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A B S T R A C T

This study aims to investigate the contributions of promotional marketing activities, historical demand and other
factors to predict, and develop a big data-driven fuzzy classifier-based framework, also called “demand-driven
forecasting,” that can shape, sense and respond to real customer demands. The availability of timely information
about future customer needs is a key success factor for any business. For profit maximization, manufacturers
want to sense demand signals and shape future demands using price, sales, promotion and others economic
factors so that they can fulfil customer's orders immediately. However, most demand forecasting systems offer
limited insight to manufacturers as they fail to capture contemporary market trends, product seasonality and the
impact of forecasting on the magnitude of the bullwhip effect. This paper aims to improve the accuracy of
demand forecasts. In order to achieve this, a back-propagation neural network-based model is trained by fuzzy
inputs and compared with benchmark forecasting methods on a time series data, by using historical demand and
sales data in combination with advertising effectiveness, expenditure, promotions, and marketing events data. A
statistical analysis is conducted, and the experiments show that the method used in the proposed framework
outperforms in optimality, efficiency and other statistical metrics. Finally, some invaluable insights for managers
are presented to improve the forecast accuracy of fuzzy neural networks, develop marketing plans for products
and discuss their implications in several fields.

1. Introduction

It is well known that the importance of accurate forecasting of
product sales has not gained enough attention from the research com-
munity. Past research shows that to achieve efficiency in e-commerce,
several key factors come into play: (i) process efficiencies, (ii) demand
aggregation, (iii) information sharing, (iv) web efficiencies, and (v) risk
management. When forecasting managers plan the operation and
marketing strategies for product sales, they consider the following four
factors in the marketing model: (i) product, (ii) price, (iii) place, and
(iv) promotion. If buyers can use exchangeability to work with both the
long-term capacity suppliers and the spot market suppliers, they will be
able to estimate the supply and demand more accurately through ef-
fective demand and supply chain risk pooling.

In recent years, several studies have been published regarding the
supply chain risk management (Colicchia & Strozzi, 2012; Ho, Zheng,
Yildiz, & Talluri, 2015; Rao & Goldsby, 2009; Sodhi, Son, & Tang, 2012;
Tang, 2006; Tang & Nurmaya Musa, 2011). Juttner (2005)

distinguished between the two types of risks commonly associated with
supply chains: (i) supply and demand risks, that are internal to a supply
chain; and (ii) environmental risks that are external to the supply chain,
such as political, natural or societal uncertainties. Supply-side risks
mainly reside in purchasing, supplier activities, and supplier relation-
ships (Zsidisin, Panelli, & Upton, 2000), whereas demand-side risks may
be due to disruptions to physical distribution or from mismatches be-
tween forecast and actual demand (Wagner & Bode, 2006).

Folinas and Rabi (2012) explained how poor forecasting can reduce
the availability of products, change customer choice and have an im-
pact on the working capital. In addition to that, distortions in demand
forecasting also cause the bullwhip effect which can lead to in-
efficiencies, excessive inventory, stock-outs and backorders
(Bhattacharya & Bandyopadhyay, 2011; Coppini, Rossignoli, Rossi, &
Strozzi, 2010; Davino, De Simone, & Schiraldi, 2014; Delhoum &
Scholz-Reiter, 2009; Geary, Disney, & Towill, 2006; Lee, Padmanabhan,
& Whang, 1997a; Lee, Padmanabhan, & Whang, 1997b; Petrovic, 2001;
Sodhi & Tang, 2011). Research by Lee et al. (1997b) identifies five
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major causes of the bullwhip effect: (i) demand forecasting, (ii) order
batching, (iii) supply shortages, (iv) non-zero lead-time, and (v) price
fluctuations. This is further complicated by the effects of seasonality,
promotions, and product proliferation (Lu & Wang, 2010).

In the current complex global marketplace, traditional demand
forecasting models based on simple analytical techniques are only
capable to sense the demand signals with linear and exponential trends,
cyclic behaviour, and seasonality. A historical demand data based
method in which managers use past responses to predict future cus-
tomer demands is no more an accurate and effective approach since
some critical factors can get ignored in the process. In order to reduce
the impact of environmental uncertainty many companies have devel-
oped closer relationships with their suppliers and customers and re-
duced their supply base to a smaller number of suppliers who are
treated as partners (Hadaya & Cassivi, 2007). But organisations still
need a method that can predict and paint an accurate picture of market
demands to efficiently manage all the important aspects of the supply
chain, namely production, inventory, distribution, and orders.

Forecasts of demand are the foundation of all planning activities
(Haberleitner, Meyr, & Taudes, 2010; Sterman, 1989). The aim of de-
mand planning is to achieve a synchronised flow of goods and services
throughout the supply chain. In the hands of a forecasting manager,
correct demand forecasts will work as a powerful tool for generating the
whole demand picture. The two subfields of predictive analytics, de-
mand and sales forecasting, influence all the companies and are used to
remove the inefficiencies in the supply chain. Folinas and Rabi (2012)
identified three stages in the evolution of the demand planning ap-
proach: (i) Collaborative Planning Forecasting and Replenishment
(CPRF); (ii) demand driven value chains; and (iii) demand sensing.
CPFR is “a cohesive bundle of business processes whereby supply chain
trading partners share information, synchronised forecasts, risks, costs
and benefits with the intent of improving overall SC performance
through joint planning and decision making. Accordingly, CPFR en-
hances customer demand visibility and matches supply and demand
with a synchronised flow of goods from the production and delivery of
raw materials to the production and delivery of the final product to the
end consumer” (Hollmann, Scavarda, & Thomé, 2015, p. 977). Demand
sensing is also an equally important aspect for organisations as it helps
to build a more responsive and agile supply chain. Chong, Ch'ng, Liu,
and Li (2015) considered demand sensing by modelling the demand-
forecasting problem using ‘big data’ analytics. They used a support
vector machine (SVM) model to investigate the contribution of online
promotional activities as predictors of product demand, but they did
not consider the effect of demand shaping and advertising on consumer
demands.

An accurate and efficient demand, supply and price forecasting model
has a direct impact on customer satisfaction and inventory stock-out. To
ensure proper functioning of a supply chain management system,
companies must improve their demand forecasting models, so that they
are in a better position to handle customer needs. We are living in an
era of big data and companies are collecting data from multiple di-
mensions. They are moving from traditional forecasting techniques
towards advanced data science methods since they know that historical
sales data, intra-category, and inter-category marketing channels have a
huge impact on forecasting accuracy. Companies are trying to map the
patterns in customer behaviour so that they can optimize their mar-
keting expenses, thereby improving their overall financial performance.
By measuring the quantitative effect of their marketing campaigns
through different channels, these companies are trying to calculate the
return on investment (ROI) impact. This has ultimately led to the

emergence of the new buzz phrase - demand-driven forecasting - which
is the combination of demand shaping, demand sensing and responding
to real consumer demands (Chase Jr, 2013, p. 13).

Demand-driven forecasting aims to sense demand signals and shape
the future customer demands by utilizing advanced data mining tech-
niques as illustrated in Fig. 1 (Chase Jr, 2013). These techniques use
‘big data’ analytics to measure the success of marketing strategies by
identifying patterns in consumer behaviour. Demand-driven supply
chains focus upon providing superior value to end users (Zokaei &
Hines, 2007). This approach utilises closely connected supply networks
to ensure that the production is always linked to the demand (Hadaya &
Cassivi, 2007).

The first step of the demand-driven forecasting method is demand
translation. Demand translation consists of translating actual and
forecasted demand into information that can be used in supply plan-
ning. To accomplish this, sales information including product family
identities, revenues, volume, and mix quantities are passed to the
supply side production line and distribution planning databases (Ross,
2015, p. 299). Demand sensing, the second step in the process, “refers
to sensing customer purchase behaviour or, more generally, customers'
choice behaviour. The scope of demand sensing can range from esti-
mation of the price a potential customer would be willing to pay for an
existing or new product and identification of his economic segment, to
understanding his latent consideration set, the set of new products or
the set of new features in products that the customer will be interested
in” (Ravikumar, Saroop, Narahari, & Dayama, 2005, p. 311). It utilises
upstream data within the value chain to generate a more accurate de-
mand forecast for the organization, which includes product seasonality
and takes into consideration historical trends in buying patterns by
supporting the identification of new business drivers that may affect
demand patterns as well as manufacturing supply capabilities (Folinas
& Rabi, 2012).

Demand shaping is the third step. It is an extension to demand
sensing that links replenishment data and shipment history with the
current point-of-sale information. In other words, demand shaping is a
process in which all the available and accessible information (encom-
passing demand sensing data) is used to develop an optimized, well
organised and steady plan of demand and supply so that the sales and
profitability targets are met and customer satisfaction metrics are
achieved (Chase Jr, 2013). The penultimate step, demand shifting
“refers to the ability to promote another product as a substitute if the
product originally demanded was not available. It is especially useful if
demand patterns or supply capacity changes to steer customers from
product A to product B" (Chase Jr, 2013, p. 46). There are two types of
demand shifting: (i) at the point of sale, where customers are in-
centivised to purchase an alternative; and (ii) at the point of supply,
where manufacturer negotiates with the sales team to shift demands in
the future due to capacity constraints (Chase Jr, 2013, p. 46). Demand
orchestration, which is the final step, is the balancing act between
sensing and shaping the end-user demand. It “focuses on the develop-
ment of demand plans that ensure that the expected trade-offs between
demand opportunity and demand risk are optimized. Success is re-
vealed in the level of performance of actual to expected demand and
actual to expected operations costs” (Ross, 2015, p. 299).

In this paper, we have studied a back-propagation neural network-
based demand-driven forecasting model. It is trained by fuzzy inputs
and compared with benchmark forecasting methods on a time series
data, by combining demand, supply, promotional campaigns, and
practical sales data. This is followed by conducting a statistical analysis
and experiment, the results of which show that the method used in the

Fig. 1. Demand-driven forecasting (Chase Jr, 2013).
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proposed framework outperforms in optimality, efficiency and other
statistical metrics. A further contribution is made by the adstock model
of advertising research, which provides a mechanism for optimally al-
locating budgets, and also predicts the impact of different marketing
channels (Beltran-Royo, Escudero, & Zhang, 2016; Broadbent, 1979;
Chase Jr, 2013). Hence, by considering the role of promotional mar-
keting activities as predictors combined with historical sales and de-
mand, the present research modifies and tests the developed demand-
driven forecasting and investigates the performance or efficiency of
fuzzy neural network framework in evaluating efficiency, demand
shaping and sensing effect, net-stock amplification and the bullwhip
effect.

The current study offers interesting insights in three ways:

1. First, to the best of our knowledge, this study is the first one, which
investigates the contributions of promotional marketing activities,
historical demand and other factors, and develops a big data-driven
framework for demand shaping, sensing and enhancing the fore-
casting accuracy of the time series model using fuzzy ANN based
classifier in big data environment.

2. Second, our experimental outcomes indicate that the proposed
model performs better than the traditional forecasting methods,
when we simulate the impact of different marketing effectiveness
plans and identify the most feasible option while maximizing rev-
enue and ROI from each of the following sources: (i) marketing
channel, (ii) the decay effect of adstock, which is denoted in terms of
‘half-life’ of advertising, and (iii) the impact of advertising on sales.

3. Third, our advanced analysis further indicates that the proposed big
data-driven framework gives a better forecasting result after linking
the demand forecasting with supply data. It also calculates the di-
minishing returns, regularly monitors the effectiveness of adver-
tising and suggests optimized allocation of total marketing spends
while maximizing the effectiveness.

In general, there is a lack of studies that have attempted to develop
demand-driven forecasting model and showed how advertising and
other promotional strategies alter the demand curve. Our primary goal
is to develop a big data-driven demand-driven forecasting model and
improve the forecast accuracy and interpretability of this model using
an efficient and error-free fuzzy classifier. This will not only accelerate
the process of learning but will also examine the role of promotional
marketing activities as predictors combining historical demand and
other factors. Further, in the conclusion section, we elaborate on some
significant managerial insights, which would prove to be very effective
for the supply chain-forecasting managers.

2. Literature review

Time series forecasting is an important problem and widely used to
predict as accurate as possible future values in economic, finance,
weather, energy, stock price etc. domains (Chang, 2017; Chang &
Ramachandran, 2017; Jeon, Hong, & Chang, 2018; Khan and
Shahidehpour, 2009; Verdouw, Beulens, Trienekens, & Van Der Vorst,
2011; Williams, Waller, Ahire, & Ferrier, 2014). Researchers have al-
ready developed several methods and categorized them into three ca-
tegories: traditional time series methods, machine learning methods
and fuzzy machine learning methods. The first forecasting category is
traditional forecasting and it is largely relied on historical demand
trends and patterns and assume that demand follows a time series
pattern (Chen & Blue, 2010). Researchers have aimed to reduce the
bullwhip effect by controlling the parameters of the models, which have
included Moving Average (MA) (Chen, Drezner, Ryan, & Simchi-Levi,
2000), Exponentially Weighted Moving Average (EWMA) (Kone &
Karwan, 2011), Exponential Moving Average (EMA) (Chen, Ryan, &
Simchi-Levi, 2000) Autoregressive (AR) (Duc, Luong, & Kim, 2010; Li,
Li, Li, & Shirodkar, 2012), Autoregressive Moving Average (ARMA)

(Duc, Luong, & Kim, 2008; Moosmayer, Chong, Liu, & Schuppar, 2013),
double exponential smoothing (Baharaeen & Masud, 1986; Chen, Ryan,
& Simchi-Levi, 2000; Hansun & Subanar, 2016; Taylor, 2003; Taylor,
De Menezes, & Mcsharry, 2006; Tsaur, 2003) and Autoregressive In-
tegrated Moving Average (ARIMA) (Tangsucheeva & Prabhu, 2013).
These widely used time series models (especially the ARIMA model) are
generally applicable to linear modelling, but they do not capture the
non-linearity inherent in time series data (Jaipuria & Mahapatra, 2014).
These traditional forecasting methods can fail to forecast big data sets if
they do not follow these assumptions like sample size, linearity, sta-
tionarity and distribution should be normal.

The second forecasting category is based on machine learning
techniques such as artificial neural networks (ANN), support vector
machine (SVM) etc. ANN incorporate non-linear models, and can pro-
vide superior forecasting model because they efficiently map non-linear
relationships between input and output data (Aizenberg, Sheremetov,
Villa-Vargas, & Martinez-Muñoz, 2016; Carbonneau, Laframboise, &
Vahidov, 2008; Gashler & Ashmore, 2016). Jaipuria and Mahapatra
(2014) developed an integrated approach for demand forecasting that
used discrete wavelet transforms (DWT) analysis and an artificial neural
network (ANN), which generally reduced the bullwhip effect. De
Gooijer and Hyndman (2006) provided a comprehensive review of time
series forecasting.

In the last few years, several machine-learning methods for accurate
demand forecasting in various sectors have been introduced. Generally,
demand is assumed to follow a time series pattern which is viewed as a
sequence of observed value in a specific pattern. Hence, different types
of time series machine learning models such as support vector machine
(SVM) (Lu & Wang, 2010), mixed integer programming (Jula &
Leachman, 2011), linear and logistic regression (Kone & Karwan, 2011;
Moon, Simpson, & Hicks, 2013), artificial neural network (ANN)
(Aizenberg et al., 2016; Chong et al., 2015; Doganis, Aggelogiannaki, &
Sarimveis, 2008; Gashler & Ashmore, 2016; Jaipuria & Mahapatra,
2014; Moosmayer et al., 2013; Pang, Zhou, Wang, Lin, & Chang, 2018),
temporal aggregation (Rostami-Tabar, Babai, Syntetos, & Ducq, 2013)
and structural equation modelling (SEM) (Chae, Olson, & Sheu, 2014)
have been suggested or proposed for enhancing the accuracy of demand
forecasting and eventually remove bullwhip effect by controlling the
parameters of the models. Therefore, it is important to enhance the
demand forecasting accuracy in such a manner that bullwhip effect
which is the key measure of supply chain performance, must be re-
duced.

Past research has shown that there is only a limited literature
available in the market on the use of machine learning for demand-
driven forecasting using big data analytics. Demand forecasting is
concerned with estimating demand for future time periods, whereas
demand sensing assesses the current state of various factors related to
customers' choice behaviour by capturing different demand signals
using real-time and historic data (Ravikumar et al., 2005). The process
of demand sensing makes use of data analytics for supporting the se-
lection, training as well as transformation of unstructured and struc-
tured type of data so that the demand and supply are synchronised. This
includes diagnosing inconsistencies in demand to reduce demand vo-
latility (Chase Jr, 2013; Folinas & Rabi, 2012; Larson & Chang, 2016).
Doganis, Alexandridis, Patrinos, and Sarimveis (2006) developed a
model for time series sales forecasting for short shelf-life food products
based that used artificial neural networks and genetic algorithms.
Aburto and Weber (2007) developed a hybrid approach that included
ANN and ARIMA for making forecasting process in supply chain more
accurate. Aggarwal, Saini, and Kumar (2009) combined the wavelet
transform (WT) and multiple linear regression (MLR) techniques to
forecast electricity price profiles using historical price and load data
(Ali, Yohanna, Puwu, & Garkida, 2016; Efendigil, Önüt, & Kahraman,
2009; Sivaneasan, Yu, & Goh, 2017) developed fuzzy neural network-
based forecasting models and added the demand shaping concept in
their models but they did not consider the effect of demand sensing in
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big data environment. ANN has been already investigated in recent
years for demand and sales forecasting problems (Adebiyi, Adewumi, &
Ayo, 2014; Aizenberg et al., 2016; Mukhopadhyay, Solis, & Gutierrez,
2012) because of their modelling capability and parallel computing
abilities (Wang, Zeng, & Chen, 2015). All these neural network-based
forecasting models belongs to MLP, which is a class of feedforward ANN
and suggests that demand should extend to time-delay if we use the
MLP for demand forecasting case. Despite the several published articles
that consider ANN for time series, only a few articles that uses the fuzzy
ANN/SVM.

The third time series category is fuzzy set theory based fuzzy
methods and they do not require those strict assumptions that are valid
for traditional forecasting techniques but provide the remarkable per-
formance in terms of forecasting accuracy. If we compare the ANN with
fuzzy ANN, we found a few drawbacks, which are (i) problem in
learning rate parameters (ii) problems in parameter tuning in hidden
parameters and (iii) problem in setting of overfitting stopping criteria
etc. Due to these problems, a faster and better algorithm is proposed by
(Yu & Huarng, 2010), fuzzy neural network, and it has given the ex-
cellent results in several domains (Lolli et al., 2017). Over the recent
years, several articles have been published on feedforward ANN with
excellent results on time series dataset and the ability of excellent self-
learning without distribution assumptions, but the problem comes after
when we work on big dataset because lots of computation power re-
quired to optimize the networks, pre-processing and parameters tuning.
An extreme learning algorithm has been developed to solve these issues
after adding fuzzy inputs, but it has never been tested on demand
forecasting problem. Therefore, it is worth to test the extreme learning
fuzzy classifier in the demand-driven forecasting context due to their
high computational power and excellent predictive power. In time
series forecasting case, FNN gives the best performance because FNN
combines the ability of the adjusting parameters of ANN with fuzzy
logic adaptively and increase the inference's effectiveness. However,
ANN and other traditional M/L algorithms have several applicability
drawbacks that limit their settings in real environment including: time
consuming and slow convergence process for tuning the input/output

weights and parameters, errors in setting the learning rate parameters,
problems in managing the stopping criteria by number of training/
testing epochs and problems for trapping in local minima.

There is a lack of studies that have attempted to develop demand-
driven forecasting model and showed how advertising and other pro-
motional marketing strategies alter the demand curve. The main no-
velty of this article is the adoption of an efficient and error-free fuzzy
classifier in this context for improving the forecast accuracy and ex-
amine the role of promotional marketing activities as predictors com-
bining historical demand and other factors. Secondly, this proposed
work represents an extension of previous demand-driven forecasting
work (Chase Jr, 2013) in terms of modified architecture, with the aim
of improving our understanding of the linear behaviour of fuzzy neural
networks as a historical sales and demand predictor, and encouraging
researchers and managers to implement them accurately in real world
environment.

3. Proposed framework and model development

3.1. Framework of the research

Fig. 2 presents the proposed big data-driven forecasting framework
and it uses a four-step process for predicting the future demand and
sales using fuzzy artificial neural network (ANN) machine learning
classifier. In the first step, demand signals are captured from historical
downstream demand data and synchronize it with other promotional
marketing activity data. The data is partitioned into training and vali-
dation sets and used to shape the future demand using fuzzy ANN and
other traditional forecasting methods to calculate the unconstrained
forecast error. In the next step, marketing effectiveness of each adver-
tising medium is calculated using market-mix modelling (MMM) to shift
the demand based on multiple capacity constraints collaboration with
other important variables related to sales, marketing, operation and
historical demand. The marketing-mix modelling is “a statistical ap-
proach where quantified marketing activities over time are mathema-
tically linked to a dependent variable, such as sales or revenues”
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Fig. 2. Proposed big data-driven framework for demand-driven forecasting.
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(Fukawa & Zhang, 2015; Wolfe Sr & Crotts, 2011, p. 4). MMM is used to
calculate the exposure to an advertisement and response curve relating
advertising expenditures to sales data. Exposure is measured in terms of
Gross Rating Points (GRP) (a purchase of 100 GRPs could mean that
100% of the target audience is exposed to an advertisement once, or
that 50% of the target audience is exposed twice). Marketing Managers
evaluate their campaigns and make buying decisions in terms of GRP
rather than expenditure because it is not clear how much exposure can
be purchased for a given budget (Beltran-Royo et al., 2016, p.28). The
effects of advertising extend over several periods after the original ex-
posure. This is referred to as advertising carry-over or ‘adstock’
(Broadbent, 1984). The effect of an advertisement decays over time and
is usually expressed in terms of a half-life (Joseph, 2006). The adstock,
model combines past and current advertising effects (Beltran-Royo
et al., 2016). This paper studies how advertising and other promotional
strategies altered the demand curve for a particular TV brand. A sta-
tistical model is developed in the third step adding with sales as a de-
pendent variable and marketing channels, advertising expenditure
through marketing channels, seasonality and macro factors as in-
dependent variables. In the last step, the big data-driven forecasting
model tries to create the final demand response model using what-if
analysis and multi-tiered causal analysis (MTCA), which is used to
shape and sense the unconstrained demand. In a simple way we can say
that if forecasting managers use this proposed big data-driven fore-
casting model, they can optimize the revenue, handle big datasets,
improve forecasting accuracy, calculate the advertising impact on sales,
linking the demand and supply data and minimize the marketing in-
vestment based on promotional activities and other marketing factors.
The developed big data-driven forecasting framework could serve as a
guide to give the directions to the forecasting managers for improving
the contingency and strategic business planning using accurate and
robust prediction of future demand and meaningful and an important
initiative in big data supply chain management domain.

3.2. Dataset description and model validation

We tested our models on a time series data, similar to the one used
by James Rawlins for a TV manufacturing company. The data set in-
formation covering sales, POS and demand data regarding daily TV
sales/demand in the categories of demand, sales, supply, POS, adver-
tising expenditure and marketing effectiveness GRP, was monitored
over a period of 372 weeks from 2010 to 2017.

In this dataset, James utilized Gross Rating Points (GRP) to de-
termine weekly advertising intensities of different channels and calcu-
lated the quantitative impact of marketing campaigns using the impact
of adstock. We downloaded the data from James's Github repository
(https://github.com/jamesrawlins1000/DDF-MMM–Data/blob/
master/MMM_data.xlsx). Apart from information on demand and sales,
the TV demand/sales forecasting data also contained different im-
pressions recorded across multiple channels for calculating the adver-
tising campaign's effectiveness such as Mobile SMS, Newspaper Ads,
Radio, TV, Poster, Internet, etc. in the form of GRP in a city. This time
series dataset had 2614 observations and 17 variables, and a descrip-
tion of each variable was also given in the dataset.

Gross Rating Points (GRPs) can be described as a weighted sum or
grand total of the number of ads aired for a TV company or brand in a
specific week. For instance, the weights are the rating points or RPs of a
specific rating agency for the radio or television shows on or during
which the ads were aired or shown. For a television ad, there is a
telemeter that calculates the total time duration for which a television
set remains on a particular TV channel during the airing of a specific
advertisement or commercial on that particular channel in a house. The
accuracy of this model is evaluated by checking or examining residuals
for diagnosing if it has any repeated pattern that could be eliminated to
enhance the chosen fuzzy ANN model.

Although this may appear to be the best model among other models,

it is still important to perform a diagnosis to make sure that the big data
driven proposed model is adequate and effective. It can be diagnosed by
checking and verifying the PACF and ACF of residuals. The online ac-
tivity metrics undertaken as a part of the process, can either be paid or
earned or owned. The data is derived from various resources and the
number of ways in which online behaviour can be identified is the
clicks that are obtained on paid online ads, the search in the branded
form, website visits that can be numbered and the conversations, both
positive and negative, that are observed on social media.

While testing our model, we faced three major issues. (i) The first
issue was the timing the measurements were to be taken. Online ac-
tivities and their metrics can only be observed for a limited time-period
as they are available for comparatively smaller time frames when
compared to the sales or the surveys that are based on attitude metrics.
To obtain the best results, we found a weekly level fit and through that,
the best signal-to-noise ratio could be achieved. Also by using the in-
tegration of weekly intervals, a better control could be obtained. (ii)
The second issue was the dynamic relations with respect to the mar-
keting, metrics related to attitude and online activities along with sale.
It has been argued by certain scholars that customer attitudes are re-
flected through their activities. This, with reference to Granger caus-
ality, suggests that brand preference and online activity are propor-
tional in nature. Additionally, the increase in online activity is
suggestive of the fact that there would be more online activity in the
future, which will eventually lead to a rise in the activities associated
with marketing and sales. (iii) Lastly, the timing of the effects was
identified as the third issue that could not be controlled through any
theory unlike marketing, economic, psychological and sociological. To
resolve this, the lags were used to bring a balance between model
complexities in addition to forecast accuracy under the time series
analysis. Also, in order to capture the related results, impulse response
function was integrated, and adjustments were done to take into con-
sideration immediate and permanent effects when required. The GRP
data collected via different media agencies may vary in levels and thus,
it needs to be sliced and aggregated. This can create discrepancies in the
accuracy of the data. The data can have certain veracity as the execu-
tion might vary from planned aspects like the differences in the planned
advertising budget and GRPs.

4. Approaches used in demand-driven forecasting model

This section discusses different approaches adopted in the research
to deal with demand forecasting. In addition, this section also provides
some contextual information regarding big data, market-mix modelling
and advertising adstock. A time series data set contain a set of ob-
servations which is generated sequentially in time. All types of orga-
nisations utilize the time series data set for forecasting of predicting
next year's raw material demand and sales figures. Firstly, the time
series model is used for understanding of underlying structure which
produce the data, and secondly, to predict the future behaviour after
model fitting. During data pre-processing and forecasting process,
multiple machine learning forecasting methods are used and tested to
develop each forecasting model and then best forecasting process is
used in main model to predict the future value and uncover the seasonal
patterns or trends. ARIMA (Autoregressive Integrated Moving Average
Model) is a regression model which is used for calculating the ARIMA
coefficient in stationary data that includes autocorrelation without
trend or seasonality. There are four smoothing techniques available for
time series forecasting: Exponential, Double Exponential, Moving
Average and Holt-Winters. When seasonality is present we should not
use the exponential, double exponential and moving average methods.
In moving average method extra observations are forecasted by using
the average of the previous observations. Double exponential method
should be used when a trend is present but there is no seasonality
available in data. The Holt-Winters is the most appropriate smoothing
method for datasets featuring both trends and seasonality (Walley,
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2013; Wang et al., 2015; Wang, Rivera, & Kempf, 2007; Zhang, 2003).
MMM is focused on explaining and predicting the sales of the brand that
are not just limited to the direct effects of the marketing but also the
indirect effects. These have been captured using attitude metrics in-
cluding awareness, consideration and preference based on surveys. The
online activity metrics have also been undertaken as a part of the
process and they can either be paid or earned or owned media. The data
is derived from various resources and temperature is assumed as the key
environmental control variable.

4.1. Fuzzy neural network

Artificial Neural Network (ANN) has several input nodes, hidden
nodes and output nodes. Every node takes a weighted average of the
output of the previous layer. ANN model consists of a set of synapses
each of which is characterized by a weight, an activation function, an
adder and a bias. If we choose the Backpropagation neural network
then it can be divided into feedforward and backpropagation steps
because backpropagation network is a multi-layered and feedforward
neural network and considered one of the most popular methods used
for multi-layered neural networks in supervised learning. The actual
output value of the network is compared to the expected output and an
error signal is computed for each of the output. Generally back-
propagation network works by approximating the non-linear relation-
ship between the output and input and also adjust the weight values
internally according to the input (Garetti & Taisch, 1999; Yu & Huarng,
2010).

Mathematically a neuron can be described by:

=
=

µ W Xa
j

n

aj j
1 (1)

and

= +Ya µ B( )a a (2)

Where μa = Linear combiner output due to input and Za= μa+ Ba.
There are three types of activation function in ANN: Threshold

function, Piecewise-Linear function and Sigmoid function.
Threshold Function:
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Piecewise Function:
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Sigmoid Function:

=
+

z
az

( ) 1
1 exp ( ) (5)

Where a= slope parameter.
The fuzzy neural network model consists of three different layers

namely L1, L2 and L3. The first L1 layer is input layer and the second
layer L2 is used to implement the different fuzzy functions. We used a
member function with five crisp value variables {very-low, low,
medium, high, very-high} for layer 2 and layer 3 which are used jointly
to represent the two-layers neural network with feed forward. The net-
input and Gaussian activation function is given by

=f z a z a( ; , ) exp ( )
2

2

2 (6)

Where a=mean value and σ= standard deviation for the fuzzy
function. The output for L3 is given by

=
+ +

Output
net

1
1 exp{ ( )}j

i (7)

These are the steps in fuzzy neural network (Stoeva & Nikov, 2000).

Steps in Fuzzy neural network
Step 1: Generate the weight w for the input and output hidden

layer where each wji is a fuzzy number.
Step 2: Let assign value for α and η for training the fuzzy back

propagation.
Step 3: Get next pattern set and compute hidden to artificial

input and output neurons.
Step 4: Compute the change of weights for input and output

hidden layer.
Step 5: Update the weight for input-hidden layer.
Step 6: Update the weight for hidden-output layer.
Step 7: Calculate the output w’ and w” for the final fuzzy

membership weight sets.

Fuzzy Neural Network applies the fuzzy set theory and neural net-
work together. Zadeh (1965) developed the fuzzy set theory concept
and defined it by a membership function for capturing the vagueness in
human thoughts. In fuzzy neural network, objective function allocates a

Ba 
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Input                             Weight                              Bias 
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Fig. 3. Artificial Neural Network (ANN) model.
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membership grade between 0 and 1 to all objects and ‘~’ is used above
a letter for the fuzzy values. In Fig. 3, we use TFN in fuzzy neural
network as (l, m, n) to give the weights in fuzzy event while for a fuzzy
event, parameters l, m and n denote smallest, most promising and the
largest possible value respectively (Kumar, Shankar, Choudhary, &
Thakur, 2016; Kumar, Shankar, & Debnath, 2015).

These are several definitions of fuzzy membership function dis-
cussed:

Definition 1. If Ã1= (l1,m1,n1)and Ã2= (l2,m2,n2) then we can
present the Boolean functions for two Triangular Fuzzy Numbers in
the following way Zadeh (1965):

= =l m n l m n l n m m n lÃ Ã ( , , ) ( , , ) ( , , )1 2 1 1 1 2 2 2 1 2 1 2 1 2 (8)

= = + + +l m n l m n l l m m n nÃ Ã ( , , ) ( , , ) ( , , )1 2 1 1 1 2 2 2 1 2 1 2 1 2 (9)

= =l m n l m n l l m m n nÃ Ã ( , , ) ( , , ) ( , , )1 2 1 1 1 2 2 2 1 2 1 2 1 2 (10)

= =l m n l m n l n m m n lÃ Ã ( , , ) ( , , ) ( / , / , / )1 2 1 1 1 2 2 2 1 2 1 2 1 2 (11)

= >l m n whereÃ ( , , ) 01 1 1 1 (12)

= =l m n
n m l

Ã ( , , ) 1 , 1 , 1
1

1
1 1 1

1

1 1 1 (13)

Definition 3. Membership function of a (TFN) Ã, represented by (l, m,
n), is defined as

=µ x

x l
m l

l x m
n x
n m

m x n

otherwise

( )

, ,

, ,

0, .

Ã

(14)

Degree of membership for a fuzzy number is:

= A AÃ ( , )L y R y( ) ( )

= + +l m l y n n m y yÃ ( ( ) , ( ) ), [0, 1] (15)

4.2. Multi-tiered casual analysis (MTCA)

Multi-tiered casual analysis (MTCA) is a decision support system
(DSS), which is used to model the push-pull effect and it connects the
several regression models using a common variable “sales” to analyse
the business prospective in entire supply chain. MTCA captures all
phases of a supply chain process and integrates supply and POS data
within a single framework with advertising strategies. MTCA uses two
casual models for linking the demand data with supply: first casual
model is used for forecasting the sales by focusing the advertising ex-
penditure and promotion activities data and second model is used for
shipment forecasting by taking time lag between point of sales data and
other promotion data (Chase Jr, 2013). In the second phase, MTCA
links the demand with shipment or supply data and develops another
demand forecasting model by adding all the advertising campaigns,
marketing channels and seasonal data in shipment forecasting process.
In MTCA, if demand is:

= + + +

+ + + ……

D
(Const. ) (AdvertsExp.) (Promotional Activities)

(Sales)
(Price) (Seasonality) .. (Other Variables)n

0 1 2 3

4 5

(16)

Then shipment could be:

= + +
+

+ +

S
(Const. ) . Demand (Lag 1 Period)

(Promotional Sales) (Dealer Price)
(Other Discounts) (Seasonality)

0 1 2

3

4 5 (17)

4.3. Big data-driven market mix modelling, bullwhip effect and advertising
adstock

Promotional activities and sales are the important driving factors of
all successful businesses. Marketing managers use the promotional ac-
tivities to increase the demand of a specific product. These marketing
activities require additional costs in the form of advertising ex-
penditures and discounts coupons. Effective marketing activities lead to
increased sales because consumers buy more items as they are getting
more discounts. Trapero, Pedregal, Fildes, and Kourentzes (2013), Ma,
Fildes, & Huang, 2016 and Trapero, Kourentzes, and Fildes (2015)
discussed about the performance of some forecasting promotional sales
techniques and investigated how marketing channel discounts affect the
buying behaviour of consumers when pricing conditions suddenly
change in the market. Many research studies have been carried out for
quantifying the effect of the promotional activities on sales. Also, var-
ious forecasting models have been proposed to moderate the quanti-
tative effect of marketing channels (Kourentzes & Petropoulos, 2016;
Ma et al., 2016; Sagaert, Aghezzaf, Kourentzes, & Desmet, 2018; Yan &
Wang, 2012).

Market mix modelling method is playing an important role for
calculating the quantitative effect of digital marketing channels because
of the direct relationship between sales and cost dataset. Regression
models generally fail to capture the quantitative effect of these digital
media channels as they are not capable to measure the long-term effects
on future demands. Advertising effectiveness and Return on Investment
(ROI) is usually measured or evaluated using econometric models that
compute the influence or impact of varying advertising GRPs on sales.

Lagged or Decay Effect and Diminishing Returns or Saturation Effect
are the dimensions that are used to measure or compute advertising
adstock. In our model, we compute the advertising adstock at different
levels of alpha and include all of these values into dataset, but finally
we select only one level of advertising adstock value for our model's
development. In this advertising adstock calculation method, alpha is
used to represent the campaign stickiness or effect of the campaign.
Additionally, advertising dataset impact variable is used for showing
the effect of sales and brand value score in quantitative domain. In the
model, we see that the quantitative effectiveness of an advertisement
decays with respect to time because decay rate depends on the adver-
tising length, advertising impression and advertising frequency. So, if
frequency of an advertisement is lesser, then the decay rate will be
higher. Generally advertising effect of a particular advertisement be-
comes 0 after 3–4weeks so we chose a window of 4 weeks because
frequency of an advertisement may be high if customers are not
watching at that time in a particular case.

Big Data Analytics can be defined as the process of assessing the
massive, substantial datasets comprising of many different types of
data. This process is used for uncovering as well as analysing hidden
patterns, unknown correlations, customer preferences, market trends
and other productive information. The main aim of this process is to
help companies make more informed and strategic decisions related to
their business. The process involves data researchers and scientists, who
analyse massive data that may still be unexplored or unused, for de-
veloping better marketing strategies, increasing competitive edge, and
enhancing customer service. The characteristics like variety, variability,
volume, veracity and velocity can be used to describe big data.

Big data can be structured, semi-structured or un-structured.
Structured data can be represented in the form of a table with rows and
columns, for example, relational data and financial data. On the other
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hand audio, video, email, Facebook and Twitter data are the examples
of un-structured dataset in the big data domain. Hadoop is used to
handle this big dataset. It is an open source software framework used
for parallel computing. Hadoop generally distributes both the dataset
and processing across hundreds of servers. Hadoop Distributed File
System (HDFS), which is a part of Hadoop, works as a storage system.
There are multiple data nodes in HDFS. Map reduce, another Hadoop
component, refers to two different tasks that Hadoop performs - mapper
and reducer. Mapper takes data, breaks it into key/value pairs, and then
transfers these key/value pairs to the reducer function (Chen, Chiang, &
Storey, 2012; Kumar et al., 2016; Rehman, Chang, Batool, & Wah,
2016).

MMM or Marketing Mix Modelling involves three main steps: (i)
assessing the past influence or impact, (ii) forecasting future influence
that different marketing mix can have on sales, and (iii) predicting the
impacts of future strategies. Marketing mix modelling is usually used
for optimising the promotional strategies and advertising mix con-
cerning sales and profits. In MMM, a historical model is estimated based
on historical data, with sales as a dependant variable and other mar-
keting activities, seasonality, price and other factors as independent
variables. After applying the MMM we can give the answers to some of
the following questions:

- How much have we made through advertising?
- What is the ROI of marketing effectiveness activities?
- What is the advertising impact on sales?
- Which marketing drivers have had the greatest effect on sales and
demand?

- What are the diminishing returns of advertising on advertising ef-
fects?

- Are we optimally allocating our budget across products?
- Are we able to understand the economic, competitive, seasonal and
operational factors that have an impact on sales?

To understand MMM, let us consider a regression model in which
we take the sales value as the dependent variable and advertising
through different channels as an independent variable. This can be
represented as

= + +X Yt t t (18)

where X=Dependent variableY=Advertisingα, β (Parameters)
So, the log-log model is one adaptation of this regression model that

is necessary when we apply it to the market for measuring the quan-
titative effect of marketing campaigns through different channels.

In marketing mix modelling, we decompose sales into incremental
components and base components. If we want more theoretical ex-
planation of the market, then we use the log-linear regression model,
otherwise we use the multiplicative model. Suppose the total value of
volume is 16, a= 4 and b=3 where base= 1. Now we can calculate
the effect of a and b. If we delete the ‘a’ effect, we get the 16/4= 4
volume. So, the effect of ‘a’ is 16–4=12 units. Similarly, we can cal-
culate the effect of ‘b’ with 16/3= 5 volume. So, the effect of ‘b’ is
16–5=11 units. Suppose the actual value of volume in a particular
week is Xa and contribution of regression is Xp. Now we must distribute
the difference (Xa - Xp) among the multiple factors. If we take three
contributors (V1, V2 and V3) with (C1, C2 and C3) as individual con-
tribution (Tellis, 2006), we can calculate the individual contribution as
follows:

+ + +Y : C (C (X X ))/(C C C )1 1 1 a p 1 2 3 (19)

+ + +Y : C (C (X X ))/(C C C )2 2 2 a p 1 2 3 (20)

+ + +Y : C (C (X X ))/(C C C )3 3 3 a p 1 2 3 (21)

And the multiplicative model

=X Exp ( ) A Qt t t t
1 2 (22)

= + + +Log X log (A ) log (Q )t 1 t 2 t t (23)

The exponential attraction models

=M Exp (V)/ Exp Vi i j j (24)

where Mi=Market share.
Vj=Marketing efforts of jth brand, thus

= + + + + +V A P R Q ei 1 i 2 i 3 i 4 i i (25)

By substituting the value of Eq. (17) in Eq. (16)

=M Exp (V)/ exp Vi i j j (26)

= + +M Exp ( X e )/ exp ( X e )i k k ik i j k k ik i (27)

where Xk = (0 - n) independent variables of market mix modelling
andα= β0 , Xi0= 1.

The effectiveness of advertising and ROI achieved from advertising
is evaluated using econometric models that determine the impact of
varying GRP levels on sales. As mentioned earlier, Lagged or Decay
Effect and Diminishing Returns or Saturation Effect are the two di-
mensions that are used to measure or compute advertising adstock.
Evaluation of advertising half-life allows managers to schedule adver-
tising efficiently for maximizing the influence of every advertising
campaign. Advertising saturation evaluation indicates current levels of
advertising and helps managers identify the investment amount re-
quired for making advertising more productive (Beltran-Royo et al.,
2016).

Bullwhip effect is caused by fluctuations in data or information
which is supplied to companies that are further up the supply chain.
The fluctuations in information or distorted data leads to inaccurate
demand forecasting by companies.

=Bullwhip Effect Variance of order
Variance of demand (28)

=Net stock Amplification Variance of net stock
Variance of demand (29)

As we know if bullwhip effect= 1, it means we don't have variance
amplification, so our order variance is equal to demand variance. If
bullwhip effect< 1, it signifies that the orders are less than the demand
and if bullwhip effect> 1, it is said that the bullwhip effect exists.

The bullwhip effect is either greater than less than one when we
predict the demand by using double exponential and ARIMA methods.
It is approximately equal to one when we predict the demand using our
proposed fuzzy neural network-based model (Chen, Drezner, et al.,
2000). Our proposed approach is very fast and calculates the accurate
advertising adstock ratio with minimum iteration up to significant
decimal value. We have focused on optimum adstock ratio which can be
a reason of negative correlation with advertising sales data over satu-
rated market and can be seen in model development with the following
steps: (1) First, we take adstock rate and one coefficient of error, and
then try to model the sales variable. (2) Second, we have five adver-
tising channels and we use the nonlinear least squares method to cal-
culate the optimal rates for all the advertising channels. (3) Then, we
calculate the best fitting adstock rate of each advertising medium and
identify the best advertising medium in our dataset, which is TV ad-
vertising.

In adstock function, we add some variables (advertising outcome),
Advertisement (five advertising mediums in our case) and calculate the
adstock rate of all advertising channels, base value and mean square
error (MSE) of outcome. All companies are willing to measure the ef-
fectiveness of their marketing channels, but it is difficult due to the lag
in a big dataset between customer response and advertisement ex-
posure. In this case, we use the regression analysis taking TV, radio,
online channels, print media etc. GRP points as the independent
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variables and sales as the dependent variable to identify the best ad-
vertising channel, diminishing returns and impact of last week or
month's advertising expenditure on current week or month.

5. Result and discussion

This big-data driven contextual investigation exercises is an appli-
cation of demand shaping, demand sensing and accurate demand
forecasting on a TV manufacturing supply chain data set. To begin with,
we explored sales and advertising data and attempted to calculate the
advertising impact on deals and best advertising channel to improve the
model efficiency (demand sensing) and utilized this information for
further tasks (demand shaping) to optimize the ROI and profitability.
Six imperative questions have been discussed;

1. What techniques are utilized to compute the impact of advertise-
ments in market mix modelling (demand sensing)?

2. How can we be able to test diminishing returns or adverting impact
on a big data set (demand sensing)?

3. How can we determine the most important advertising channel that
has the most noteworthy effect on sales (demand sensing)?

4. How can we be able to utilize this data for improving the demand
forecasting process and overall profitability of our business (demand
shaping)?

5. How can we enhance the accuracy of the model and machine
learning classifier performance?

6. What sorts of strategies or scenarios can be utilized to link the de-
mand forecasting with supply and profitability maximization?

Now we begin to build up the predictive models and reveal the
hidden patterns on this data set. We examine the data set in Table 2 and
set it up for predictive modelling after removing the outliers and
missing values. We used the DataRobot for all data pre-processing tasks.
DataRobot is an automated machine-learning tool, which automates
many time series forecasting tasks, including: feature engineering,
target variable transformation, detecting the stationarity and

seasonality and implementing the back testing. We take a logarithm to
distinguish the patterns and break down this data set in Figs. 4, 5 and 6
for recognizing the patterns and regularity. Then, we plot the ACF and
PACF values after examining the weekly correlation. We get a direct
relationship between supply data and demand data with the value of r
coefficient (0.6010). The validation of this result is carried out by
making use of a linear regression model with demand data and supply
data as independent and outcome variables respectively and we found
strong connection between demand and supply (p- value= 0.012 and R
square value= 0.038). Now, ARIMA, ACF and PACF plots for residuals
are used to inspect the model fitting and examine if ACF and PACF plots
lie in the band of LCL and UCL or not. Provided this is true, the residuals
are random, and the model is adequate. On the contrary, if the plots do
not lie in the band, then the model needs to be improved. An explicit
pattern of PACF depicts a trend in the dataset. In any case, since the
examples don't rehash, we can conclude that the dataset does not have
any regularity since autocorrelation diminishes as the number of lags
increment.

Then, we continued on to fitting the model and got the data that we
don't have any regularity in the data. This suggests that the auto-
correlation is nearly static because it is decreasing as the number of lags
are increasing and the PACF plot presented a large value, but successive
lags had minimal plot values. It is usually hard to ascertain whether a
time series is established from a nonlinear or linear underlying process
or a single specific technique ends up being more successful than al-
ternate strategies in the forecasting process. It is troublesome for the
forecasting managers to select the right technique for the big data set,
so they iterate with different methods and the best one with the most
exact outcome is selected.

The paramount problem in an inquisitive project is to verify the
model performance on validation data so all our forecasting models are
built on 80% training data and the predicting power of the model is
tested on the remaining 20% validation data. Table 3 shows the actual
and forecasted values after applying ARIMA and other forecasting
methods on validation demand data. In general, the fuzzy neural net-
work-based forecasting model is sufficiently accurate with a MAPE of
4.49. The Lower and Upper values refer to the lower and upper limits of
the confidence interval with the probability of the forecasted value in
this range being 95%. The time plots in Figs. 7–11 depict how the
model, which has been fitted using the training set, performed on the
validation set.

The aptness of our model for prediction is validated by the fact that
the forecasted and actual values lie in close proximity. Table 3 presents
the results of predicted value after applying ARIMA, random forest,
SVM, ANN, regression and our proposed fuzzy neural network ap-
proach. In this work, we used the fuzzy neural network specification
suggested by (Jang, 1993). Fresno developed a package in R pro-
gramming with ANFIS documentation based on the instructions sug-
gested by (Jang, 1993).

Following Jang (1993), Stoeva and Nikov (2000) and Fresno et al.
(2015), we divided the whole dataset into training and test datasets.

1 

0 l m n 

A 

Fig. 4. Triangular fuzzy number.

Fig. 5. Time series plot on demand data.
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The inputs of this dataset are normalized in arbitrary triangular fuzzy
numbers for improving the performance of the simple neural network
with new triangular fuzzy cases. We consider the five years data as the
training data and 2090 observations (80%) are selected for this purpose
and the next 523 observations (20%) are used for testing purpose to
gain more accurate forecasting results. We divided the training data
into five equal and smaller subsets and each set has 16% of the original
training data set. Each subset contains 418 instances and these five
folds participate in the cross-validation process during the time series-
forecasting model building process. In the first cross-validation itera-
tion, we find the subsets 1, 2, 3 and 4 as training data and subset 5 as
the testing data. Then, we trained several forecasting models on subset
5 and calculate the performance indicators showing that how well our
proposed model correctly identified outputs in the test set. We repeated
this process five times, trained each model using five different

combinations, and choose the model with best accuracy. These fuzzy
models are developed using ANFIS package in R programming in neural
network module. Arbitrary triangular fuzzy numbers and normalized
gaussian function were used to calculate the weights in each iteration
and to minimize the mean squared error respectively. Columns 8 and 10
in Table 3 represent the forecasted value and error after considering the
demand shaping effect in this demand-driven forecasting model.

Table 5 presents the result when the optimal method is selected
followed by it being trained by fuzzy neural network the results are
shown in terms of MSE, MAPE and MAD. Results show that the pro-
posed methodology gives slightly better conjectures for this specific big
data-driven demand-driven forecasting model than contemporary
models as ARIMA, neural network, random forest, MLP and other tra-
ditional forecasting methods and convincingly outperforms them when
we link the demand with supply and consider the demand shaping

Fig. 6. Time series decomposition.

Fig. 7. ARIMA Model output.

Fig. 8. Multiple linear regression (MLR) Model output.
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effects. The result of fuzzy neural network-based framework on the TV
manufacturing, supply and demand dataset in the form of time plot has
been shown in Fig. 11. Figs. 9 and 10 show the time plot between actual
and forecasted values of neural network and random forest models on
the training dataset. After gauging the predictive power of the

developed model, we refit it on whole dataset. Then, we start to work
on demand shaping and test multiple what-if scenarios taking one
variable at a time and fixing others as constants. We develop and test six
what-if conditions:

Fig. 9. SVM model output.

Fig. 10. Neural network model output.

Fig. 11. Fuzzy neural network model output.

Table 1
What-if scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Predicted cases in year 2016 917,412 926,740 827,088 937,772 944,320 976,431
Demand cases in 2015 896,961 896,961 896,961 896,961 896,961 896,961
Change 20,451 29,779 −69,873 40,811 47,359 79,470
% Change 2.28% 3.32% −7.79% 4.55% 5.28% 8.86%
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1. First case considers no adjustments in advertising expenditures and
other activities and assumes it on the same level as last year, 2015.

2. Second case considers 5% hike in the unit price and 10% hike in
advertising expenditure in different marketing channels.

3. In Second case, 10% increase in the unit price and a 10% drop in
advertising expenditures in different marketing channels is con-
sidered.

4. Third case reflects on a 10% surge in TV advertising expenditures
and a 5% decrease in all other marketing channels with no incre-
ment in unit price.

5. Fourth case considers an increase of 10% in the unit price and TV
advertising expenditures and a decrease of 10% in all other mar-
keting channels' expenditures.

6. Fifth case considers an increase of 10% in the unit price, advertising
expenditures of TV and print media both and a 10% drop in all other
marketing channels' expenditures.

Scenario 6 is established as the optimal one in terms of profitability
maximization when all what-if scenarios are examined on 2016 data as
depicted in Table 1.

In the next step, we create the future demand-forecasting model
based on scenario 6 demand data set. In this phase, we develop a model
to link the supply data with demand forecast to complete the demand-
driven forecasting model. We add the original demand and scenario 6
predicted demand in this model and develop the demand-shaping
phase. Table 4 discusses the supply forecasting results on validation
data set. After developing this forecasting model, we refit this model
with the whole data set l as undertaken before on the demand data set.
The future demand forecasts are based on scenario 6 in the demand-
shaping phase. We consider all other variables of this data set at the
level of a year ago and observe better supply forecasting results from
857,988 (2015) cases to 902,174 (2016) cases, an increase of 5.15%.
This fuzzy neural network-based demand-driven forecasting framework
is very effective in the case when we collect the data set from both
demand, supply and marketing sides.

6. Conclusion and future direction

Accurate forecasts and the right combination of forecasting activ-
ities are very important for an efficient inventory optimization model.
This holds especially true for demand-driven forecasting case and how
well we develop all statistical and machine learning models and pin-
point which model predicts the future demand with high accuracy,
when backorder cost is high, holds paramount importance. We can
break it down as the fact that the selection of a forecasting technique
among various available methods should be based on following in-
quiries about the process (i) accuracy (ii) repeatability (iii) automated
and capacity to handle big data set (iv) does it handle the question- why
behind performance? By integrating machine learning and advanced
analytics techniques into traditional demand forecasting, the managers
can reap additional dividends with elevated accuracies, things that have
eluded them in the past. With big data-driven framework, forecasting
managers can optimize the inventory, improve profitability and launch
specific region and customer-based data-driven sales plan which can
also be used to predict new products demand.

This article improves the demand-driven forecasting model devel-
oped by (Chase Jr, 2013) to create a picture of accurate future demand
prediction and calculates the diminishing returns of advertising effects.
Demand-driven forecasting model uses the sales data along with de-
mand and supply data and calculates the advertising impact on sales.
High modelling capability, better computing abilities and flexibility
make this proposed big data-driven forecasting model distinctive
among contemporaries. In this research, after training a back-propa-
gation neural network-based demand-driven forecasting model by fuzzy
inputs, benchmarking is carried out on a time series data, by combining
demand, supply, promotional campaigns, and practical sales data withTa
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respect to five standard models as; ARIMA, MLR, Random Forest, SVM
and ANN. First, the study shows how the proposed model can be ap-
plied for efficient analysis of large data sets, and as a result helps pre-
dict products' future demand taking into account advertising ex-
penditure, omnichannel, promotion and sales data for shaping the
future demand. Second, our research also examines how much ground
we gained through advertising and what is the ROI of our media ac-
tivities and which marketing drivers have had the most significant
impact on demand and sales. Our findings can assist researchers in

understanding how advertising works for demand-driven forecasting
model. It isn't sufficient to just perceive advertising as how it makes
changes or modifications to a solitary parameter, for instance, price
elasticity or flexibility of demand in equilibrium or parity. It is ad-
ditionally critical for one to see and gauge how it changes the total
appropriation of WTP i.e. willingness to pay in the population.

This ability can easily provide a marketing plan to marketing
manager's planning process that is likely to exceed target revenue and
will also assist additionally with the information of what marketing mix

Table 3
Performance matrices result on demand data-set.

Date Actual
value

Predicted value
by ARIMA

Predicted value
by SVM

Predicted value
by ANN

Predicted value
by random forest

Predicted value
by MLR

Predicted value by
fuzzy neural
network

Forecast error
by neural
network

Forecast error by
fuzzy neural
network

02-01-2017 9072 9087 9179 9098 9123 9229 9077 26 5
03-01-2017 9809 9824 9916 9833 9860 9966 9818 24 9
04-01-2017 9386 9401 9493 9416 9437 9543 9399 30 13
05-01-2017 8578 8593 8685 8631 8629 8735 8588 53 10
06-01-2017 8057 8072 8164 8112 8108 8214 8067 55 10
07-01-2017 7493 7508 7600 7555 7544 7650 7506 62 13
08-01-2017 7622 7637 7729 7699 7673 7779 7633 77 11
09-01-2017 7103 7118 7210 7207 7154 7260 7115 104 12
10-01-2017 7092 7107 7199 7156 7143 7249 7111 64 19
11-01-2017 7401 7416 7508 7499 7452 7558 7419 98 18
12-01-2017 7681 7701 7810 7789 7732 7870 7723 108 42
13-01-2017 6714 6734 6843 6791 6765 6903 6735 77 21
14-01-2017 7016 7036 7145 7143 7067 7205 7042 127 26
15-01-2017 6756 6776 6885 6889 6807 6945 6772 133 16
16-01-2017 6009 6029 6138 6133 6060 6198 6028 124 19
17-01-2017 5740 5760 5869 5812 5791 5929 5762 72 22
18-01-2017 5985 6005 6114 6098 6036 6174 6012 113 27
19-01-2017 5935 5955 6064 6056 5986 6124 5962 121 27
20-01-2017 5998 6018 6127 6097 6049 6187 6057 99 59

Table 4
Performance matrices result on supply data-set.

Date Actual
value

Predicted value
By ARIMA

Predicted value
by SVM

Predicted value
by ANN

Predicted value
by random forest

Predicted value
by MLR

Predicted value by
fuzzy neural
network

Forecast error
by neural
network

Forecast error by
fuzzy neural
network

02-01-2017 9226 9241 9333 9252 9277 9383 9231 26 5
03-01-2017 9134 9149 9241 9833 9185 9291 9818 699 684
04-01-2017 9879 9894 9986 9416 9930 10,036 9399 −463 −480
05-01-2017 7212 7227 7319 8631 7263 7369 8588 1419 1376
06-01-2017 7245 7260 7352 8112 7296 7402 8067 867 822
07-01-2017 6280 6295 6387 7555 6331 6437 7506 1275 1226
08-01-2017 6240 6255 6347 7699 6291 6397 7633 1459 1393
09-01-2017 6482 6497 6589 7207 6533 6639 7115 725 633
10-01-2017 6542 6557 6649 7156 6593 6699 7111 614 569
11-01-2017 5759 5774 5866 7499 5810 5916 7419 1740 1660
12-01-2017 6841 6861 6970 7789 6892 7030 7723 948 882
13-01-2017 6456 6476 6585 6791 6507 6645 6735 335 279
14-01-2017 5453 5473 5582 7143 5504 5642 7042 1690 1589
15-01-2017 5884 5904 6013 6889 5935 6073 6772 1005 888
16-01-2017 5866 5886 5995 6133 5917 6055 6028 267 162
17-01-2017 5806 5826 5935 5892 5857 5995 5838 86 32
18-01-2017 5876 5896 6005 6098 5927 6065 6012 222 136
19-01-2017 5834 5854 5963 6056 5885 6023 5962 222 128
20-01-2017 5846 5866 5975 6097 5897 6035 6057 251 211

Table 5
Performance matrices result on demand data.

Model MSE MAPE MAD Bullwhip effect Net stock amplification

ARIMA 743.66 40.46 202.21 1.57 1.78
Artificial neural network (ANN) 7.89 9.25 29.36 1.11 0.90
Support vector machine (SVM) 33.26 9.62 48.59 1.31 1.12
Random forest 18.29 11.57 52.37 1.06 0.45
Multiple linear regression (MLR) 117.34 27.36 189.55 1.14 0.63
Fuzzy neural network 6.71 4.49 21.95 0.99 0.37
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levels will increase or decrease present sales to meet or exceed target.
Our analysis reveals that the proposed fuzzy neural network-based
framework performs much better and provides better forecasting results
because of having better adjustment and capturing linear behaviour of
time series. This fuzzy ANN model neither requires stationary nature,
nor any statistical information of data series and it is applicable to both
nonlinear and linear data series. This integrated model's robustness is
verified, and it can be easily adopted for enhancing supply chain per-
formance. After considering the demand shaping effect and using our
proposed approach, the performance of demand-driven forecasting
model also improved exceptionally in the form of MSE and MAD in this
study with MSE decreasing from 33.26 to 6.71 and MAD decreasing
from 48.59 to 21.95. It is also found that the estimated bullwhip effect
value and net stock value in our case is comparatively less than that of
all other models. Lastly, this study shows that manufacturers can pre-
dict their product demands via online and offline market strategies.
Online market is currently one of the fundamental hotspots for selling
items and every single organization wishes to concentrate on improving
product forecasts and diminishing bullwhip impacts by breaking down
the information with advance data mining tools from their physical
storefronts. Some possible future directions may include the in-
vestigation of the intermittent demand and optimization of the number
of hidden layer and hidden nodes parameters in fuzzy neural network-
based forecasting model. For future prescriptive, we can likewise in-
clude more dimensions in this dataset such as weather forecasts, ship-
ping data, “buy-online and pick up in store” and customer profile data
followed by scanning of the effectiveness of advertising on a regular
basis and improving the demand-driven forecasting model accuracy by
adding the DWT (discrete wavelet transforms) in fuzzy ANN and SVM
predictive models.
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