
þ 2qrirjSiSj

o2Fi!j

oSioSj
þ r2

j S
2
j

Fi!j

oS2
j

!

þ ðr � diÞSi
oFi!j

oSi
þ ðr � djÞSj

oFi!j

oSj
� rFi!j þ Si ¼ 0: ð3Þ
2.3. Reducing the problem’s dimensionality

Identifying the boundaries between regions Ii, Ij essentially determines the opti-
mal switching policy for our central planner. However, the theory of partial differen-

tial equations has little to say about such ‘‘free boundary’’ problems in general.

Fortunately, in the present setting, the natural homogeneity of the problem allows

us to reduce it to one dimension. The intuition, which is due to McDonald and Siegel
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(1986), is that in the current setting, our central planner is not concerned about the

absolute magnitudes of Si, Sj. For determining the optimal switching policy, the plan-

ner only needs to be concerned about some measure of the relative magnitudes of the

two firms� profitabilities. A properly defined measure will allow reduction of the di-

mensionality of the problem.
Letting P � Si

Sj
stand for the relative net operating profitability of competing firms

and in the region Ij, write
5 No

bound

6 Th

by
Fj!iðSi; SjÞ ¼ Sjfj!i
Si
Sj

� �
¼ Sjfj!iðPÞ; ð4Þ
where fj!i is now the function to be determined. It is easy to see that a relationship

like (4) can be sustained: if Si, Sj both double in value, the boundary that determines

optimal Ij ! Ii switching will not change, thus the switching option Fj!i should be

homogeneous of degree 1 in ðSi; SjÞ. Applying successive differentiation to (4) and

substituting into (2) we get
1

2
m2P 2f 00

j!iðP Þ þ ðdj � diÞPf 0
j!iðP Þ � djfj!iðP Þ þ 1 ¼ 0; ð5Þ
where m2 � r2
i � 2qrirj þ r2

j (see Appendix A).

Eq. (5) is an ordinary differential equation for the unknown function fj!iðP Þ of the

scalar independent variable P . It has to be solved subject to the boundary condition
lim
P!0þ

fj!iðP Þ ¼
1

dj
; ð6Þ
which essentially says that when P tends to zero (Si decreases and/or Sj increases),

our planner will never want to exchange active firm j for i and thus her switching

option fj!i should be worthless. Thus her expected present value will be equal to the

present value of firm j operating perpetually. 5

Solving (5) subject to (6) yields
fj!iðP Þ ¼ APa þ 1

dj
; ð7Þ
where A is a constant to be determined, and a is the positive root of the characteristic

quadratic function. 6
te that Sj has been factored out of Fj!i in the definition of fj!i in (4). Thus the right-hand side of

ary condition (6) should be read as

lim
Si!0þ

Fj!iðSi; SjÞ ¼ lim
Sj!þ1

Fj!iðSi; SjÞ ¼
Sj
dj
:

e characteristic quadratic function 1
2
m2xðx� 1Þ þ ðdj � diÞx� dj ¼ 0 has roots a > 1 and b < 0 given

a; b ¼ 1

2
� dj � di

m2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dj � di

m2
� 1

2

� �2

þ 2dj

m2

s
:
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Following similar steps for region Ii, Eq. (3) reduces to
1

2
m2P 2f 00

i!jðPÞ þ ðdj � diÞPf 0
i!jðPÞ � djfi!jðP Þ þ P ¼ 0 ð8Þ
subject to
lim
P!þ1

fi!jðP Þ ¼
P
di
: ð9Þ
Boundary condition (9) says that with firm i active, as P gets extremely high (Si
increases and/or Sj decreases), the switching option fi!j will be worthless and the

planner will be receiving Si perpetually (see Footnote 5). The solution of (8) subject
to (9) is of the form
fi!jðPÞ ¼ BPb þ P
di

ð10Þ
with B constant and b as in Footnote 6.

Finally, for future reference in the paper and before proceeding to the solution of

the planner�s problem, one can show that the relative profitability variable P will fol-

low
dP
P

¼ n

�
þ 1

2
m2

�
dt þ mdW ; ð11Þ
where m is as before, n � li � lj þ dj � di � 1
2
ðr2

i � r2
j Þ and W is a new standard

Wiener process
W ¼ 1

m
ðriZi � rjZjÞ:
3. Solving for the optimal switching policy

Once the planning problem is reduced to one dimension, optimal policies can be

determined. These optimal switching policies, j ! i and i ! j, are determined in the
form of two time independent values of the state variable P , one an upper P and one

a lower threshold P , such that
Ii ¼ fSi; Sj : P P Pg if j active; switch to i
Ij ¼ fSi; Sj : P 6 Pg if i active; switch to j

P > 1 > P : ð12Þ
Of course the values of P and P have to be determined endogenously through op-

timality conditions that apply at the thresholds. The separation of switching

thresholds in (12) is similar to the entry/exit model of Dixit (1989). To understand
this in our setting, suppose firm j is currently active and P ¼ 1 (both firms equally

profitable). Our central planner would seem indifferent to which firm operates the

market and could decide to activate firm i and cease j from operating. However,

since the switching decision entails a fixed cost (Kj!i in this case), our planner will

optimally delay this decision until P ¼ P > 1 is reached, i.e. until the option fj!i is
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sufficiently ‘‘in-the-money’’. In other words, firm i does not find it optimal to commit

the investment cost until its profitability is sufficiently higher than j�s, so that a

substantial active time period can be expected. Correspondingly, when i is active, the

planner will optimally wait until P gets sufficiently below unity, so as to be optimal to

sink Ki!j and delegate the market to firm j. This separation of thresholds for optimal
j ! i and i ! j exchange is the manifestation of hysteresis (see Dixit (1989)).

3.1. Hysteresis solution in four equations

The optimal policy is determined by two value-matching
7 Se

discuss

sided

homog
AP
a þ 1

dj
þ Kj!i ¼ BP

b þ P
di
;

APa þ 1

dj
� Ki!j ¼ BPb þ P

di
;

ð13Þ
and two high-order contact or smooth-pasting conditions 7
AaP
a ¼ BbP

b þ P
di
;

AaPa ¼ BbPb þ P
di

ð14Þ
that apply at the optimal boundaries, P and P , which we want to determine.

Eq. (13) states what happens when the optimal boundaries are reached. When P
gets sufficiently high (at the optimal level P to be determined, where Si � Sj), our

central planner exercises the (call) option to activate firm i (AP
a
) by closing firm j

and incurring the switching cost (Kj!i). In return, she gets an active firm i and the

(put) option to reactivate firm j (BP
b
) if profitability conditions change in the future.

At P (Si � Sj) this put option is exercised, and firm�s i value and the switching cost

Ki!j are exchanged for the value of firm j and the (call) option on firm i. Eq. (14)

states that for P and P to be the optimal switching policy thresholds, not only the

values in (13) but also their first derivatives must meet smoothly. The intuition is that

if a kink arose in the planner�s value function at P , P , perturbations in the supposedly

optimal policy would make the planner better off and thus the thresholds would not

be optimal.

Eqs. (13) and (14) constitute a system that uniquely determines A, B, P and P , thus
completing the solution. The equations are non-linear in P and P and thus can only

be evaluated numerically. We show that this system can be reduced to one, more eas-

ily evaluated equation that determines the whole system and can summarise the op-

timal policy in one parameter.
e Dumas (1991) for a rigorous treatment of these conditions and Merton (1973, p. 171, no. 60) for a

ion in the option pricing problem. Dumas and Luciano (1991) also discuss these in another two

transaction cost control problem. Note that the smooth-pasting conditions have been made

enous to Eq. (13) by multiplying through with P , P .
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3.2. Hysteresis solution in one equation

For reducing the system, it will be convenient to set
X ¼ 1

dj
þ Kj!i;

X ¼ 1

dj
� Ki!j;
as the costs associated with the upper and lower switching thresholds and write the

system (13) and (14) in matrix form with ðA;B;X ;X Þ as a function of ðP ; P Þ
AP
a þ X ¼ BP

b þ P
di

APa þ X ¼ BPb þ P
di

AaP
a ¼ BbP

b þ P
di
;

AaPa ¼ BbPb þ P
di

()
1 0 P

a �P
b

0 1 Pa �Pb

0 0 aP
a �bP

b

0 0 aPa �bPb

2664
3775

X
X
A
B

2664
3775 ¼ 1

di

P
P
P
P

2664
3775:
Inverting the matrix to recover the vector ðA;B;X ;X Þ, the matrix product is most

easily evaluated as a function of the fraction c � P=P (a time independent ratio of

the lower to the upper switching thresholds)
X

X

A

B

26664
37775 ¼ P

abdiðcb � caÞ

abðcb � caÞ � bcb þ aca � ða� bÞc
abðcbþ1 � caþ1Þ þ bcaþ1 � acbþ1 þ ða� bÞcaþb

bda
i ðcb � cÞ
P
a

ada
i ðca � cÞ
P
b

266666664

377777775: ð15Þ
Define the variable p � X=X (the ratio of switching costs). This variable can be

expressed as a function of c by dividing the first two lines of the matrices in (15)
pðcÞ ¼ abðcbþ1 � caþ1Þ þ bcaþ1 � acbþ1 þ ða� bÞcaþb

abðcb � caÞ � bcb þ aca � ða� bÞc : ð16Þ
This is the one equation that determines the entire hysteresis system. It would be

preferable to determine cðpÞ (the ratio of thresholds as a function of the switching
cost ratio) as oppose to pðcÞ but a numerical solution for the inverse is easy to obtain

for any particular values. This polynomial pðcÞ is monotonic and increasing in c and

therefore there is a unique p for every c and vice versa. For every choice of p, once

the optimal c is numerically retrieved from (16), the thresholds and option constants

can be recovered by substituting in the following equations
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P

P

" #
¼ abðcb � caÞ

X
abðcb � caÞ � bcb þ aca � ða� bÞc

X
abðcb � caÞ þ bca � acb þ ða� bÞcaþb�1

26664
37775;

A

B

� �
¼ P

abdiðcb � caÞ

bda
i ðcb � cÞ
P
a

ada
i ðca � cÞ
P
b

2664
3775:

ð17Þ
The above completes the solution by specifying the optimal switching policy for

our fictitious central planner. The optimal thresholds at which our planner decides

to exchange j for i (P ) and i for j (P ) are essentially the relative optimal exercise strat-

egies of our two competing firms. In the next section we examine some of the prop-

erties of the optimal exercise policies analytically. Moreover, some interesting results

concerning the expected active time of each rival, and the probability that one of

them will be the active firm in the market are presented.
4. Results

4.1. The effects of uncertainty and investment costs

For any P in the hysteresis range ðP ; P Þ, the market continues with the status quo

(active firm remains the same) and sunk costs are crucial for this inertia zone to
arise. 8 We thus first turn to examine the effect of such costs.

For symmetric but arbitrarily small entry costs, it is easy to see that
lim
Ki!j¼Kj!i!0

pðcÞ ¼ 1 () c ¼ 1
the optimal exercise thresholds collapse to a common value bPP and hysteresis dis-

appears. Using l�Hospital�s rule we can evaluate this value to be
bPP ¼ ab
ab� ðaþ bÞ þ 1

¼ d2

d1

() d1S1 ¼ d2S2; ð18Þ
where the second equality comes from the definition of P .

Although not obvious at the outset, this result is not surprising. It means that in

the absence of fixed costs, the exercise strategy for a firm is to enter whenever it has a

higher profit flow than its competitor. In other words, our fictitious planner would

activate an idle firm whenever the opportunity cost of keeping it inactive exceeds

the profitability yield of the firm currently in the market.
this inertia zone ðP ; PÞ, which firm will actually be active is history-dependent. It depends on which

thresholds P , P has been reached last.
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Moreover, for any positive level of uncertainty, if Ki!j ! 0, we have
Fig. 1

ment c

tween

dotted

hystere
dP
dKi!j

! 1
and
dP
dKi!j

! �1:
In other words, in the presence of uncertainty, hysteresis emerges very rapidly even

for small sunk costs. Similarly when Kj!i ! 0. This is visually confirmed by Fig. 1

which plots the optimal exercise thresholds as a function of sunk costs for symmetric

rivals (li ¼ lj, di ¼ dj, ri ¼ rj, Kj!i ¼ Ki!j). In accordance with intuition, firms are

more reluctant to enter (hysteresis increases) in the presence of higher investment
costs K.

Next, turn to the effect of uncertainty. If ri; rj ! 0, Eq. (13) becomes
P ¼ diX ; P ¼ diX
and the effect of hysteresis is only due to the sunk investment costs. It is easy to verify

that for ri; rj > 0
P > diX ; P < diX ;
i.e., the zone of inaction widens with uncertainty. However even for economically

identical competing firms (li ¼ lj, di ¼ dj, ri ¼ rj ¼ r, Kj!i ¼ Ki!j) the effect of
. For symmetric rival firms, the figure plots the investment thresholds P , P , as a function of the invest-

osts K for negative (dashed line) and positive (solid line) correlation q between firms. The gap be-

thresholds increases with costs but decreases with the correlation coefficient. The horizontal

line corresponds to the common threshold in the absence of fixed costs. Even for small fixed costs,

sis arises very rapidly. The rest of the parameters are di ¼ dj ¼ 0:09 and ri ¼ rj ¼ 0:20.



Fig. 2. For symmetric rival firms, the figure plots the investment thresholds P , P , as a function of the firms�
profitability volatility r for negative (dashed line) and positive (solid line) correlation q between firms. The

gap between thresholds increases with the volatility of each rival�s profitability, but decreases with the cor-

relation coefficient. In the absence of uncertainty, the gap between thresholds is only due to fixed invest-

ment costs. The rest of the parameters are di ¼ dj ¼ 0:09 and Ki!j ¼ Kj!i ¼ 1.
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uncertainty on the optimal thresholds is not symmetric. For any level of correlation,

it can be shown that
dc
dr

< 0 () dP
dr

< 0 <
dP
dr
the upper threshold is more sensitive to volatility than the lower threshold.

Fig. 2 plots the exercise thresholds as a function of volatility for symmetric rival
firms (di ¼ dj, ri ¼ rj, Kj!i ¼ Ki!j). The more volatile the profitabilities of compet-

ing firms, the higher the distance between the optimal exercise thresholds ðP ; P Þ. The

correlation of changes in rival�s profitabilities also has an effect which is also appar-

ent in Fig. 2. P (P ) is monotonically decreasing (increasing) in q. For q ¼ 1, the rel-

ative profitability of rivals P is deterministic (m ¼ 0) and the active firm in the market

will be determined by the initial ‘‘yield’’ criterion in (18) for all time (see also Fig. 3).
4.2. Calculating the probability of being the active rival

Once one of the two competing firms becomes active in our model, it knows that it

will operate the market only until its rival finds it optimal to claim the market back.

This might well be a finite period of time. What the active firm would like to know is

how long this period of time will be, at least in expectation. Moreover, for fixed time

horizons, what is the probability that a firm will be active in the market by time t?



Fig. 3. For symmetric rival firms, the figure plots the investment thresholds P , P , as a function of the cor-

relation between the operating profitability of rivals q for high (solid line) and low (dashed line) fixed in-

vestment costs. The gap between thresholds decreases with the correlation between rivals but it increases

with the investment costs. If competing firms are perfectly positively correlated (q ¼ 1), the model degen-

erates since there is essentially one potential firm. The rest of the parameters are di ¼ dj ¼ 0:09 and

ri ¼ rj ¼ 0:20.
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To answer these questions, assume that firm j is currently active and the relative

profitability variable is at P0 2 ðP ; P Þ. Define the stopping time Tj
Tj ¼ infftP 0 : Pt P Pg
as the first time that P reaches P starting from P0. Since the future evolution of P is

unknown, time Tj is essentially a random variable measuring the time firm j will be

active. Using Harrison (1985) Eq. (1.11) and an application of a simple change in

variables, the cumulative distribution function of the first passage time Tj can be

written as:
Pr½Tj 6 t� ¼ U
� ln P

P0

� �
þ nt

m
ffiffi
t

p

24 35þ P
P0

� �ð2n=m2Þ

U
� ln P

P0

� �
� nt

m
ffiffi
t

p

24 35; ð19Þ
where n, m as in (11) and Uð�Þ is the standard normal cumulative distribution func-

tion. To provide a measure of the average time firm j will be active, one might
consider the expected value of Tj. For the case in which the drift of P is negative,

n < 0, the expectation is undefined (see Shackleton and Wojakowski (2002)). Es-

sentially, if the volatility of the relative profitability measure P is large enough, P
may never be reached and the expectation is infinite, i.e. firm j may remain active for

ever. To overcome this limitation, we choose to measure the average active time of
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firm j by the median of Tj. The median active time for firm j, Mj, that divides the

probability in two is the solution to the non-linear equation:
Fig. 4

active

profita

entry c

probab

for firm

profita

ri ¼ rj
U
� ln P

P0

� �
þ nMj

m
ffiffiffiffiffiffi
Mj

p
24 35þ P

P0

� �ð2n=m2Þ

U
� ln P

P0

� �
� nMj

m
ffiffiffiffiffiffi
Mj

p
24 35 ¼ 1

2
: ð20Þ
Fig. 4 shows that the median active time of the incumbent firm j increases with the

rival�s investment cost. Notice, however, the effect of the volatility of the relative

profitability, m. The median active time Mj decreases with the volatility of the relative
profitability of rivals, m, i.e., the more volatile the industry�s profitability, the less the

period of time the incumbent firm can maintain its monopolistic position.

This might seem counterintuitive when viewed in conjecture with the fact that

by definition ðdm=driÞ ¼ ðdm=drjÞ > 0, and ðdP=driÞ ¼ ðdP=drjÞ < 0 < ðdP=driÞ ¼
ðdP=drjÞ, the zone of hysteresis increases with rivals� volatilities. The intuition is that

an increase in volatility has a two opposing effects. First, as ri, rj increase, the zone

of hysteresis becomes wider (see Fig. 2), making it less likely that a change in the ac-

tive firm will occur. On the other hand, such an increase makes the relative profitabil-
ity process P in (11) more volatile (since m increases), increasing the probability that

more extreme values of P will be realised ceteris paribus. It is this second effect that
. For symmetric rival firms, the figure plots the median time firm j will be active in the market (if

at t ¼ 0) in Eq. (20) as a function of the fixed investment cost K for different values of the relative

bility volatility m. The median time a firm will remain active in the market is increasing in its rival�s
ost. However as ri, rj increase, and the volatility m of the relative profitability variable increases, the

ility that the switching threshold P will be reached increases, thus bringing the median active time

j down. The effect of the entry costs is more pronounce the lower is the uncertainty in the relative

bility P . The rest of the parameters are di ¼ dj ¼ 0:09, q ¼ �0:5, ri ¼ rj ¼ 0:20 (m high),

¼ 0:15 (m medium), ri ¼ rj ¼ 0:10 (m low) and P0 ¼ PþP
2

.
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dominates, implying that the more volatile the market environments, the more short-

lived market leadership by a firm will be.

Once it loses the market to its rival, an incumbent firm would like to be able to

calculate the probability of regaining the market back. In other words, firm j, if ini-

tially active, would like to know what is the probability that by time T , the relative
profitability measure reaches P after having reached P before. Towards that end, de-

fine
Fig. 5

the ma

increas

to ente

figure

and ri
mP
t � max

u2½0;t�
Pu
as the running maximum of the relative profitability process P up to time t. With

P0 2 ðP ; P Þ, we are interested in calculating Pr½Pt 6 P ;mP
t P P �, the probability that

firm j becomes active again after a finite period of firm i operating the market. It can
be shown that
Pr½Pt 6 P ;mP
t P P � ¼ exp

2n
m4

ln
P
P0

� �� �
U

ln
P

P

� �
� ln P

P0

� �
� nt

m2
ffiffi
t

p

24 35 ð21Þ
(see for example, Musiela and Rutkowski (1997, Corollary B.3.1)). Obviously, this

probability increases the further ahead in time we look. For symmetric firms, it

decreases with the investment entry costs (Fig. 5) but it increases with the volatility
. For symmetric rival firms and P0 ¼ ðP þ P Þ=2, the figure plots the probability that the active firm in

rket will change twice until time t, as a function of time in years. The probability is very small but it

es rapidly the further in the future we look. The higher the investment costs that rivals have to incur

r, the lower this probability. In the absence of entry costs, P0 ¼ bPP in (18) and the probability in the

collapses to a straight line at the 50% level. The rest of the parameters are di ¼ dj ¼ 0:09, q ¼ �0:5

¼ rj ¼ 0:20.



Fig. 6. For symmetric rival firms and P0 ¼ ðP þ PÞ=2, the figure plots the probability that the active firm in

the market will change twice until time t, as a function of time in years. The probability is very small but it

increases rapidly the further in the future we look. The higher the volatility m of the relative profitability of

rivals, P , the more probable the switching thresholds will be reached in less time, bringing the probability

of two active firm changes up. The rest of the parameters are di ¼ dj ¼ 0:09, q ¼ �0:5, ri ¼ rj ¼ 0:40 (m
high), ri ¼ rj ¼ 0:30 (m medium), ri ¼ rj ¼ 0:20 (m low), Ki!j ¼ Kj!i ¼ 1.
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of firms� relative profitability m (Fig. 6). In Fig. 5, notice that as Kj!i ¼ Ki!j ! 0, the

probability in (21) converges to a straight line at 50%, 9 since in this case the

thresholds collapse to the unique value P̂P in (18). Moreover, in Fig. 6, an increase in m
has again the dual effect discussed above. The ratio of entry thresholds, c � P=P ,
decreases, thus enhancing the gap between P and P . Moreover, since the volatility of

P increases, it is more probable that more extreme values will be realised. The second

effect dominates to bring the probability in Eq. (21) up.
5. Aircraft industry application

In this section, we apply the model�s main results to an industry that conforms

very closely to our setting: the aircraft manufacturing industry which has long been

dominated by two major competing firms, Boeing Co. and Airbus Industrie. Stonier

and Triantis (1999) characterise the industry as a direct duopoly, with profitability

and order volume uncertainty, large irreversible investments (an average of $5–10
9 This is true because the initial value of the relative profitability variable is set at P0 ¼ ðP þ P Þ=2 as in

all figures.



Table 1

Airbus 380 expenditure by year (in million dollars)

Investment 2001 2002 2003 2004 2005 2006 2007 2008 Total

R&D expenses 1100 2200 2200 2200 1320 880 660 440 11,000

Capital expenses 0 250 350 350 50 0 0 0 1000

Working capital 0 150 300 300 200 50 0 0 1000

Total 1100 2600 2850 2850 1570 930 660 440 13,000

PV on 2000 6125

Source. Dresdner Kleinwort Benson, Aerospace and Defense Report.
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billion development costs per aircraft type), highly differentiated product lines and

intense competition where strategic issues are of great importance. 10

On June 23, 2000, the Airbus Industrie�s supervisory board authorised the launch-

ing of the A380 project, which has been under consideration since 1990. This $13-

billion project ($6.125 billion in present value terms, see Table 1) entails the

construction of the biggest passenger carrier aircraft (550 to 990 passengers), which

will guarantee market leadership for the Airbus consortium in the very large aircraft
(VLA) market segment. 11 For the last 30 years, the VLA market had been domi-

nated by the flagship of the Boeing fleet, the 747-400.

The economics of the A380 project have been extensively reported and reviewed

by the popular press in the last three years (Kane and Esty (2001) report a long list of

articles, analysts� reports and anecdotal evidence concerning the characteristics and

the main uncertainties of the project). However, what has been an issue of increased

speculation, is how Boeing Co. should react having lost its dominant position in the

VLA market.
Two likely responses have received much attention in the industry: one is for Boe-

ing to develop a stretched, 520-seat version of the 747 (the 747X). The second is to

commit to the construction of its own super jumbo jet to compete head on with the

A380. In what follows we simulate the model numerically in an effort to assess the

two alternatives.

We estimate the model inputs using the monthly returns of the two companies,

from July 2000 (the announcement of the A380 project) until January 2002. Market

data are drawn from Datastream, while some estimates from Kane and Esty (2001)
are also used. We estimate Airbus� equity volatility at rj ¼ 0:16 and its systematic risk

at bj ¼ 0:84, which implies a required rate of return of approximately lj ¼ 11%. 12

The correlation of returns of the two firms was q ¼ 0:34 in our sample period.

For Boeing, we use two set of input parameters, representing the two alternative

strategic actions. In the ‘‘safer’’ alternative, the stretch version of the 747, the invest-
10 For more on the aircraft manufacturing industry, see the excellent case study by Kane and Esty

(2001). Interested readers can also refer to Hallerstrom and Melgaard (1998); Jordan (1992) and Stonier

(1997).
11 The VLA market refers to aircrafts with the capacity of seating more than 400 passengers or carrying

more than 80 tons of freight.
12 The risk-free rate and the risk premium are assumed at 6%.



Table 2

Parameter inputs for the numerical application to the aircraft manufacturing industry

Inputs Airbus Industrie Boeing Co.

Super jumbo Stretch 747

Growth rate (l, %) 11.0 13.0 11.9

Volatility (r) 0.160 0.300 0.150

Cost of delay (d) 0.090 0.050 0.050

Investment cost (K) 6.125 6.125 4.000

Correlation (q) 0.340

M.B. Shackleton et al. / Journal of Banking & Finance 28 (2004) 179–201 197
ment cost will be substantially lower. Analysts estimate it at $4 billion (see Dresdner
Kleinwort Benson Research report (2000)). Since this alternative will not increase the

riskiness of the firm substantially, we use the historically estimated b ¼ 0:98 for Boe-

ing, which implies li ¼ 11:9%. The volatility of Boeing�s returns is ri ¼ 0:15 in our

sample. For the ‘‘risky’’ alternative of building a super jumbo, we use a volatility

of 0:30 and a required return of 13% (an implied beta of 1.17). We see no reason

why the investment cost of this alternative should be different from that of Airbus

thus the same investment cost is used. Table 2 summarises the inputs of our numer-

ical example.
Using the inputs of Table 2, the optimal thresholds for Boeing entry in the VLA

are P ¼ 1:78 and P ¼ 2:61 for the ‘‘stretch’’ and ‘‘super jumbo’’ alternatives, respec-

tively. Boeing�s expected operating profitability in the VLA market should be more

than twice that of Airbus, for the building of a corresponding super jumbo to be op-

timal. This seems very unlikely in the short term even under the most optimistic sce-

narios concerning the demand in the VLA market. Since it takes a substantial period

of time to construct such an aircraft, 13 and with Airbus already locking in key cus-

tomers with delivery orders, Boeing can at best expect to share the market with Air-
bus if a similar super jumbo is launched. This, however, may not be profitable or

value maximising.

To further assess the relative attractiveness of the two alternatives, we estimate the

probability that Airbus will maintain leadership of the VLA market segment under

the two proposed reactions of Boeing using Eq. (19). Fig. 7 shows that the ‘‘stretch’’

alternative decreases the probability of Airbus� leadership sharply. Both rivals have a

50% probability of being the market leader after T ¼ 11:2 years under this alterna-

tive. This increases to T ¼ 18:8 years under the more risky alternative of building a
super jumbo jet.

The above seem to imply that among the two mutually exclusive alternatives con-

sidered, Boeing might be better off waiting to build the 520-seat version of 747 in-

stead of waiting for the riskier super jumbo. Of course, some caution is needed

when the results of this section are interpreted. First, the input parameters used in

our model could be questioned. Second, some of the assumptions in the model

might seem inappropriate. For example, Stonier (1997) reports that profitability

in the aircraft manufacturing industry exhibits cyclicality, in stark contrast with
13 Delivery of the first A380 from Airbus is expected to be in 2006.



Fig. 7. The figure plots the probability that Airbus Industrie will remain the leader in the VLA segment of

the aircraft manufacturing industry as a function of time under the two possible reactions from its rival,

Boeing Co.: building a super jumbo or 747X, a stretch version of its existing model. The probability is

shown to decrease very rapidly within the next 20 years under the second scenario. Each rival has a prob-

ability of leading the market of 50% (dotted line) after T ¼ 18:76 and T ¼ 11:18 years under each alterna-

tive scenario respectively.
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our assumption in Eq. (1). Lastly, the conclusion we reached, is solely based on time
arguments, i.e., how soon would Boeing regain leadership. A proper project ap-

praisal should consider not only the timing, but also the magnitude of returns that

are expected to be earned. An option payoff further in the future, if high enough,

might be preferred to a lower in magnitude but sooner in time alternative. However,

if the focus is on empirical applications, the discussion above can highlight that, at a

minimum, the model�s intuition could carry over to real business industries, probably

at the expense of analytic tractability.
6. Conclusions

When firms are directly competing for the same market but can exert different and

uncertain future profits from operations, investment timing becomes a strategic de-

cision variable which can be optimised conjecturing the rival�s optimal response. We

solve a stochastic real option game under the assumption that only one firm can be

active at any point in time, but its idle rival has the option to reclaim the market

whenever optimal to do so. This is only possible because the homogeneity of the
problem in the two state variables allows reduction of its dimensionality to one.

In the absence of fixed entry costs, optimal entry strategies are shown to conform

to a simple criterion: invest if your opportunity cost of remaining idle exceeds your

rival�s operating yield, i.e., the firm with the highest current yield (opportunity cost)
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operates the market. When fixed costs are introduced, the optimal rival investment

thresholds are shown to be separated in the two state variable space, producing a

hysteresis range, and the active firm in the market is history-dependent. Optimal entry

strategies are then determined by a simple, easily invertible, non-linear equation

which uniquely describes the hysteresis system.
The range of hysteresis in entry thresholds is increasing in the investment costs but

decreasing in the correlation between rivals. The effect of volatility, however, is dual:

on one hand, volatility widens the gap of hysteresis driving the optimal entry times of

rivals further apart. On the other hand though, the higher the volatility, the more

probable big changes in the firms� profitabilities will be realised in a shorter period

of time. It is this second effect that dominates, thus making higher volatility markets

more prone to fierce competition and changes in market leadership.

In an application of the model to the aircraft industry, we find that Boeing�s op-
timal response to Airbus� launch of the A380 super carrier is to accommodate entry

and supplement its current product line, as opposed to the riskier alternative of com-

mitting to the development of a corresponding super jumbo. Whichever the re-

sponse, it might be some time (10–20 years) before Boeing regains leadership in

the VLA market.
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Appendix A. Derivation of ODE in (5)

Successive differentiation of (4) yields
oFj!iðSi; SjÞ
oSi

¼ f 0
j!iðP Þ;

oFj!iðSi; SjÞ
oSj

¼ fj!iðP Þ � Pf 0
j!iðP Þ;

o2Fj!iðSi; SjÞ
oS2

i
¼ 1

Sj
f 00
j!iðP Þ;

o2Fj!iðSi; SjÞ
oS2

j
¼ 1

Sj
P 2f 00

j!iðPÞ;

o2Fj!iðSi; SjÞ
oSioSj

¼ � 1

Sj
Pf 00

j!iðPÞ:
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Substituting the above in Eq. (2) and simplifying yields
1

2
r2
i S

2
i

1

Sj

�
� 2qrirjSiSj

1

Sj
P þ r2

j S
2
j

1

Sj
P 2

�
f 00
j!iðP Þ þ ðr � diÞSif 0

j!iðPÞ

þ ðr � djÞSjðfj!iðP Þ � Pf 0
j!iðP ÞÞ � rSjfj!iðP Þ þ Sj ¼ 0:
Divide through with Sj and collect terms to get Eq. (5) in the text.
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