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a b s t r a c t 

In viral marketing campaigns, incentivized consumers can act as sales agents by sharing information. In 

this study, we investigate the problem of incentive rate determination over a network of consumers to 

maximize the profit of a single good by a monopolist. For this purpose, we develop an epidemic spread- 

ing model to explore the dynamics of a viral marketing campaign under network externalities and in- 

centivized individuals. We will examine two cases of homogeneous and heterogeneous incentive rates. In 

each case, we derive an N -intertwined dynamics model and obtain the existence and stability conditions 

of a trade-free or an endemic equilibrium. By treating the incentive as a control parameter, we investigate 

the problem of maximizing the monopolist’s profit by formulating two nonlinear programming models. 

In the case of homogeneous incentive rates, results show that the optimal incentive is determined by 

devising a balance between the consumers’ states in the Markov process. In the heterogeneous case, it is 

observed that despite the existence of a strong correlation with different centrality measures, the optimal 

incentive allocation cannot be solely determined by centrality measures. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Social interactions influence product adoptions and purchas-

ng behavior of consumers ( Ameri, Honka, & Xie, 2019; Goel,

nderson, Hofman, & Watts, 2015 ). It has been shown that peer

nfluence can increase the likelihood of buying a product by more

han 60% ( Bapna & Umyarov, 2015 ) and encourage further cus-

omer referrals ( Biyalogorsky, Gerstner, & Libai, 2001 ). According

o one estimation, between 20% and 50% of all purchasing choices

re encouraged by personal recommendations ( Meyners, Barrot,

ecker, & Bodapati, 2017 ). Businesses have leveraged the power of

nfluence because there is a synergy between the growing number

f products and services that can be purchased online and the

umber of users relying on social media as their primary source of

roduct and service information and reviews. The essence of these

ypes of marketing strategies, which is collectively called viral

arketing, is to promote a discussion around a product or service

y disseminating information through a network of customers’ so-

ial interactions ( Bampo, Ewing, Mather, Stewart, & Wallace, 2008;

inz, Skiera, Barrot, & Becker, 2011 ). Viral marketing campaigns

enefit from targeted communication, speed of diffusion, and a

igh degree of integrity ( Bampo et al., 2008 ). 
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The success of a viral marketing campaign is commonly mea-

ured by the number of potential consumers it reaches and the

mount of sales it generates ( Ajorlou, Jadbabaie, & Kakhbod, 2016;

u, Milner, & Wu, 2015 ). Thus, a successful viral marketing cam-

aign depends on the ability to share information effectively. The

bility to share information in a network depends on the con-

ent being shared ( Berger & Milkman, 2010 ), the structure of

he social network ( Bampo et al., 2008 ), the consumers’ charac-

eristics ( Pescher, Reichhart, & Spann, 2014 ), and seeding strat-

gy ( Hinz et al., 2011 ). For instance, it has been shown that

ompared to small-world networks, scale-free networks offer a

ore effective medium for spreading processes of viral market-

ng campaigns. Furthermore, it is observed that a larger num-

er of initializing seeds (although at the expense of profitabil-

ty) increases the number of individuals reached in a diffusion

rocess. 

Marketers usually engineer the dispersion of information in

 social network through carefully selecting a set of initial con-

umers, referred to as seeds, to set the viral marketing campaign

n motion or to incentivize information sharing by providing intrin-

ic or extrinsic rewards ( Van der Lans, Van Bruggen, Eliashberg, &

ierenga, 2010 ). In network science literature, controlling the dif-

usion of information in a network is usually studied under the

opic of influence maximization ( Hinz et al., 2011; Kempe, Klein-

erg, & Tardos, 2003; Mandel & Venel, 2020; Tanınmış , Aras, &

ltınel, 2019 ), where the goal is to maximize the number of poten-

ial consumers that are exposed to a viral marketing or information
 Incentive rate determination in viral marketing, European Journal 
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1 The basic reproduction number, a key concept in epidemiology, is defined as 

the expected number of new cases of infection caused by a typical infected individ- 

ual in a population of susceptibles ( Fall, Iggidr, Sallet, & Tewa, 2007 ). In the context 

of this study, the reproduction number translates into the expected number of in- 

dividuals that become an owner or seller of the product as a result of neighboring 

a consumer that owns or promotes the product. 
propagation campaign. A large number of studies in this field are

dedicated to identifying a subset of individuals whose network in-

fluence can maximize the outreach of information. This problem,

usually known as target set selection (TSS), is dependent on the

process by which information is diffused in a network ( Raghavan

& Zhang, 2019 ) and is closely related to pricing problems in net-

works where the objective is to maximize profitability under social

influence and network externalities. 

Information propagation over complex networks is generally a

stochastic phenomenon that is dynamically considered as an epi-

demic spreading process. The stochastic nature complicates the

study of the dynamic behavior of epidemic spreading processes

on network graphs, even for simple scenarios ( Kiss, Miller, Si-

mon et al., 2017; Newman, 2018 ). On the other hand, real net-

works usually consist of a large body of agents, which renders

the problem of analyzing information diffusion intractable ( Sahneh,

Chowdhury, Brase, & Scoglio, 2014; Van Mieghem, Omic, & Kooij,

2009a ). To simplify the problem, various works consider a deter-

ministic approximation of the stochastic dynamics using the mean

field epidemic models ( Sahneh, Scoglio, & Van Mieghem, 2013b;

Van Mieghem et al., 2009a ), where the size of the problem is

reduced dramatically, although at the expense of exactness. The

mean approximation strategy has proven successful in deducing

significant structural results, and analyzing information propaga-

tion dynamics over complex networks ( Kiss et al., 2017; Newman,

2018; Nowzari, Preciado, & Pappas, 2016 ). 

Most of the influence maximization literature, and specifically

TSS, is structured around the objective of maximizing the number

of individuals exposed to information or the survival duration of a

viral process ( Stewart, Ewing, & Mather, 2004 ). In a marketing set-

ting, in addition to the sheer number of individuals, the amount of

profit generated by a campaign (or conversion rate) is also impor-

tant. In this regard, profit seems to be a more natural objective

function for controlling the dynamics of a viral marketing cam-

paign. Furthermore, there are very few studies that investigate the

incentivizing strategies in which an individual is rewarded based

on the amount of sales she generates through sharing information

( Ajorlou & Jadbabaie, 2019 ). In this setting, individuals act as sales

agents who can benefit from an incentive, usually materialized in

the form of monetary payments or commission rates, if they can

utilize their influence over their direct neighbors on a social net-

work and generate sales. 

This study contributes to the body of literature involving the in-

fluence maximization in viral marketing. In particular, the research

presented in this article explores maximizing profit as the objec-

tive function while utilizing an incentive-based influence schema.

For this problem, henceforth referred to as incentive rate deter-

mination (IRD), we assumed that the viral marketing campaign is

conducted by a monopolist that is interested in promoting a sin-

gle good. We consider an incentivizing schema similar to the one

proposed by Lobel, Sadler, and Varshney (2016) , in which a con-

sumer receives a link to share with their connections upon buy-

ing the product. Every purchase made through the link generates

a monetary reward for the customer sharing it. Additionally, the

optimization schema developed incorporates an incentive rate as

a control parameter and utilizes dynamical systems methodologies

to extract results related to the dynamic epidemic phenomena that

take place over social networks. 

IRD problem does not assume a constrained set of individuals

to start off a diffusion process. This means each individual is re-

warded upon generating sales. In addition to the information dif-

fusion process, IRD is dependent on the behavioral characteristics

of individuals when offered an incentive to act as sales agents.

Naturally, one expects to observe an increasing likelihood of will-

ingness to share information by individuals as the sales commis-

sion increases. On the other hand, increasing sales commission can
Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al.,
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e detrimental to the profit margins of a business that aims at

aximizing its marketing campaign outreach. Similarly, decreasing

ales commissions can hurt the profit through a reduced size of

onsumers’ population exposed to the marketing campaign. Thus,

here is a tradeoff between influence maximization through incen-

ivizing potential consumers and optimizing profit. 

In this study, a monopolist is interested in targeting a network

f consumers, represented as a graph. The nodes and links of the

raph represent the individual consumers and their relations ac-

ordingly. Furthermore, it is assumed that each individual can be

ither a buyer (“B”), an owner (“O”), or a seller (“S”). A buyer is a

otential consumer who may purchase the advertised merchandise

n the marketing campaign. An owner is a consumer who owns the

roduct but does not share information and, thus, does not func-

ion as a sales agent. A seller is a product owner that shares infor-

ation actively and may generate sales by introducing the prod-

ct or service to her contacts within the social network. The mo-

opolist generates revenue every time a potential buyer turns into

n owner or a seller. In this regard, sellers take the vital function

f promoting the product and facilitate the process of the buyer

o owner/seller conversion. Thus, the monopolist may want to en-

ourage a larger body of the consumers to become sellers by mon-

tarily incentivizing them. A more generous incentive schema can

reate more sellers. However, over-incentivization can hurt the mo-

opolist’s profit. On the other hand, under-incentivization can dis-

ourage consumers from promoting the product and restrict the

ales and hence, the profit. Thus, the monopolist has to strike a

alance between the extra sales generated by reaching more con-

umers and the cost of outreach through incentivization. 

This study takes advantage of a continuous-time Markov pro-

ess to model the transition of consumers between different roles

f buyers, owners, and sellers based on the individuals’ interac-

ions in the network, and the subsequent monopolist’s profit. For

his purpose, an N -intertwined model ( Van Mieghem et al., 2009a )

hat is the mean field approximation of the considered continuous-

ime Markov process, is utilized. Compared to the exact Markov

odel, the N -intertwined model makes only one approximation of

 mean-field kind that results in upper bounding the exact model

or finite network size N ( Mieghem, 2011 ). Two general cases of

omogeneous and heterogeneous incentive rates are investigated.

n each case, the optimum incentive rate (i.e., the rate which max-

mizes the profit) and the conditions under which the trade-free

nd endemic equilibrium can exist and the corresponding stabil-

ty conditions are identified. The trade-free equilibrium is the triv-

al equilibrium point where the individuals will steadily remain

n Buyer state after a transient time and there will be no trad-

ng, while in endemic equilibrium state transitions between the

tates B , O and S occur continuously. By deriving explicit expres-

ion for the reproduction number 1 in each case, we show that the

wo determining elements of the sales propagation process are the

mount of the incentive given and the spectral radius of the net-

ork (i.e., the largest eigenvalue of network’s adjacency matrix).

his study sheds light on some characteristics of optimal incen-

ivization policies under homogenous and heterogenous incentive

uantities, which can help with executing effective viral marketing

ampaigns. 

The remaining sections of the paper are organized in

he following manner. Section 2 briefly reviews the exist-

ng literature. Section 3 demonstrates the developed model. In
 Incentive rate determination in viral marketing, European Journal 
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ection 4 , we study the existence and stability conditions of

rade-free and endemic equilibrium states in the homogeneous

ncentive rate case. In Section 5 , we introduce the profit func-

ion and investigate its properties. In addition, we define a non-

inear programming model that determines the optimal incentive

hat results in the maximum profit for homogeneous rates. The

ext two sections examine the case of heterogeneous incentives.

n Section 6 , we introduce the heterogeneous IRD model, and

haracterize the trade-free and endemic equilibria properties. In

ection 7 , we examine the problem of profit maximization in het-

rogeneous cases. In Section 8 , we provide some managerial impli-

ations. Finally, Section 9 concludes the study. 

. Literature review 

The effect of network externalities and seeding policies on viral

arketing strategies and TSS problems are studied extensively

n the literature ( Ajorlou & Jadbabaie, 2019; Arthur, Motwani,

harma, & Xu, 2009; Bloch & Quérou, 2013; Candogan, Bimpikis, &

zdaglar, 2012; Chen et al., 2011; Cohen & Harsha, 2019; Hartline,

irrokni, & Sundararajan, 2008 ). As a result, multiple influence

aximization schemas are suggested. For example, inspired by

he policy of influence maximization ( Domingos & Richardson,

001; Kempe et al., 2003 ), influence-and-exploit seeding strategies

nitially influence the population by providing free products to a

hosen set of buyers. Then revenue is realized from the remaining

otential consumers using a greedy pricing strategy ( Arthur et al.,

009; Hartline et al., 2008 ). Other research found in the literature

mphasizes the role of network centrality measures. These studies

ecognize that optimal monopoly pricing in social networks is

ainly affected by the set of central or influential agents ( Bloch

 Quérou, 2013; Candogan et al., 2012; Cohen & Harsha, 2019;

inz et al., 2011 ). These influential agents may be offered either

avorable prices, whenever they are targeted to influence other

gents or unfavorable prices, whenever they are targeted for sale

 Carroni, Pin, & Righi, 2019 ). The optimal prices in social networks

an be time-varying. Indeed, a dynamic pricing strategy ( Ajorlou

t al., 2016 ) reveals the conditions when the optimal prices are

either monotone nor reach a steady state; instead, they fluctuate.

While similar in nature and objectives, IRD differs from TSS in

he allocation of resources (i.e., incentive) to individuals and the

tructure of its incentive system. In IRD, one concern is how to

istribute the available incentive throughout a given contact net-

ork so that the profit is maximized. This issue is best answered

n the framework of optimal distribution of resources ( Preciado,

argham, Enyioha, Jadbabaie, & Pappas, 2013; 2014; Shakeri, Sah-

eh, Scoglio, Poggi-Corradini, & Preciado, 2015; Watkins, Nowzari,

 Pappas, 2017; 2018 ). Optimization strategies are proven more ef-

ective, in particular, when individuals in the network show differ-

nt levels of reaction to an epidemic or the spread of information.

o be solved more efficiently, these problems are usually reformu-

ated as convex, semidefinite, or quasiconvex optimization prob-

ems known as geometric programs ( Boyd, Kim, Vandenberghe, &

assibi, 2007 ). The solutions of the optimization problems yield

ontrivial patterns that cannot, in general, be described using sim-

le heuristics based on common network centrality measures. 

Some related studies are concerned with a general representa-

ion of contact networks when investigating the general epidemic

henomena and optimal resource allocation problem. In these

tudies, a contact network is usually represented in a multilayer

etting where the agents interact through different layers, each

odeled by a separate graph ( Sahneh & Scoglio, 2013; Sahneh,

coglio, & Chowdhury, 2013a; Sahneh et al., 2013b; Shakeri et al.,

015; Xia et al., 2019 ). For example, the spontaneous behavioral

atterns of individuals in response to the progress of an epidemic,

hich have a significant impact on how the infection spreads
Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al.,

of Operational Research, https://doi.org/10.1016/j.ejor.2020.07.046 
 Shakeri et al., 2015 ), form through an information network layer

hat is interconnected with, but different from, the physical contact

etwork layer ( Sahneh et al., 2014; Sahneh & Scoglio, 2012 ). This

nterconnection between different network layers is interwoven.

or example, the spectral centrality of the nodes and edges in

he physical contact network determines the optimal information

issemination network ( Sahneh & Scoglio, 2012 ). 

In this study, we present a deterministic approximation of

tochastic viral marketing (i.e., an epidemic) dynamics using mean

eld theory. The deterministic models have offered remarkable an-

lytical results for nonlinear characterization of equilibria, stability

roperties, and threshold conditions in epidemic models ( Hethcote,

0 0 0 ). In Fall et al. (2007) , the Lyapunov techniques ( Khalil, 2014 )

nd Metzler matrix theory ( Bullo, 2019 ) are utilized to establish

xistence, uniqueness, and stability of the equilibrium points be-

ow and above the epidemic threshold over networks. The epi-

emic goes extinct by converging to the zero-state epidemic-free

quilibrium below the threshold while propagating by converging

o a positive endemic equilibrium above the threshold. These re-

ults are extended to epidemic dynamics over directed graphs by

tilizing the positive system theory ( Khanafer, Ba ̧s ar, & Gharesifard,

016 ). A further extension of primary results is found in ( Ogura

 Preciado, 2018 ) where, in search of tighter epidemic thresholds,

 deterministic network with second-order mean field approxima-

ion is analyzed. A review of mathematical analysis of determin-

stic networked epidemic models is found in Mei, Mohagheghi,

ampieri, and Bullo (2017) . 

Early epidemic models were based on the assumption that in-

ividuals in the population have the same chances of interact-

ng with each other ( Hethcote, 20 0 0 ). This strategy is suitable

or a well-mixed homogenous population and overlooks the inter-

al structure of the network over which the propagation occurs

 Sahneh & Scoglio, 2012 ). To model the local dynamics at each

ode, and to discover how interaction among population members

an influence spreading dynamics, individual-based epidemic mod-

ls were proposed where a graph represents the contact network.

n a modern mathematical language, the influence of the network

haracteristics on the information spread can be demonstrated

hrough an N -intertwined Markov chain model ( Van Mieghem

t al., 2009a ). The spectral radius of the network is found as

ne determining factor in the epidemiological spreading so that

or a small spectral radius, an initial infection ceases to spread,

hile even tiny infections diffuse for spectral radius larger than a

hreshold. 

Epidemic dynamics has proven effective in studying various

henomena related to the spread process in networks. Studies in

pidemic dynamics range from the spread of infectious diseases

o the spread of information, rumor, cultural norms, computer

iruses, social behavior, and disasters ( Hu & Sheng, 2015; Kiss

t al., 2017; Urena, Kou, Dong, Chiclana, & Herrera-Viedma, 2019;

an Mieghem et al., 2009a; Yang, Li, & Giua, 2020; Yu et al., 2015 ).

lthough the underlying mechanisms of each phenomenon are

ifferent, their mathematical description often leads to similar

onstitutive equations that can be conceptually modeled as a

ontagion process based on classic epidemic models such as the

usceptible-infected-susceptible (SIS) and susceptible-infected- 

ecovered (SIR) models ( Antulov-Fantulin, Lan ̌ci ́c, Štefan ̌ci ́c, & Šiki ́c,

013; Kiss et al., 2017 ). While network-related frameworks are

xtensively utilized to study the viral marketing strategies and

nfluence maximization problems, to the best of our knowledge,

ynamic epidemic models are not considered in the context of

ncentive rate determination. In this study, we examine the IRD

roblem in a network of consumers to establish a new dynamic

odel that is based on epidemic spreading dynamics. Our goal

s first to discover how the connection and interaction between

ndividuals who can be incentivized to behave as sales agents
 Incentive rate determination in viral marketing, European Journal 
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Fig. 1. BO model. 

Fig. 2. BOSO model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. BOB model. 

Fig. 4. BSOB model. 
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can affect the marketing of a product or service. Then, we will

investigate incentive control policies that can maximize the profit

by affecting the decision process of individuals. 

3. Model development 

The contact topology in this paper is considered as an undi-

rected generic graph G(V, E ) of individuals where V denotes the

vertex set and E denotes the edge set. Each node i ∈ V is allowed

to be in one of the three states “B : buyer”, “O : owner”, and “S :

seller”. We denote the probability of i ∈ V being in B as b i ∈ [0,

1], in O as p i ∈ [0, 1], and in S as q i ∈ [0, 1]. In the remainder of

this section, first, we describe some initial possible models for the

spread of information and sales over networks. Then, we introduce

our Buyer-Seller-Owner-Buyer (BSOB) model. 

3.1. Irreversible process 

One straightforward approach to model a good’s sale under

network externalities is to assume an irreversible process in which

each individual is either in state B or O and a consumer stays

in state O after transitioning to it from state B . This dynamic is

similar in nature to a susceptible-infected (SI) model in epidemi-

ology and may perform reasonably for goods that are purchased

once and have negligible probability of being repurchased by

a consumer. The stochastic compartmental transition of a node

with N O neighbors in owner state is depicted in Fig. 1 . We call

this model as Buyer-Owner (BO) model. In BO model, the rate by

which a potential buyer becomes owner is β1 times the number

of an individual’s neighbors who are in owner state (i.e. N O ) where

β1 represents the network externality effect originated from

owners. Since BO models an irreversible process, it can be used

to estimate the survival duration of a good’s sales under network

externalities. 

To accelerate the diffusion process, the irreversible BO model

may be extended to include the third compartment of seller,

called Buyer-Owner-Seller-Owner (BOSO). The individuals in seller

state receive an incentive to promote the good and encourage

their neighbors, who are in state B , to purchase the good. Com-

partmental transition of BOSO is shown in Fig. 2 . Here, the rate

of a potential buyer becoming an owner is β1 times the number

of its owner neighbors, N O , plus β2 times the number of its

seller neighbors, N S . Here, β1 and β2 represent the externality

effects originated from owners and sellers in a network. The

effect of incentive is modeled through a factor r that augments

the transition rate from state B to S . The factor δ2 is the rate of

transitioning from state S to O and corresponds with the suspen-

sion of the good’s promotion by an individual. We assume that
Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al.,
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ellers have higher impact on their neighbors compared to owners

i.e. β2 > β1 ). Similar to the BO model, BOSO can be applied to a

ales survival estimation, in which some individuals are willing to

romote the good if incentivized. 

.2. Reversible process 

To model a scenario in which a good can be consumed more

han once, BO and BOSO models need to be modified so that

n individual can transition back to a potential buyer state. The

O model can be extended to a buyer-owner-buyer (BOB) model

hat encompasses a transition from the state O to B with a rate

f δ1 . BOB model closely follows the well-known N -intertwined

usceptible-Infected-Susceptible (SIS) model for epidemic spread

 Wang, Chakrabarti, Wang, & Faloutsos, 2003 ). The transition di-

gram of BOB model is shown in Fig. 3 . In this model, a poten-

ial buyer becomes owner by an edge-based transition equal to β1 

imes the number of its owner neighbors, and an owner returns to

he buyer state with the nodal transition rate δ1 . Using b i + p i = 1 ,

he N -intertwined equation is written as (see Appendix B ): 

˙ p i = (1 − p i ) β1 

∑ 

j 

a i j p j − δ1 p i (1)

here A = 

[
a i j 

]
∈ R 

N×N is the network adjacency matrix. Based on

odel (1) , the probability being owner, p i ( t ), will die out expo-

entially if the spreading strength τ
�= 

β1 
δ1 

satisfies τ
�= 

β1 
δ1 

� 

1 
ρ( A ) 

,

here ρ( A ) is the spectral radius of the adjacency matrix. There-

ore, for the BOB model, the trading continues in steady state if

nd only if ( Wang et al., 2003 ) 

= 

β1 

δ1 

> τc = 

1 

ρ( A ) 
(2)

If (2) is satisfied, the steady state values of the owner proba-

ilities, denoted by p̄ i for the i -th individual, are the non-trivial

olution of the following set of equations: 

β1 

δ1 

∑ 

j 

a i j ̄p j = 

p̄ i 
1 − p̄ i 

(3)

.3. Buyer-seller-owner-buyer model 

In this study, we extend the BOB to an N -intertwined BSOB

odel by augmenting a seller compartment to the transition dia-

ram ( Fig. 4 ). Similar to the BOSO model, transitioning to the seller

tate depends on an incentive rate r . In BSOB, a potential buyer be-

omes owner by β1 times the number of its owner neighbors plus

times the number of its seller neighbors. An owner recovers
2 
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P

ack to the buyer state by the nodal transition of rate δ1 . Poten-

ial buyers who are aware of the incentive r , may be encouraged

o become seller, and in turn influence their neighbors to buy the

ood. In this regard, a potential buyer will go to the seller state

ith the rate it goes to the owner sate times r . The sellers then

o to the owner state by the nodal transition of rate δ2 . Since the

eller individuals affect their potential buyer neighbors actively, it

hould be that β2 > β1 , which indicates the sellers are more in-

uential in persuading their neighbors than the owner individu-

ls are. Naturally, an owner cannot become seller without buying

he good. Thus, there is no direct transition from the owner state

o the seller state. Furthermore, we assume that transition from

 seller individual to a potential buyer state is much slower than

ther transitions. Hence, in our modeling setup, a seller never goes

ack directly to the buyer state. 

For each node i ∈ { 1 , . . . , N} , let us define a random variable

 i : { B , O , S }, and denote X t 
i 

the value of X i at time t . The epidemic

pread dynamics of BSOB is modeled as the following continuous-

ime Markov process: 

r 
(
X 

t+�t 
i 

= O | X 

t 
i = B, X 

t 
)

= β1 �tY t i + β2 �tZ t i + o ( �t ) 

r 
(
X 

t+�t 
i 

= S| X 

t 
i = B, X 

t 
)

= r β1 �tY t i + r β2 �t Z t i + o ( �t ) 

r 
(
X 

t+�t 
i 

= B | X 

t 
i = O, X 

t 
)

= δ1 �t + o ( �t ) 

r 
(
X 

t+�t 
i 

= O | X 

t 
i = S, X 

t 
)

= δ2 �t + o ( �t ) (4) 

here i ∈ { 1 , . . . , N} , Y t 
i 

�= 

∑ 

j∈N i a i j 1 { X t 
j 
= O } , and Z t 

i 

�= 

∑ 

j∈N i 
 i j 1 { X t 

j 
= S} , with 1 {X } being the indicator function. In (4) , Pr(.)

enotes probability, X 

t �= { X t 
i 
, i = 1 , . . . , N} is the joint state of the

etwork, and �t is a time step. Using a proper mean field ap-

roximation, it is possible to express the transition probabilities in

erms of the corresponding expected values. Specifically, the terms

 { X t 
j 
= O } and 1 { X t 

j 
= S} are, respectively, replaced with E [1 { X t 

j 
= O } ] and

 [1 { X t 
j 
= S} ] , where E[.] denotes the expected value. Then, using the

act that p i , q i , and b i are not independent, since b i + p i + q i = 1 ,

e obtain the N -intertwined equation as: 

˙ p i = (1 − p i − q i ) 

( 

β1 

∑ 

j 

a i j p j + β2 

∑ 

j 

a i j q j 

) 

− δ1 p i + δ2 q i 

˙ q i = r(1 − p i − q i ) 

( 

β1 

∑ 

j 

a i j p j + β2 

∑ 

j 

a i j q j 

) 

− δ2 q i (5) 

Eq. (5) is written in vector form as 

˙ p = ( I − P − Q ) ( β1 Ap + β2 Aq ) − δ1 p + δ2 q 

˙ q = r ( I − P − Q ) ( β1 Ap + β2 Aq ) − δ2 q (6) 

here p N×1 = [ p 1 , . . . , p N ] 
T 
, q N×1 = [ q 1 , . . . , q N ] 

T 
, P N×N = diag ( p ) ,

 N×N = diag ( q ) , and I is the identity matrix with appropriate di-

ension. 

emark 1. It can be easily verified that, the set [0, 1] 2 N is a com-

act positively invariant set for system (6) . In fact, it can be con-

luded from (5) that starting from an initial condition p i , q i ∈ [0, 1],

either p i nor q i can become less than zero. This is because ˙ p i ≥ 0

hen p i = 0 and ˙ q i ≥ 0 when q i = 0 . Moreover, taking s i = p i + q i ,

e have from (5) ˙ s i = ( r + 1 ) ( 1 − s i ) 
(
β1 

∑ 

j a i j p j + β2 

∑ 

j a i j q j 
)

−
1 p i . This indicates ˙ s i < 0 when s i = 1 , for p i , q i > 0. Therefore, s i 
an never exceed 1 when starting from an initial condition s i < 1. 

emark 2. From (6) , by b i + p i + q i = 1 , we note that 

˙ p = B ( β1 Ap + β2 Aq ) − δ1 p + δ2 q 

˙ b = −( r + 1 ) B ( β1 Ap + β2 Aq ) + δ1 p 
Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al.,
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ith B = diag ( b ) , b N×1 = [ b 1 , . . . , b N ] 
T 

. For nonnegative states and

 > 0, we observe that − ˙ b ≥ β1 BAp − δ1 p. The right hand side of

his inequality is nothing but the BOB dynamics demonstrated in

1) . In fact, denoting by ˆ (. ) the states in the BOB model, it follows

hat − ˙ ˆ b = 

˙ ˆ p = β1 ̂
 B A ̂  p − δ1 ̂  p , so that − ˙ b ( t ) ≥ − ˙ ˆ b ( t ) . Therefore, when

he two systems start from the same initial conditions, the de-

rease of Buyers in the BOB is slower than is in BSOB. This shows

hat, the probability of remaining in Buyer state is smaller in BSOB

han is in BOB. In other words, compared to the BOB model, sellers

elp to generate more sales. 

. Equilibrium states: homogeneous incentive values 

.1. Trade-free equilibrium 

In this subsection, we investigate the stability of the trivial

quilibrium point 
[

p T q T 
]T = 0 of (6) . In such conditions, the in-

ividuals will steadily remain in Buyer state after a transient time

nd there will be no trading (i.e. no transition from B to S or O )

n steady state. The main outcomes of this subsection are as fol-

ows. First, by studying the spectrum of the model, we derive the

tability conditions for the zero state in Theorem 1 . We then deter-

ine in Eq. (11) the minimum incentive required to destabilize the

rade-free equilibrium and establish active trading in steady state.

he minimum incentive is important as it determines a thresh-

ld, above which individuals continue transitioning from state B

o states S or O and generate sale while below this threshold, no

ales will be generated after a certain amount of time elapsed. We

lso determine an explicit expression for the reproduction number

n Eq. (12) . Henceforth, λ1 (.) will denote the largest eigenvalue of

orresponding matrix argument. 

roposition 1. Consider the N-intertwined BOSB model (5) . Then if 

λ1 ( A ) ≤ −ε, ε > 0 (7) 

here 

A = 

[
β1 A − δ1 I β2 A + δ2 I 

rβ1 A rβ2 A − δ2 I 

]
(8) 

n initial condition [ p T (0) q T (0)] T ∈ [0, 1] 2 N will converge to zero ex-

onentially fast. 

roof of Proposition 1. See A.1 �

roposition 2. The spectrum of A is given in terms of spectrum of A

s 

2 λ( A ) = −[ δ1 + δ2 − ( β1 + rβ2 ) λ( A ) ] 

±
√ 

[ ( δ1 − δ2 ) − ( β1 − rβ2 ) λ( A ) ] 
2 + 4 rβ1 [ δ2 + β2 λ( A ) ] λ( A ) 

(9) 

here the notation λ(.) denotes the eigenvalue of the corresponding

atrix, so that λ = λ( A ) . Therefore, for each eigenvalue of A we get

wo eigenvalues for A , i.e., the total number of 2 N eigenvalues for A .

oreover, since the eigenvalues of the adjacency matrix A are all real,

ince it is symmetric for undirected graphs, Eq. (9) indicates that the

igenvalues of A are real as well. 

roof of Proposition 2. See A.2 �

heorem 1. The trivial equilibrium of the N-intertwined BOSB model

5) is globally exponentially stable if and only if 

( r + 1 ) 
β1 

δ1 

+ r 
β2 

δ2 

< 

1 

λ1 ( A ) 
(10) 

roof of Theorem 1. See A.3 �
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To have an active trading (i.e. sales) in steady state, the trivial

equilibrium point should be unstable. By the assistance of (10) , we

conclude that for trading to continue in steady state, the incentive

should be lower-bounded as r > r c where 

r c = 

(
β1 

δ1 

+ 

β2 

δ2 

)−1 (
1 

λ1 ( A ) 
− β1 

δ1 

)
(11)

The threshold r c is the minimum incentive required to make

steady profit in a viral marketing campaign. Below this threshold,

sales will eventually diminish while above this threshold, sales will

continuously exist as individuals are incentivized enough to pro-

mote the good and collect profit upon sales. Eq. (11) shows that

the incentive threshold r c is conversely related to λ1 ( A ), β1 / δ1 , and

β2 / δ2 . Therefore, when the spectral radius λ1 ( A ) or the externality

effects β1 and β2 are small, larger incentives are required for ac-

tive trading. Moreover, smaller recovery rates δ1 and δ2 translate

to a smaller incentive threshold r c . 

Following the epidemiology literature, we can define the repro-

duction number R 0 , as the expected number of new transitions

to O or S states caused by a typical individual in owner or seller

state within a population of potential buyers only. Many conven-

tional results have demonstrated the global stability of the trade-

free equilibrium when R 0 < 1 . By this convention, we conclude

from the stability condition in (10) that the basic reproduction for

the proposed BSOB is given as 

R 0 = 

[
( r + 1 ) 

β1 

δ1 

+ r 
β2 

δ2 

]
λ1 ( A ) (12)

It is observed that, R 0 is an increasing linear function of the

incentive r with slope ( β1 /δ1 + β2 /δ2 ) λ1 ( A ) . By setting r = 0 , we

reach the reproduction number β1 / δ1 λ1 ( A ) in the BOB model.

Therefore, in comparison to the BOB model, with the reproduction

number β1 / δ1 λ1 ( A ), we observe from (12) that the BSOB model

holds a larger reproduction number. This expedites the spread pro-

cess in the BSOB. Another consequence is that, the BSOB trade-free

equilibrium is stable in a narrower band of the parameters. That

is to say, compared to the BOB, the trade-free equilibrium in the

BSOB becomes unstable under weaker contact characteristics, i.e.

it is unstable in smaller λ1 ( A ) and/or smaller β1 / δ1 . From a mar-

keting perspective and compared to a no-incentive scenario, this

means a viral marketing campaign that incentivizes individuals to

act as sales agents can facilitate sales generation in networks with

lower number of contacts between individuals. 

4.2. Endemic equilibrium 

In this subsection, we investigate the existence and stability

conditions of endemic equilibrium state where transitions between

the states B , O and S occur continuously. This means the network

externality effect is influential enough to keep the individuals mo-

tivated for changing states. The main results of this subsection are

found in Lemmas 1,3 and Theorem 2 , where we show that for val-

ues of reproduction number greater than one, i.e. R 0 > 1 , there is

a unique endemic equilibrium that is strongly positive and glob-

ally asymptotically stable. We also suggest a convergent sequence

in (19) to calculate the endemic equilibrium. 

The nontrivial equilibrium point 
[

p̄ T q̄ T 
]T 

is obtained by setting

in (6) ˙ p = ˙ q = 0 : (
I − P̄ − Q̄ 

)
( β1 A ̄p + β2 A ̄q ) − δ1 ̄p + δ2 ̄q = 0 

r 
(
I − P̄ − Q̄ 

)
( β1 A ̄p + β2 A ̄q ) − δ2 ̄q = 0 (13)

where P̄ = diag ( ̄p ) and Q̄ = diag ( ̄q ) . Multiplying the first of (13) by

r and subtracting the result from the second equality, we have 

q̄ = 

rδ1 

( r + 1 ) δ2 

p̄ (14)
Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al.,
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nserting (14) into the second of (13) , we obtain the following non-

inear equation for p̄ 

β1 

δ1 
( r + 1 ) + r 

β2 

δ2 

]−1 

p̄ = 

[
I − rδ1 + ( r + 1 ) δ2 

( r + 1 ) δ2 

P̄ 

]
A ̄p (15)

emma 1. Any endemic equilibrium is strongly positive, [ ̄p T q̄ T ] T �
 , where 0 is the zero vector. Therefore, in an equilibrium state, either

ll elements of the vector [ ̄p T q̄ T ] T are zero, or no element has a zero

alue. 

roof of Lemma 1. See A.4 �

Lemma 1 indicates that in an equilibrium state, either all indi-

iduals have nonzero probabilities of purchasing the good, or no

ne purchases the good at all. Since p̄ � 0 , and so A ̄p � 0 for a

onnected graph, Eqs. (14) and (15) indicate that every endemic

quilibrium satisfies 

p̄ i < p̄ max ( r ) 
� = 

( r + 1 ) δ2 

rδ1 + ( r + 1 ) δ2 

, 

¯
 i < q̄ max ( r ) 

� = 

rδ1 

rδ1 + ( r + 1 ) δ2 

(16)

herefore, any solution of (14) and (15) is smaller than 1, p̄ , q̄ � 1 ,

here 1 is all ones vector. Moreover, in an irreversible process,

here δ1 = 0 , we have q̄ max ( r ) = 0 , indicating a steady state in

hich the probability of being a seller is zero. In such a steady

tate, since transitioning to the seller compartment is possible only

rom the potential buyer compartment, we can conclude that the

robability of being a potential buyer is zero as well. Thus, in an

rreversible process shown in Fig. 2 , starting from a nonzero ini-

ial condition, all individuals will eventually wind up in the owner

tate. As r in (16) goes to infinity, we have 

lim r→∞ 

p̄ i < p̄ ∞ 

� = 

δ2 

δ1 + δ2 
, lim r→∞ 

q̄ i < q̄ ∞ 

� = 

δ1 

δ1 + δ2 
(17)

hat shows for extremely large incentive values, the only determin-

ng factors of the steady state bound are δ1 and δ2 , which implies

 diminishing role of the underlying network structure as the in-

entive rate increases. 

emma 2. The existence of any endemic equilibrium is subject to

 0 > 1 . 

roof of Lemma 2. See A.5 �

Using (12) , the endemic equilibrium condition (15) may be re-

rranged as 

p̄ = 

[
diag 

(
1 + 

a R 0 

λ1 ( A ) 
A ̄p 

)]−1 R 0 

λ1 ( A ) 
A ̄p (18)

here a = 

r δ1 + ( 1+ r ) δ2 
( r+1 ) δ2 

> 1 . To reach (18) , we have considered that

 ̄A ̄p = diag ( A ̄p ) ̄p . 

emma 3. There is a unique endemic equilibrium when R 0 > 1 . 

roof of Lemma 3. See A.6 . �

emark 3. The proof of Lemma 3 in A.6 provides us with a conver-

ent sequence to calculate the endemic equilibrium. Indeed, under

he initial condition y (0) a scalar multiple of u 1 , with u 1 being the

igenvector corresponding to λ1 and a max i y i ( 0 ) ≤ 1 − 1 / R 0 , the

equence { y ( k ) } k ∈ N ⊂ R 

N , 

 ( k + 1 ) = F 

(R 0 

λ1 

Ay ( k ) 

)
(19)

here [ F (y ) ] i = 

y i 
1+ ay i 

, a = 

r δ1 + ( 1+ r ) δ2 
( r+1 ) δ2 

, converges to p̄ : 

lim 

 →∞ 

y ( k ) = p̄ 
 Incentive rate determination in viral marketing, European Journal 
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Fig. 5. (a) Individual, and (b) average, equilibrium states. 
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for a given initial condition for the BSOB model (4) obtained by GEMF simulator 

in an Erdos–Renyi graph with 10 0 0 nodes (the black lines represent the mean field 

approximation (5) ). 
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e can additionally relax the initial condition y (0) being a scalar

ultiple of u 1 since we have already proved the endemic equi-

ibrium is unique. Hence, by starting from any initial condition

 � = y (0) ∈ [0, 1] N , it is expected the series (19) converges to p̄ . 

heorem 2. Suppose that R 0 > 1 . Then the endemic equilibrium is

lobally asymptotically stable. 

roof of Theorem 2. See A.7 . �

Fig. 5 shows the equilibrium of the BOSB for different values

f incentive factor r in an Erdos–Renyi network with 10 0 0 nodes

nd the connection probability 0.0138 ( λ1 ( A ) = 14 . 938 ). The nu-

erical values are δ1 = 1 , δ2 = . 2 , β1 = 0 . 0175 , β2 = 0 . 0225 . As it

an be observed, for incentive factors below r c , only the trade-free

quilibrium is possible. After this critical incentive, the probabili-

ies of settling into owner and seller states increase monotonically

nd for larger incentives r converge to values associated with (17) ,

hile the probability of being a potential buyer decreases mono-

onically for r > r c . Fig. 6 presents the time response of BSOB for

 = 2 > r c where GEMF simulator ( Sahneh, Vajdi, Shakeri, Fan, &

coglio, 2017 ) is used to track the behavior of the stochastic model

4) over time. As it can be observed in the example of Fig. 6 , mean

eld closely follows the Markov process. It is noteworthy that in

ome instances, such as the ones investigated by Van Mieghem,

mic, and Kooij (2009b) , the mean filed approximation error may

row. 

. Maximizing profit: homogeneous incentive values 

.1. Profit function: evidence of existence of an optimal incentive r ∗

Every time an individual transitions to the state O or S , a certain

mount of profit is generated. The sales profit generated during a

ime period T can be defined as 

( r ) = 	0 n B → O + ( 	0 − f ( r ) ) n B → S (20) 

here n B → O and n B → S represent the number of transitions from

otential buyer to owner and seller states during the time period

 , respectively, and 	0 is the profit due to a single transition from

uyer to Owner. In (20) , the function f ( r ) is the incentive given to

otential buyers to encourage their transition to the seller state,

nd is a non-decreasing function of the incentive factor r . In the
Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al.,

of Operational Research, https://doi.org/10.1016/j.ejor.2020.07.046 
implest scenario, we may suppose the incentive value is a linear

unction of the incentive factor r through a constant coefficient κ ,

.e. f ( r ) = κr. In other words, it is supposed that the probability of

 potential buyer becoming a seller grows linearly with the amount

f the incentive given through the coefficient κ . For the mean field

odel (5) , the expected profit is computed as 

 [ 	( r ) ] = 	0 E [ n B → O ] + ( 	0 − f ( r ) ) E [ n B → S ] (21) 

In general, the expected transitions during the time period T are

btained according to the transition digraph 4 as 

 [ n B → O ] = 

1 

r 
E [ n B → S ] 

= 

∫ T 

0 

∑ 

i 

( 1 − p i − q i ) 

( 

β1 

∑ 

j 

a i j p j + β2 

∑ 

j 

a i j q j 

) 

dt 

(22) 
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Fig. 7. The profit as a function of the incentive factor in an Erdos–Renyi graph with 

10 0 0 nodes calculated for the time period T = 100 . 
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Fig. 7 shows the normalized profit as a function of the incen-

tive factor r in an Erdos–Renyi graph with 10 0 0 nodes. Here, the

incentive was computed for κ = 2 and the time period T = 100 ,

and was normalized by making the maximum profit equal to 1. As

illustrated by Fig. 7 , before the incentive threshold r c , the profit

is almost zero (some minor profit is expected in transient due to

the initial conditions). The profit starts to grow after the threshold,

until it reaches its maximum value at an incentive value r ∗( T ) and

then starts to decrease with increasing incentive. 

Fig. 8 depicts various transitions and the number of their oc-

currences for different values of incentive r in an artificial example

when T = 100 . The number of transitions below the threshold r c is

practically zero (there are only few transitions during the transient

period). Above the threshold r c , all transitions, but the transition

from a potential buyer to owner, are non-decreasing functions of

the incentive. However, the transition from B to O reaches a max-

imum value at an incentive amount less than r ∗. After the thresh-

old r c , the transition from B to O grows due to increased number

of sellers who are willing to promote the good and generate sales.

However, after a certain incentive value, for which the number of

transitions from B to O reaches its maximum, the incentive amount

given is large enough to encourage the potential buyers to domi-

nantly become sellers, rather than owners. Thus, the number of

transitions from a potential buyer to an owner decreases. Consid-

ering these observations, one can conclude that the profit increases

after r c due to an escalated level of transitions from B to O and S .

Furthermore, the profit starts to deteriorate after r ∗ due to the ex-

cessive amount of incentive given (over-incentivization) and as a

result, reduced number of transitions from B to O . 

5.2. Maximizing the steady state profit: nonlinear programming 

To find the maximum profit over a time period T (i.e. r ∗( T ))

We can optimize the profit function (20) subject to the stochastic

model (4) , or by mean field approximation, optimize (21) sub-

ject to (5) . These optimization models, result in stochastic and

deterministic optimal control problems, and the corresponding

dynamic programmings. An alternative approach is to maxi-

mize the steady state profit. For this purpose, and considering

E [ n B → S ] = r E [ n B → O ] in (22) , we observe that the expected profit in

(21) may be rewritten as E [ 	( r ) ] = [ 	0 ( r + 1 ) − r f ( r ) ] E [ n B → O ] . By

(22) , we know that the expected number of transitions from state
Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al.,
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 to O at each time step �t is ( 1 − p − q ) T ( β1 Ap + β2 Aq ) �t .

hus, the expected profit at each time step becomes

 

	0 ( r + 1 ) − r f ( r ) ] ( 1 − p − q ) T ( β1 Ap + β2 Aq ) �t . To maximize

he profit in steady state, the dynamics constraint (6) needs

o be replaced with the static equilibrium condition (13) , or

quivalently, by (14) and (15) . We may utilize (13) to express

he expected profit at each time step under endemic equilibrium

ondition as δ1 ( 	0 − r/ ( r + 1 ) f ( r ) ) 1 T p̄ �t, where p̄ is subjected

o satisfy the nonlinear constraint (15) . By this argument, we

onsider the following nonlinear programming for maximizing the

rofit in the steady state: 

ax 
r, ̄p 

(
	0 − r 

r + 1 

f ( r ) 

)
1 

T p̄ 

.t. 

⎧ ⎪ ⎨ 

⎪ ⎩ 

[
β1 

δ1 
( r + 1 ) + r 

β2 

δ2 

]−1 

p̄ = 

[
I − rδ1 + ( r + 1 ) δ2 

( r + 1 ) δ2 

P̄ 

]
A ̄p 

r ≥ 0 

(23)

By Lemma 3 , we know that, for each r ≥ r c , there exists a unique

p̄ that satisfies the equality constraint in (23) . Hence, the feasi-

le set of the optimization problem is nonempty. In addition, if

e suppose f ( r ) is such that r / ( r + 1 ) f ( r ) is convex for r > 0, the

ost function ( 	0 − r/ ( r + 1 ) f ( r ) ) 1 T p̄ will be concave. This shows

hat (23) holds a unique optimal solution, which may be obtained

sing the Interior-Point (IP) or Sequential Quadratic Programming

SQP) approaches ( Nocedal & Wright, 2006 ). Note that by (23) , we

eglect the transient profit. This is meaningful if the transient trad-

ng is not significant compared to the steady state trading. This is

lso the case when the profit is to be maximized for a sufficiently

arge time period T . 

Denoting the solution of (23) as ( r ∗s , p̄ ∗) , Fig. 9 shows the opti-

al incentive values r ∗( T ) and their corresponding endemic equi-

ibrium for different time periods T . We observe that, by increasing

he time period T , during which the profit is computed, the opti-

al incentive uniformly approaches r ∗s from above. The manner by

hich different optimal incentives converge in Fig. 9 guide us to a

ontrol strategy, in which we start by a maximum possible incen-

ive for optimal profit in transient, gradually reduce the incentive

s time goes on, and finally switch to the incentive r ∗s for optimal

rofit in the steady state (i.e. the solution of (23) ). As Fig. 9 shows,

or optimum incentive value in the steady state, probability of be-

ng in state S is higher than the probability of being in each state

 or O . 

. Equilibrium states: heterogeneous incentive values 

Depending on their position in a network, individuals wield

 different degree of influence in information diffusion. Thus, it

ay seem natural to assign different incentive values to individ-

als based on the amount of influence they can exert, which is

sually quantified in the form of centrality measures. The most ba-

ic and trivial centrality measure may be the number of neighbors

n individual has. However, since the importance of an individual

an be measured through various definitions, there are many dif-

erent definitions of centrality ( Liao, Mariani, Medo, Zhang, & Zhou,

017; Nasirian, Pajouh, & Balasundaram, 2020 ). Therefore, to iden-

ify essential qualities and quantities for determining an important

ndividual in a viral marketing campaign, we consider the case of

eterogeneous incentive values in the BSOB model and investigate

ts dynamics properties. Then, we will examine the problem of

rofit maximization with heterogeneous incentive values. One of

he main results of this section is expressed in Theorem 3 where

e derive the exponential stability conditions of the trade-free

quilibrium in terms of the reproduction number (27) . Then we

xpress the existence and stability conditions of a unique en-

emic equilibrium in Lemmas 5 and 6 . We also demonstrate by
 Incentive rate determination in viral marketing, European Journal 
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Fig. 8. The number of transitions from (a) potential buyer to owner, (b) potential buyer to seller, (c) seller to owner, and (d) owner to potential buyer. 
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2 Recall that a square matrix A is Metzler if all its off-diagonal elements are non- 

negative and it is irreducible if additionally its associated graph is connected ( Bullo, 

2019 ). 
emma 7 how large the value of standard deviation in incentive

istribution should be to have an active steady state trading when

he average incentive is smaller than the threshold r c in (11) . 

When different agents can receive different incentives, we con-

ider the following mean field dynamics: 

˙ p i = (1 − p i − q i ) 

( 

β1 

∑ 

j 

a i j p j + β2 

∑ 

j 

a i j q j 

) 

− δ1 p i + δ2 q i 

˙ 
 i = r i (1 − p i − q i ) 

( 

β1 

∑ 

j 

a i j p j + β2 

∑ 

j 

a i j q j 

) 

− δ2 q i (24) 

here r i denotes the incentive factor corresponding to the i th in-

ividual. In vector form we have 

˙ p = ( I − P − Q ) ( β1 Ap + β2 Aq ) − δ1 p + δ2 q 

˙ 
 = R ( I − P − Q ) ( β1 Ap + β2 Aq ) − δ2 q (25) 

here R = diag ( [ r i ] ) , or R = diag ( r ) where r denotes the incentive

actor vector with components r . Similar to Remark 1 , it can be
i 
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erified that the set [0, 1] 2 N is a compact positively invariant set

or (25) . To establish the main results in this section, we introduce

he reproduction matrix R = diag ( [ R i ] ) as a diagonal matrix with

he following positive pivot entries: 

 i = ( r i + 1 ) 
β1 

δ1 

+ r i 
β2 

δ2 

(26) 

The reproduction number in the heterogeneous incentive is the

argest eigenvalue of the matrix R A : 

 0 = λ1 ( R A ) (27) 

ote that since A is Metzler irreducible 2 and R is diagonal with

ositive pivot entries, R A is Metzler irreducible. Hence, the largest

igenvalue of R A and its corresponding eigenvector are strictly

ositive due to Perron–Frobenius theorem. By the same procedure
 Incentive rate determination in viral marketing, European Journal 
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Fig. 9. Optimum incentive value for different time periods. 
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in the proof of Proposition 1 , we can conclude the following propo-

sition for the heterogeneous incentives: 

Proposition 3. Consider the N-intertwined model (24) , or (25) . If

λ1 ( A ) ≤ −ε, ε > 0 , where 

A = 

[
β1 A − δ1 I β2 A + δ2 I 

β1 RA β2 RA − δ2 I 

]
(28)

then an initial condition [ p T (0) q T (0)] T ∈ [0, 1] 2 N will converge to zero

exponentially fast. 

For further results on stability of trade-free equilibrium, we

consider the regular splitting of a real Metzler matrix M as M =
� + W where � is Metzler stable 3 and W ≥ 0 is a nonnegative ma-

trix ( Fall et al., 2007 , Definition 2.2). According to Fall et al. (2007 ,

Proposition 2.1), if M = � + W is a regular splitting of M , then M

is Metzler stable if and only if ρ
(
−W �−1 

)
< 1 . 

Lemma 4. The trivial equilibrium of the N-intertwined BOSB model

(24) , or (25) , is globally exponentially stable if and only if

ρ
(
−W �−1 

)
< 1 , where 

W = 

[
β1 A β2 A 

β1 RA β2 RA 

]
, � = 

[−δ1 I δ2 I 

0 −δ2 I 

]

Proof of Lemma 4. See A.8 . �

Theorem 3. The trivial equilibrium of the N-intertwined BOSB model

(24) , or (25) , is globally exponentially stable if and only if λ1 ( R A ) ≤
1 , or R 0 ≤ 1 . 

Proof of Theorem 3. See A.9 . �

The endemic equilibrium condition is attained by setting ˙ p =
˙ q = 0 in (25) as: 

p̄ = [ diag ( 1 + a i R i ( A ̄p ) i ) ] 
−1 R A ̄p 

q̄ = 

δ1 

δ2 
( I + R ) 

−1 R ̄p (29)

where a i = 

δ1 r i + δ2 ( r i +1 ) 
δ2 ( r i +1 ) 

> 1 . Similar t o Lemma 1 , any endemic

equilibrium is strongly positive. We can repeat the same procedure
3 i.e. � is Metzler with negative eigenvalues real parts ( Fall et al., 2007 ). 

t  

r  

s
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n the proof of Lemma 3 for λ1 ( R A ) > 1 , to reach the following

emma for heterogeneous incentives. 

emma 5. Suppose R 0 = λ1 ( R A ) > 1 . There is a unique endemic

quilibrium for (25) that is strictly positive and is the solution of (29) .

n fact, under the initial condition y (0) a scalar multiple of u 1 , with

 1 being the eigenvector corresponding to λ1 ( R A ) and max i a i y i ( 0 ) ≤
 − 1 /λ1 ( R A ) , the sequence, 

 ( k + 1 ) = F ( R Ay ( k ) ) (30)

here { y ( k ) } k ∈ N ⊂ R 

N , [ F (y ) ] i = 

y i 
1+ a i y i , and a i = 

δ1 r i + δ2 ( 1+ r i ) 
δ2 ( r i +1 ) 

, con-

erges to the equilibrium state p̄ : lim k →∞ 

y ( k ) = p̄ . 

Similar to the Theorem 2 , we have the following stability result

or the endemic equilibrium of (25) : 

emma 6. Suppose R 0 = λ1 ( R A ) > 1 . Then, the endemic equilibrium

f (25) is globally asymptotically stable. 

emark 4. Using the conditions on λ1 ( R A ) , we can obtain some

riteria directly based on the incentive vector r . Let r min and r max 

e the minimum and the maximum incentive given to all agents

i.e r min = min i r i and r max = max i r i ). Since λ1 ( R A ) ≤ λ1 ( R ) λ1 ( A ) ,

e can conclude that, if 

( r max + 1 ) 
β1 

δ1 

+ r max 
β2 

δ2 

< 

1 

λ1 ( A ) 
(31)

hen, λ1 ( R A ) ≤ 1 , and the trivial equilibrium of the N-intertwined

OSB model (5) is globally exponentially stable. In the same

anner, since λ1 ( R A ) ≥ λmin ( R ) λ1 ( A ) , with λmin (.) denoting the

mallest eigenvalue, we can conclude if 

( r min + 1 ) 
β1 

δ1 

+ r min 

β2 

δ2 

> 

1 

λ1 ( A ) 
(32)

hen, λ1 ( R A ) ≥ 1 , and there exists a unique endemic equilibrium

hat is globally asymptotically stable. Moreover, we understand by

31) and (32) that for heterogeneous incentives, the reproduction

umber is bounded as 

( r min + 1 ) 
β1 

δ1 

+ r min 

β2 

δ2 

]
λ1 ( A ) 

≤ R 0 ≤
[
( r max + 1 ) 

β1 

δ1 

+ r max 
β2 

δ2 

]
λ1 ( A ) (33)

Remark 4 indicates that, to destabilize the trade-free equi-

ibrium, the maximum incentive given is required to be lower-

ounded by the critical incentive (11) as r max ≥ r c . On the other

and, the condition r min ≥ r c assures the existence and stability of

n endemic equilibrium. Thus, if all incentives are less than the

ritical incentive r c the trade-free equilibrium is globally exponen-

ially stable, and when all incentives are larger than the critical

ncentive r c there is a unique endemic equilibrium that is glob-

lly asymptotically stable. However, these are conservative results

n that we have still no explicit finding about the intermediate sit-

ation where some incentives are less than and some others are

arger than r c , r min ≤ r c ≤ r max . We have the tight explicit results

f Theorem 3 and Lemma 6 that demonstrate if R is such that

1 ( R A ) ≤ 1 the origin is exponentially stable, and if λ1 ( R A ) > 1

here is a unique asymptotically stable endemic equilibrium. How-

ver, these criteria yield no explicit result directly based on indi-

idual incentives r i . For more explicit criterion, we may attain fur-

her conditions based on a factor other than maximum or mini-

um incentive; e.g. based on average incentive. In an attempt to

chieve some criterion based on the average incentive, we pose

he following Lemma 7 . First, let us consider the incentive vec-

or r = r a v e + ̃  r where r a v e denotes the average of components of

 and ˜ r denotes the deviation from the mean value r a v e , and con-

ider ˜ R = diag ( ̃ r ) . 
 Incentive rate determination in viral marketing, European Journal 
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Fig. 10. (a) Individual, and (b) average, equilibrium states with heterogeneous incentive values. 

L  

p  

t  

e  

f

r

P

R  

b  

b  

f  

r  

b  

t

 

i  

a  

a  

h  

f  

o  

f  

R  

a  

s  

s  

t  

h  

t  

n  

f  

c  

c  

e

7

 

t

	

w  

t  

u  

a

E

w

E

 ∑
 

p  

s  

β  

p  

δ  

e  

p

s

w  

b  
emma 7. Let Ā be defined with replacing r = r a v e in (8) and sup-

ose the incentive r = r a v e satisfies (10) , so that r a v e < r c . Then the

rivial equilibrium of the N-intertwined BOSB model (5) is globally

xponentially stable when the maximum deviation ˜ r max = max ˜ r > 0

rom the average value is such that 

˜ 
 max < 

ε

2 β2 λ1 ( A ) 
≤

−λ1 

(
Ā 

)
2 β2 λ1 ( A ) 

. 

roof of Lemma 7. See A.10 �

emark 5. The importance of Lemma 7 is establishing a lower-

ound for deviation from the average incentive in order to desta-

ilize the origin and have a stable endemic equilibrium. There-

ore, when the average incentive r a v e is less than the critical value

 c in (11) , the standard deviation of incentive assignment should

e large enough to have a stable endemic equilibrium and active

rading. 

Fig. 10 shows the equilibrium of the BOSB with heterogeneous

ncentives for different values of average incentive factor r a v e in

n Erdos–Renyi graph with 10 0 0 nodes. Here, we have randomly

ssigned an incentive value 0 < r i < 3 to each agent i , and next,

ave multiplied all incentives by an increasing factor starting

rom zero to obtain a spectrum of values for r a v e . As it can be

bserved, below the threshold R 0 = λ1 ( R A ) = 1 , only the trade-

ree equilibrium exists, while incentive distribution leading to

 0 = λ1 ( R A ) > 1 gives birth to a unique endemic equilibrium. In

ddition, comparing Figs. 10 a and 5 a, we note that the equilibrium

tate for heterogeneous incentives is more distributive, i.e. the

tandard deviation of equilibrium states for heterogeneous incen-

ives is higher than that in homogeneous incentive. In general, the

igher the standard deviation of incentive distribution, the higher

he standard deviation of equilibrium states. By Fig. 10 b we also

ote that, the average incentive factor r a v e yields a good criterion

or estimating the threshold in this case, although this is not the

ase always and the average incentive can not yield a precise

riterion when the standard deviation of incentive allocation is

ffectively lar ge. Here, r c is the same as in (11) . 
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. Maximizing profit: heterogeneous incentive values 

For heterogeneous incentive values, the profit function over

ime period T is defined as 

( r ) = 	0 

∑ 

i 

n 

i 
B → O + 

∑ 

i 

( 	0 − f ( r i ) ) n 

i 
B → S (34) 

here n i 
B → O 

= n i 
B → O ( T ) and n i 

B → S 
= n i 

B → S ( T ) are the number of

ransitions from states B to O and S , respectively, for an individ-

al i during the time interval T . The expected profit is computed

s 

 [ 	( r ) ] = 	0 

∑ 

i 

E 

[
n 

i 
B → O 

]
+ 

∑ 

i 

( 	0 − f ( r i ) ) E 

[
n 

i 
B → S 

]
(35) 

here 

 

[
n 

i 
B → O 

]
= 

1 

r i 
E 

[
n 

i 
B → S 

]
= 

∫ T 

0 
( 1 − p i − q i ) 

( 

β1 

∑ 

j 

a i j p j + β2 

∑ 

j 

a i j q j 

) 

dt (36) 

With E [ n i 
B → S 

] = r i E [ n 
i 
B → O 

] , the profit is written as E [	( r )] =
 

i (	0 (r i + 1) − r i f (r i )) E [ n 
i 
B → O 

] . By repeating the same procedure

erformed to reach (23) , that is by using (36) to obtain the tran-

ition E [ n i 
B → O 

] at each time step �t as (1 − p i − q i )(β1 

∑ 

j a i j p j +
2 

∑ 

j a i j q j )�t and inserting the equilibrium condition (29) , the

rofit at each time step of the steady state can be calculated as

1 [	0 1 
T − r T diag ([ 

f (r i ) 
r i +1 ])] ̄p �t . The following constrained nonlin-

ar programming is then established to maximize the steady state

rofit: 

max 
r , ̄p 

[
	0 1 

T − r T diag 

([
f ( r i ) 

r i + 1 

])]
p̄ 

.t. 

⎧ ⎪ ⎨ 

⎪ ⎩ 

[ diag ( 1 + a i R i ( A ̄p ) i ) ] ̄p − R A ̄p = 0 

r T 1 ≤ c 

r ≥ 0 

(37) 

here the total incentive given to all individuals is supposed to

e upper-bounded by the constant c . The case where there is no
 Incentive rate determination in viral marketing, European Journal 

https://doi.org/10.1016/j.ejor.2020.07.046


12 A. Tavasoli, H. Shakeri and E. Ardjmand et al. / European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; August 24, 2020;23:46 ] 

0 10 20 30

Degree centrality

0.5

1

1.5

2

2.5

3

3.5

O
p
ti

m
al

 i
n
ce

n
ti

v
e

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Eigenvector centrality

0.5

1

1.5

2

2.5

3

3.5

O
p
ti

m
al

 i
n
ce

n
ti

v
e

(b)

0.4 0.5 0.6 0.7 0.8 0.9 1

Katz centrality

0.5

1

1.5

2

2.5

3

3.5

O
p
ti

m
al

 i
n
ce

n
ti

v
e

(c)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PageRank centrality

0.5

1

1.5

2

2.5

3

3.5

O
p
ti

m
al

 i
n
ce

n
ti

v
e

(d)

Fig. 11. Optimal incentives for different centrality measures when the total incentive is not limited ( c = ∞ ) (a) Node degree. (b) Eigenvector centrality. (c) Katz centrality. 

(d) PageRank centrality. 
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constraint on the total incentive is equivalent to c = ∞ . We can

conclude that the nonlinear programming (37) holds a unique op-

timal solution by using Lemma 6 to assure that the feasible set

of the optimization problem is nonempty, and by assuming f ( r i ) is

such that r i / ( r i + 1 ) f ( r i ) is convex for r i > 0. 

We solve the nonlinear programming (37) for an Erdos–Renyi

network with 10 0 0 nodes using the SQP ( Nocedal & Wright, 2006 ).

Fig. 11 shows scatter plots of optimal incentives versus some com-

mon centrality measures ( Liao et al., 2017 ), when there is no re-

striction on the total incentive c . As a general pattern, it can be

observed in Fig. 11 that less central nodes receive more incentives.

This observation indicates that when there is no limit on the in-

centive amount, the optimal strategy strengthens the externality’s

effect on less central nodes by increasing their incentives. In such

conditions of no restriction on optimal incentives, externalities’ ef-

fect on most central nodes is essentially due to the number of

their owner and seller neighbors. In spite of the general pattern

observed in Fig. 11 , not all less central individuals receive larger

incentives. This indicates that although there is a strong correla-

tion between centrality and incentive allocation, there is no trivial

law to achieve the optimal incentives absolutely based on usual

centrality measures. 

In Fig. 12 , we show scatter plots of optimal incentives versus

eigenvector centrality for different values of total incentive c . We

do not show other centrality measures due to qualitatively similar

results (as implied by Fig. 11 ). When the total incentive budget c

is very limited, as in Figs. 12 a and b, the optimal incentive allo-

cation holds a completely unbalanced pattern. While the majority

of individuals receives no incentive, some very few others, mostly

nodes with highest centrality, receive large amounts. This observa-

tion can be explained by recalling Lemma 7 , which suggests when
Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al.,
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he average incentive is below the critical value, large standard

eviation of incentive distribution is needed to have a stable en-

emic equilibrium. In fact, the average incentives in Figs. 12 a and

 are r a v e = 0 . 25 and r a v e = 0 . 1 , respectively, which are less than

he critical value r c = 0 . 3803 computed by (11) . Therefore, based

n Lemma 7 , the optimal mechanism in each case leads to a high

tandard deviation in incentive allocation for reaching a stable en-

emic equilibrium. Examining the reproduction numbers, we have

 0 = λ1 ( R A ) = 1 . 5746 in Fig. 12 a, and R 0 = λ1 ( R A ) = 1 . 6 6 68 in

ig. 12 b. Hence, both cases result in reproduction numbers greater

han 1 and stable endemic equilibria, despite having average in-

entives significantly smaller than the critical incentive r c . In gen-

ral, when the incentive budget is tight, the incentive to consumers

ith the least centralities is effectively wasted since these individ-

als have little chance to influence the whole network with limited

esources. Instead, the less central nodes are influenced by their

entral neighbors. This situation continues by increasing the total

ncentive to c = 500 and c = 750 , the cases shown in Figs. 12 c and

, respectively, where the number of more central nodes receiv-

ng incentive increases while the least central nodes still receiv-

ng no incentive. For the larger total incentive c = 10 0 0 in Fig. 12 e,

e note there is no nodes receiving no incentive and almost all

odes receive incentive, with nodes of larger centralities still re-

eiving larger incentive. 

This implies that, when there is a limited total incentive, the

ptimal incentive determination mechanism prioritizes and assigns

ore incentive to central individuals since they can produce larger

xternalities effect on the whole network even with limited re-

ources. Therefore, when the total incentive is limited, the tradeoff

etween the exploitation and the influence ( Bloch & Quérou, 2013 )

s in favor of influence, so that the monopolist promotes the good
 Incentive rate determination in viral marketing, European Journal 
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Fig. 12. Optimal incentives versus eigenvector centrality when (a) c = 100 , (b) c = 250 , (c) c = 500 , (d) c = 750 , (e) c = 10 0 0 , (f) c = 1200 , (g) c = 1500 , (h) c = 20 0 0 , (i) 

the total incentive is not limited ( c = ∞ ) . 
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hrough more central consumers in order to maximize influence

ver neighboring nodes. Some similar results have been reported

n optimal resource allocation for containing disease spreading

 Preciado, Zargham, Enyioha, Jadbabaie, & Pappas, 2014 ) where for

imited resources the nodes with larger centralities are assigned

ost of available budget. 

However, the situation changes and the system dynamics

ifurcates as the incentive budget c increases further. First, Fig. 12 f

ndicates that, when c = 1200 , there is almost no regular pattern

or incentive allocation, and it is neither increasing nor decreasing

ith individuals centrality. With Figs. 12 g, h, and i, we observe

 completely different pattern where, given an unrestricted or a

arge available total incentive, there are no individuals receiving

o incentive, while less central nodes commonly receiving larger

ncentive amounts. In such conditions, i.e. when the total incentive

s not significantly limited, the tradeoff between exploitation

nd influence is resolved in favor of exploitation of more central
Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al.,
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onsumers, so that these nodes are charged higher prices in order

o exploit their higher degree of influence. In this case, the less

entral nodes are stimulated by receiving larger incentive amounts,

nd not by influence of their central neighbors. This observed dy-

amic sheds light on a long standing dispute in the TSS literature

s to whether more central individuals should be selected as

nitiators of a viral campaign. While there are contradicting points

f view on this issue ( Christophe, Wuyts, Dekimpe, Gijsbrechts, &

ieters, 2010; Cohen & Harsha, 2019; Hinz et al., 2011; Iyengar &

epper, 20 0 0; Van der Lans et al., 2010; Watts & Dodds, 2007 ),

ur results show that under different incentive budgets, relying on

ore central individuals may or may not be the best strategy. 

Finally, Fig. 13 shows the maximum expected profit attainable

t each instant of steady state for different total incentives c . As il-

ustrated in Fig. 13 , the maximum profit is a monotonically increas-

ng function of incentive budget c and approaches a fixed value as

 increases. 
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Fig. 13. Maximum expected profit attainable at each instant of steady state for dif- 

ferent total incentives c . 
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8. Managerial implications 

This study has three key takeaways for practitioners and

managers. First, a low incentive rate may not have a sustainable

effect on sales. Our model revealed that the incentive values

that fall below a threshold might not be encouraging enough to

keep the consumers trading, and thus, the sales eventually might

vanish (i.e., trade-free equilibrium). Second, it was found that if

the monopolist is willing to reward every consumer equally (i.e.,

homogenous incentives), there is a unique optimum incentive

rate that maximizes the profit and whose value decreases as the

planning time horizon increases. This finding led to an optimal

strategy in designing the homogenous incentive rates, which tends

to begin with a maximum permissible incentive value for optimal

profit in a short time horizon and gradually decreases it to a value

that maximizes the profit in an infinite time horizon (i.e., endemic

equilibrium). A third takeaway pertains to the case where a firm

rewards each individual differently (i.e., heterogenous incentives).

While our intuition may induce an incentive allocation based on

the individuals’ centrality, we observed that different centrality

measurements could not trivially determine the optimal incen-

tive allocation, although some strong correlation exists between

centrality measures and incentive allocation. Indeed, our model

explicated that there is no straightforward incentive rate determi-

nation strategy in a heterogeneous incentive scenario. However,

there seems to be a relationship between the individuals’ mea-

sure of centrality and the optimum reward they receive upon

generating sales. The centrality of a node can affect the optimal

incentive rate in two different countervailing manners. On the one

hand, a more central node generates more positive externalities

on its neighbors and hence, should be incentivized more. On the

other hand, more central individuals have more opportunities to

generate sales, and if they receive a larger incentive, they can

negatively impact the monopolist’s profit. Thus, a monopolist

may choose to price discriminate by trading off “influence” and

“exploitation” ( Bloch & Quérou, 2013 ). This tradeoff either leads to

higher incentive rates at more central nodes to maximize influence

over neighboring nodes or to lower incentive rates at more central

nodes to exploit the higher valuation of more central consumers. 

Similarly, our findings show that the optimal incentive alloca-

tion makes a tradeoff between lowering the incentive at more cen-

tral nodes to exploit the nodes centrality or raising the incentive

at more central nodes to maximize influence on other consumers.

When the total incentive is not limited or is loosely limited, the

tradeoff between influence and exploitation is resolved in favor of

exploitation, and more central nodes are given smaller incentives.
Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al.,

of Operational Research, https://doi.org/10.1016/j.ejor.2020.07.046 
n such a condition, the less central nodes are stimulated by of-

ering more substantial incentives, instead of being influenced by

heir central neighbors. On the other hand, when the total incen-

ive is moderately or tightly limited, our findings show that the

radeoff favors the influence by offering the more central nodes

arger incentives so that they influence the less central nodes,

hich in turn receives very small or zero incentives. Finally, we

ecall that our results are limited to undirected graphs, and they

ay change when our approach is examined on directed graphs.

ome implications may be observed from Candogan et al. (2012) ,

here the authors investigate a two-stage pricing-consumption

ame model and show that, when the underlying network is di-

ected, the agents that are offered the most favorable prices are

he ones that influence highly central agents. 

. Conclusion 

In this paper, we have established a new model of viral mar-

eting for a monopolist selling a single good under network ex-

ernalities. In our so called BOSB model, the individuals interact

ith each other while assuming three possible roles of potential

uyers, owners, or sellers. A potential buyer can become a seller

y promoting the good to his neighbors while collecting a reward

i.e., incentive) for the sales she generates. The state of an indi-

idual depends on the state of his neighbors over the network. By

onstructing different transition probabilities, we developed an N -

ntertwined model that is the mean field approximation of the cor-

esponding continuous-time Markov process. We investigated two

ases of homogeneous and heterogeneous incentive values. In each

ase, by studying the spectra of the developed model, we estab-

ished the existence and stability conditions of trade-free and en-

emic equilibrium states and expressed different criteria in terms

f the epidemic reproduction number. We have also suggested two

onvergent sequences to compute the unique endemic equilibria

or homogeneous and heterogeneous cases. 

Taking the incentive as a control parameter, we investigated

he optimal incentive rate determination problem to achieve maxi-

um profit. To this end, we determined the optimal homogeneous

ncentive and the optimal heterogeneous incentive allocation

hrough the proposed corresponding nonlinear programmings. In

he case of homogeneous incentive, the optimal incentive rate is

uch that a tradeoff is made between the number of transitions

rom the potential buyer state to each of the owner and seller

tates. While raising the incentive rate increases the monopolist

rofit through shifting individuals to the owner and seller states,

n excessive incentive rate can inadvertently lessen the profit

y encouraging more individuals to stay in the seller state and

ence, fewer transitions from potential buyers to owners. The

ituation is more involved in the case of heterogeneous incen-

ives where more central individuals are favored more when the

ncentivization budget is tight, and conversely, less central nodes

re rewarded more generously when the incentivization budget is

bundant. 

In the context of viral marketing, one is typically interested in

mplifying the spread process through an incentivization schema.

owever, the methods proposed in this paper can likewise be

pplied to the scenarios where a spreading process is to be con-

ained. One such process is encountered in epidemiology, where

he spread of a virus needs to be restrained. For this purpose,

he incentive rate r can be repurposed to represent the cost of

rotecting an individual against receiving or passing a virus to

thers. Investigating homogeneous and heterogeneous protection

osts and their effect on the virus spread process can be a fruitful

pplication of the presented methods in this study. 
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A natural direction to extend this study is to consider incentive

etermination in a competitive environment. In the simplest case,

hen only two firms compete over the sales of a particular good,

 model such as the competitive epidemic spreading studied by

ahneh and Scoglio (2013) can be considered and extended under

iral marketing setting. The problem becomes more interesting

hen the competition occurs in a multilayer network where

etwork layers represent the distinct transmission routes of the

nformation. Then, characterizing the existence/coexistence con-

itions of different goods and the IRD problem as functions of

arious network layers structures will be a challenging problem

hose solution can establish meaningful results. Moreover, since

ur results are limited to undirected graphs, we can use more

ecently developed approaches, such as the one considered in

hanafer et al. (2016) , to explore how our results may change

hen examined on directed graphs and extend our work. An-

ther interesting subject for future work is time-varying incentive

etermination and the corresponding dynamic optimization. The

nalyses of the model considered in this paper, and the associated

tatic optimizations are based on the assumption that the incentive

mount given to each individual is constant. To extend the ob-

ained results, optimal time-varying incentive ( Ajorlou et al., 2016 )

etermination can be considered and resolved in the framework

f optimal control ( Lorch et al., 2018 ) or model predictive control

MPC) ( Watkins, Nowzari, & Pappas, 2018 ). Furthermore, the power

f more recently developed data-driven and machine learning ap-

roaches ( Brunton & Kutz, 2019 ) in the identification and control

f complex systems seems promising when studying dynamical

henomena over complex networks. Therefore, their application to

ynamic incentive determination is expected to yield significant

esults. 

ppendix A. Proofs 

.1. Proof of Proposition 1 

We first note from (6) that 

˙ p 

˙ q 

]
= 

[
β1 A − δ1 I β2 A + δ2 I 

rβ1 A rβ2 A − δ2 I 

][
p 

q 

]
− H ( p, q ) 

= A 

[
p 

q 

]
− H ( p, q ) (A.1) 

here 

 ( p, q ) = 

[
( P + Q ) ( β1 Ap + β2 Aq ) 

r ( P + Q ) ( β1 Ap + β2 Aq ) 

]
≥ 0 (A.2) 

or p , q ≥ 0. Now, consider the Lyapunov candidate V ( t ) = 1 / 2 x T x,

 = 

[
p T q T 

]T 
. By (A.1) , we have 

˙ 
 = x T A x − x T H ≤ x T A x ≤ −ε‖ x ‖ 

2 

here the first inequality follows from H(p, q ) ≥ 0 and the

act that x = [ p T q T ] T is trapped in the positive compact set

0, 1] 2 N . 
Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al.,
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.2. Proof of Proposition 2 

If λ is an eigenvalue of A , then A 

[
u 

v 

]
= λ

[
u 

v 

]
, with the corre-

ponding eigenvector 

[
u 

v 

]
∈ R 

2 N×1 . Upon (8) , we have 

( β1 A − δ1 I ) u + ( β2 A + δ2 I ) v = λu 

rβ1 Au + ( rβ2 A − δ2 I ) v = λv 
(A.3) 

ultiplying the first equality in (A.3) by r and subtracting the re-

ult from the second equality, it follows: 

 = 

λ + ( r + 1 ) δ2 

r ( δ1 + λ) 
v (A.4) 

nserting (A.4) in the second of (A.3) , we get 

( γ A − δ2 I ) v = λv (A.5) 

ith γ = 

(β1 + rβ2 ) λ+(r+1) β1 δ2 + rδ1 β2 
δ1 + λ . Dividing both sides of (A.5) by

it follows that λ
γ is an eigenvalue of A − δ2 I. Recall that λ(A −

δ2 
γ I) = λ(A ) − δ2 

γ . Then, dividing (A.5) by γ yields λ(A ) − δ2 
γ =

λ(A ) 
γ . On inserting γ as defined after Eq. (A.5) , we conclude the

ollowing second order algebraic equation for λ(A ) : 

λ2 ( A ) + ( a + b ) λ( A ) + ab − c = 0 (A.6) 

here a = δ1 − β1 λ( A ) , b = δ2 − rβ2 λ( A ) , and c = rβ1 [ δ2 +
2 λ(A )] λ(A ) . The solution of (A.6) is given by (9) . 

.3. Proof of Theorem 1 

With Inequality (7) , it is sufficient to show that all eigenvalues

f A are negative. Of 2 N eigenvalues computed by (9) , N eigen-

alues are always negative. The remaining N eigenvalues become

egative if 

 

δ1 + δ2 − ( β1 + rβ2 ) λ( A ) ] 
2 

> [ ( δ1 − δ2 ) − ( β1 − rβ2 ) λ( A ) ] 
2 + 4 rβ1 [ δ2 + β2 λ( A ) ] λ( A ) 

(A.7) 

y canceling common terms in (A.7) , we get 

1 δ2 > ( 1 + r ) β1 δ2 λ( A ) + rβ2 δ1 λ( A ) 

hich can be divided by δ1 δ2 λ( A ) to yield 

( r + 1 ) 
β1 

δ1 
+ r β2 

δ2 
< 

1 
λ( A ) 

(A.8) 

ow if (A.8) is satisfied for the maximum eigenvalue of A , we can

e sure that it is satisfied for all other eigenvalues. 

.4. Proof of Lemma 1 

Suppose there exists a node j in the neighbor of node i with

onzero owner probability, so that a i j = 1 and p̄ j > 0 . Then, ex-

mining the i th row of (15) , it is observed that p̄ i > 0 and by

14) q̄ i > 0 . This procedure can be repeated for the nodes in the

eighbor of i , and so on. Hence, if the contact network is connected

nd at least one of the agents have nonzero owner (or seller) prob-

bility, then p̄ , q̄ > 0 for all i ∈ { 1 , . . . , N} . 
i i 
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A.5. Proof of Lemma 2 

We note by (15) and the first of (16) that [ 
β1 
δ1 

(r + 1) +
r 
β2 
δ2 

] −1 p̄ � A ̄p . From (12) , we have p̄ � R 0 
λ1 (A ) 

A ̄p . Then, the in-

ner product of both sides of this inequality by p̄ , with us-

ing the fact that p̄ T A ̄p ≤ λ1 (A ) ‖ ̄p ‖ 2 , indicates ‖ ̄p ‖ 2 < 

R 0 
λ1 (A ) 

p̄ T A ̄p ≤
R 0 ‖ ̄p ‖ 2 , which proves the lemma. 

A.6. Proof of Lemma 3 

The proof is based on the approach utilized in the proof

by Mei et al. (2017 , Theorem 4.3). We first investigate the ex-

istence problem. Consider the monotonically-increasing function

f (y ) = 

y 
1+ ay for y ∈ R ≥0 . For vector variables y ∈ R 

N 
≥0 , let F (y ) =

( f (y 1 ) , . . . , f (y N )) . Observe that p̄ is an equilibrium if and only

if F ( 
R 0 
λ1 

A ̄p ) = p̄ . That is, p̄ is an equilibrium if and only if it

is a fixed point of F , where F( ̄p ) = F ( 
R 0 
λ1 

A ̄p ) . It is noted that

F ( 
R 0 
λ1 

Ay ) � F ( 
R 0 
λ1 

Az) when y � z ≥ 0 . This is due to the facts that

f is monotonically increasing and also the contacting graph is

connected so that Ay � Az . Moreover, for any σ > 1 and y > 0,

we have f ( σy ) ≥ y if and only if ay ≤ 1 − 1 /σ . Now, consider

the sequence { y (k ) } k ∈ N ⊂ R 

N by y (k + 1) = F(y (k )) = F ( 
R 0 
λ1 

Ay (k )) .

Let u 1 be the eigenvector of A corresponding to the largest

eigenvalue λ1 , so Au 1 = λ1 u 1 , and suppose y (0) ≥ 0 is a scalar

multiple of u 1 with a max i y i (0) ≤ 1 − 1 / R 0 . Then, F ( 
R 0 
λ1 

Ay (0)) i =
F (R 0 y i (0)) ≥ y i (0) . This implies y (1) ≥ y (0), which in turn shows

y (2) = F ( 
R 0 
λ1 

Ay (1)) ≥ F ( 
R 0 
λ1 

Ay (0)) = y (1) , where the inequality re-

sults since f is monotonically increasing. By induction, y (k + 1) ≥
y (k ) . Therefore, the sequence { y ( k )} is monotonically nondecreas-

ing and entry-wise upper-bounded by 1 . Then, we conclude, by

the fundamental Bolzano–Weierstrass theorem, that the sequence

{ y ( k )} is convergent. Therefore, y ( k ) converges to some 0 � p̄ � 1

such that F ( 
R 0 
λ1 

A ̄p ) = p̄ . 

We next show the uniqueness of the endemic equilibrium.

To do so, assume, by contradiction, that p̄ and s̄ are two dis-

tinct equilibriums. We know from Lemma 1 that p̄ , ̄s � 0 . Let

α = min j { ̄s j / ̄p j } , and assume without loss of generality that α < 1.

Determine i as α = s̄ i / ̄p i . Then s̄ ≥ α p̄ and s̄ i = α p̄ i . We now

write [ 
F 

(R 0 

λ1 

A ̄s 

)
− s̄ 

] 
i 

= f 

(R 0 

λ1 
( A ̄s ) i 

)
− α p̄ i 

≥ f 

(
αR 0 

λ1 
( A ̄p ) i 

)
− α p̄ i 

> α f 

(R 0 

λ1 
( A ̄p ) i 

)
− α p̄ i 

= α
[ 

F 

(R 0 

λ1 

A ̄p 

)
− p̄ 

] 
i 

= 0 (A.9)

where to write the two inequality relations we have considered

the facts that f is monotonically increasing, the contacting graph

is connected, and 0 < α < 1, and the last equality results because

p̄ is an equilibrium. In fact, in the second inequality we have

considered f ( αy ) > αf ( y ), since αy 
(1+ aαy ) 

> 

αy 
(1+ ay ) 

, for 0 < α < 1 and

y ∈ R > 0 . Therefore, [ F ( 
R 0 
λ1 

A ̄s ) − s̄ ] i > 0 and this contradicts s̄ be-

ing an equilibrium. The uniqueness of the endemic equilibrium is

readily a result of monotonically-increasing function f . In fact, any

monotonically-increasing function f ( x ), with f (0) = 0 , can intersect

the line y = x at most at one nonzero point. 
Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al.,
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.7. Proof of Theorem 2 

We follow the procedure utilized in the proof by (Khanafer

t al., 2016, Theorem 2) , motivated by the properties of positive

ystems concept ( Bullo, 2018; Fall et al., 2007; Farina & Rinaldi,

011; Mei et al., 2017 ). We first write the model (6) in the

ollowing form: 

˙ x = [ −D + ( I − diag ( Jx ) ) B ] x (A.10)

here x = 

[
p 

q 

]
, −D = 

[
−δ1 I δ2 I 

0 −δ2 I 

]
, B = 

[
β1 A β2 A 

rβ1 A rβ2 A 

]
,

 = 

[
I I 

I I 

]
. So, the equilibrium point x̄ = 

[
p̄ T q̄ T 

]T 
satisfies 

 

−D + ( I − diag ( J ̄x ) ) B ] ̄x = 0 (A.11)

onsider the error function X = x − x̄ , and note by (A.10) and

A.11) that 

˙ 
 = [ −D + ( I − diag ( J ̄x ) ) B ] X − diag ( Bx ) JX (A.12)

onsider the matrix �( ̄x ) = −D + ( I − diag ( J ̄x ) ) B . We note that

( ̄x ) is a Metzler matrix since its off-diagonal entries are non-

egative; B ( i , j ) ≥ 0, ∀ i � = j . In addition, since the underlying graph

s connected, �( ̄x ) is also irreducible, i.e. there exists no permuta-

ion matrix T such that T T �( ̄x ) T is block triangular (note that we

an check a matrix M n × n is irreducible by verifying that for all par-

itions {I, J } of the index set { 1 , . . . , n } there exist i ∈ I and j ∈ J 

uch that M ij � = 0 ( Bullo, 2018 )). Eq. (A.11) indicates that, for R 0 >

 , there exists the endemic equilibrium x̄ � 0 such that �( ̄x ) ̄x = 0 .

ince x̄ is strictly positive, the Perron–Frobenius theorem for Met-

ler irreducible matrices ( Farina and Rinaldi, 2011 , Theorem 17)

hows that μ( �( ̄x ) ) = 0 , where the stability modulus μ(.) denotes

he largest real part in the eigenvalue set of the corresponding ma-

rix. Then, it follows from (Khanafer et al., 2016, Lemma A.1) that

here exists a positive diagonal matrix K such that �( ̄x ) 
T K + K�( ̄x )

s negative semidefinite. Consider the Lyapunov function V ( X ) =
 

T KX . Then, the time derivative of V ( X ) along (A.12) becomes 

˙ 
 = X 

T 
[
�( ̄x ) 

T K + K�( ̄x ) 
]
X − 2 X 

T K diag ( Bx ) JX 

≤ −2 X 

T K diag ( Bx ) JX ≤ 0 (A.13)

here the first inequality results because �( ̄x ) 
T K + K�( ̄x ) is

egative semidefinite, and the second inequality is due to the

act that the matrix K diag( Bx ) J is positive semidefinite. In fact,

e note that K diag( Bx ) is diagonal with positive diagonal entries

or x � 0, and that, for any positive definite diagonal matrix

 = diag ( [ M 1 , . . . , M 2 N ] ) , the matrix MJ is positive semidefinite

ith N eigenvalues identically zero and the remaining N eigen-

alues λi = M i + M i + N . Next, following the same procedure in the

roof by Khanafer et al. (2016 , Theorem 2), it can be shown that

 

T K diag ( Bx ) JX = 0 if and only if X = 0 , or x = x̄ . Therefore, the

symptotic stability of the endemic equilibrium follows from the

aSalle’s invariant set principle. 

.8. Proof of Lemma 4 

We note that A given by (28) and W are Metzler. In addition,

is Metzler stable, with the repeated eigenvalues {−δ1 , −δ2 } < 0 .

herefore, A = � + W is a regular splitting of A . The proof accord-

ngly follows from Fall et al. (2007 , Proposition 2.1). 
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.9. Proof of Theorem 3 

We examine the condition ρ
(
−W �−1 

)
< 1 . Consider the

nverse matrix 

−1 = 

⎡ 

⎣ 

− 1 

δ1 

I − 1 

δ1 

I 

0 − 1 

δ2 

I 

⎤ 

⎦ . 

ote that �−1 � = I. We have, 

W �−1 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

β1 

δ1 

A 

(
β1 

δ1 

+ 

β2 

δ2 

)
A 

β1 

δ1 

RA 

(
β1 

δ1 

+ 

β2 

δ2 

)
RA 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 

f the 2 N eigenvalues of −W �−1 , N eigenvalues are identically

ero, since the N last rows are scalar multiples of the N first rows.

he eigenvalue problem for the above matrix is written as 
 

 

 

 

 

 

 

 

 

β1 

δ1 

Au + 

(
β1 

δ1 

+ 

β2 

δ2 

)
A v = λu 

β1 

δ1 

RAu + 

(
β1 

δ1 

+ 

β2 

δ2 

)
RA v = λv 

(A.14) 

ith λ and 

[
u T v T 

]T 
the eigenvalue and the corresponding eigen-

ector of −W �−1 , respectively. Summing the two equalities in

A.14) gives 

β1 

δ1 
( R + I ) + 

β2 

δ2 

R 

]
A ( u + v ) + 

β2 

δ2 

A ( v − Ru ) = λ( u + v ) . 

ultiplying the first equation of (A.14) by R and subtracting from

he second one, considering A is symmetric and R diagonal, we get

 − Ru = 0 for λ � = 0. Therefore, the above equation yields 

β1 

δ1 
( R + I ) + 

β2 

δ2 

R 

]
A ( u + v ) = λ( u + v ) , 

r R A ( u + v ) = λ( u + v ) . This means, the nonzero eigenvalues

f −W �−1 are the same as the eigenvalues of R A . Hence,(
−W �−1 

)
< 1 is equivalent to ρ( R A ) < 1 , or by Perron–

robenius theorem, to λ1 ( R A ) < 1 . 

.10. Proof of Lemma 7 

We first rewrite the second equation of (25) as 

˙ 
 = r a v e ( I − P − Q ) ( β1 Ap + β2 Aq ) − δ2 q 

+ 

˜ R ( I − P − Q ) ( β1 Ap + β2 Aq ) 

et H̄ ≥ 0 be defined with replacing r = r a v e in (A.2) . Then, (25) is

ritten as 

˙ 
 = Ā x − H̄ ( p, q ) + K ( p, q ) 

here 

 ( p, q ) = 

[
0 

˜ R ( I − P − Q ) ( β1 Ap + β2 Aq ) 

]

ince r a v e satisfies (A.8) , we know using Proposition 1 and

heorem 1 that λ1 

(
Ā 

)
≤ −ε. Consider the Lyapunov candidate

 ( t ) = 1 / 2 x T x : 

˙ V = x T Ā x + x T 
(
−H̄ + K 

)
≤ −ε‖ x ‖ 

2 + x T K 
Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al.,
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he indefinite term x T K is upper-bounded as 

 

T K ( p, q ) = q T ˜ R ( I − P − Q ) ( β1 Ap + β2 Aq ) 

≤ ‖ q ‖‖ ̃

 R ‖‖ ( I − P − Q ) ‖ ( β1 ‖ A ‖‖ p‖ + β2 ‖ A ‖‖ q ‖ ) 

≤ ‖ q ‖ ̃

 r max λ1 ( A ) ( β1 ‖ p‖ + β2 ‖ q ‖ ) 

≤ ˜ r max λ1 ( A ) β2 ‖ q ‖ ( ‖ p‖ + ‖ q ‖ ) 

≤ ˜ r max λ1 ( A ) β2 ‖ x ‖ ( ‖ x ‖ + ‖ x ‖ ) 

= 2 ̃

 r max λ1 ( A ) β2 ‖ x ‖ 

2 

here to write the third inequality, we considered β1 < β2 .

ence, 

˙ 
 ≤ −( ε − 2 ̃

 r max λ1 ( A ) β2 ) ‖ x ‖ 

2 

aving ˜ r max < ε/ 2 β2 λ1 ( A ) renders ˙ V negative definite. 

ppendix B. Mean field approximation of BOB model 

To see how the N -intertwined model (1) is derived as a mean

eld approximation of the exact Markov process, let, for each node

 ∈ { 1 , . . . , N} , X i : { B , O } be a random variable, and X t 
i 

the value of

 i at time t . The epidemic spread dynamics of BOB is then modeled

s the following continuous-time Markov process: 

r 
(
X 

t+�t 
i 

= O | X 

t 
i = B, X 

t 
)

= β1 �t Y t i + o ( �t ) 

r 
(
X 

t+�t 
i 

= B | X 

t 
i = O, X 

t 
)

= δ1 �t + o ( �t ) (B.1) 

here i ∈ { 1 , . . . , N} , Y t 
i 

�= 

∑ 

j∈N i a i j 1 { X t 
j 
= O } , with 1 {X } the indicator

unction. In (B.1) , Pr(.) denotes probability, X 

t �= { X t 
i 
, i = 1 , . . . , N} is

he joint state of the network, and �t is a time step. Now, the

ean field approximation (1) is obtained as explained as follows.

y taking expectation of (B.1) , the exact Markovian dynamics of the

ystem is obtained where the evolution of the marginal informa-

ion of each state depends on the evolution of pairwise joint prob-

bility of combination of states that itself depends on the higher

rder joint probabilities and so forth; therefore, the size of the

tate space increases exponentially. The mean-field closure approx-

mation estimates the marginal probabilities using only marginal

nformation and thus prevents the explosion of the state-space.

sing this mean field approximation procedure, it is possible to

xpress the transition probabilities in terms of the correspond-

ng expected values. Specifically, the term 1 { X t 
j 
= O } is replaced with

 [1 { X t 
j 
= O } ] , where E[.] denotes the expected value. Then, using the

act that p i and b i are not independent, since b i + p i = 1 , we obtain

he N -intertwined Eq. (1) . 

ppendix C. Networks with small-world effects 

To illustrate that our results remain unaffected with varying

he network type and that they also well apply to networks with

mall-world effects ( Newman, 2018 ), we examine the heteroge-

eous optimal incentive distribution for a Watts–Strogatz (WS)

etwork with 10 0 0 nodes. All other conditions are similar to those

onsidered for Fig. 12 , to minimize the effect of parameters other

han the network type. We also admit an spectral radius λ1 (A ) =
4 . 30 6 6 for WS network, which was achieved with an average de-

ree of 14 and rewiring probability 0.5 in a WS network with 10 0 0

odes. Hence, the spectral radius for WS network is near to that of

R network in Fig. 12 with λ1 (A ) = 14 . 9380 . The results are seen

n Fig. C.14 . A comparison of Figs. 12 and C.14 reveals that results

re qualitatively unchanged. 
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Fig. C14. Optimal incentives versus eigenvector centrality for a WS network of 10 0 0 nodes and average degree 14 when (a) c = 100 , (b) c = 250 , (c) c = 500 , (d) c = 675 , 

(e) c = 750 , (f) c = 1200 , (g) c = 1500 , (h) c = 20 0 0 , (i) the total incentive is not limited ( c = ∞ ) . 
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