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In viral marketing campaigns, incentivized consumers can act as sales agents by sharing information. In
this study, we investigate the problem of incentive rate determination over a network of consumers to
maximize the profit of a single good by a monopolist. For this purpose, we develop an epidemic spread-
ing model to explore the dynamics of a viral marketing campaign under network externalities and in-
centivized individuals. We will examine two cases of homogeneous and heterogeneous incentive rates. In
each case, we derive an N-intertwined dynamics model and obtain the existence and stability conditions
of a trade-free or an endemic equilibrium. By treating the incentive as a control parameter, we investigate
the problem of maximizing the monopolist’s profit by formulating two nonlinear programming models.
In the case of homogeneous incentive rates, results show that the optimal incentive is determined by
devising a balance between the consumers’ states in the Markov process. In the heterogeneous case, it is
observed that despite the existence of a strong correlation with different centrality measures, the optimal
incentive allocation cannot be solely determined by centrality measures.
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1. Introduction

Social interactions influence product adoptions and purchas-
ing behavior of consumers (Ameri, Honka, & Xie, 2019; Goel,
Anderson, Hofman, & Watts, 2015). It has been shown that peer
influence can increase the likelihood of buying a product by more
than 60% (Bapna & Umyarov, 2015) and encourage further cus-
tomer referrals (Biyalogorsky, Gerstner, & Libai, 2001). According
to one estimation, between 20% and 50% of all purchasing choices
are encouraged by personal recommendations (Meyners, Barrot,
Becker, & Bodapati, 2017). Businesses have leveraged the power of
influence because there is a synergy between the growing number
of products and services that can be purchased online and the
number of users relying on social media as their primary source of
product and service information and reviews. The essence of these
types of marketing strategies, which is collectively called viral
marketing, is to promote a discussion around a product or service
by disseminating information through a network of customers’ so-
cial interactions (Bampo, Ewing, Mather, Stewart, & Wallace, 2008;
Hinz, Skiera, Barrot, & Becker, 2011). Viral marketing campaigns
benefit from targeted communication, speed of diffusion, and a
high degree of integrity (Bampo et al., 2008).
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The success of a viral marketing campaign is commonly mea-
sured by the number of potential consumers it reaches and the
amount of sales it generates (Ajorlou, Jadbabaie, & Kakhbod, 2016;
Hu, Milner, & Wu, 2015). Thus, a successful viral marketing cam-
paign depends on the ability to share information effectively. The
ability to share information in a network depends on the con-
tent being shared (Berger & Milkman, 2010), the structure of
the social network (Bampo et al., 2008), the consumers’ charac-
teristics (Pescher, Reichhart, & Spann, 2014), and seeding strat-
egy (Hinz et al., 2011). For instance, it has been shown that
compared to small-world networks, scale-free networks offer a
more effective medium for spreading processes of viral market-
ing campaigns. Furthermore, it is observed that a larger num-
ber of initializing seeds (although at the expense of profitabil-
ity) increases the number of individuals reached in a diffusion
process.

Marketers usually engineer the dispersion of information in
a social network through carefully selecting a set of initial con-
sumers, referred to as seeds, to set the viral marketing campaign
in motion or to incentivize information sharing by providing intrin-
sic or extrinsic rewards (Van der Lans, Van Bruggen, Eliashberg, &
Wierenga, 2010). In network science literature, controlling the dif-
fusion of information in a network is usually studied under the
topic of influence maximization (Hinz et al., 2011; Kempe, Klein-
berg, & Tardos, 2003; Mandel & Venel, 2020; Taninmis, Aras, &
Altinel, 2019), where the goal is to maximize the number of poten-
tial consumers that are exposed to a viral marketing or information
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propagation campaign. A large number of studies in this field are
dedicated to identifying a subset of individuals whose network in-
fluence can maximize the outreach of information. This problem,
usually known as target set selection (TSS), is dependent on the
process by which information is diffused in a network (Raghavan
& Zhang, 2019) and is closely related to pricing problems in net-
works where the objective is to maximize profitability under social
influence and network externalities.

Information propagation over complex networks is generally a
stochastic phenomenon that is dynamically considered as an epi-
demic spreading process. The stochastic nature complicates the
study of the dynamic behavior of epidemic spreading processes
on network graphs, even for simple scenarios (Kiss, Miller, Si-
mon et al., 2017; Newman, 2018). On the other hand, real net-
works usually consist of a large body of agents, which renders
the problem of analyzing information diffusion intractable (Sahneh,
Chowdhury, Brase, & Scoglio, 2014; Van Mieghem, Omic, & Kooij,
2009a). To simplify the problem, various works consider a deter-
ministic approximation of the stochastic dynamics using the mean
field epidemic models (Sahneh, Scoglio, & Van Mieghem, 2013b;
Van Mieghem et al., 2009a), where the size of the problem is
reduced dramatically, although at the expense of exactness. The
mean approximation strategy has proven successful in deducing
significant structural results, and analyzing information propaga-
tion dynamics over complex networks (Kiss et al., 2017; Newman,
2018; Nowzari, Preciado, & Pappas, 2016).

Most of the influence maximization literature, and specifically
TSS, is structured around the objective of maximizing the number
of individuals exposed to information or the survival duration of a
viral process (Stewart, Ewing, & Mather, 2004). In a marketing set-
ting, in addition to the sheer number of individuals, the amount of
profit generated by a campaign (or conversion rate) is also impor-
tant. In this regard, profit seems to be a more natural objective
function for controlling the dynamics of a viral marketing cam-
paign. Furthermore, there are very few studies that investigate the
incentivizing strategies in which an individual is rewarded based
on the amount of sales she generates through sharing information
(Ajorlou & Jadbabaie, 2019). In this setting, individuals act as sales
agents who can benefit from an incentive, usually materialized in
the form of monetary payments or commission rates, if they can
utilize their influence over their direct neighbors on a social net-
work and generate sales.

This study contributes to the body of literature involving the in-
fluence maximization in viral marketing. In particular, the research
presented in this article explores maximizing profit as the objec-
tive function while utilizing an incentive-based influence schema.
For this problem, henceforth referred to as incentive rate deter-
mination (IRD), we assumed that the viral marketing campaign is
conducted by a monopolist that is interested in promoting a sin-
gle good. We consider an incentivizing schema similar to the one
proposed by Lobel, Sadler, and Varshney (2016), in which a con-
sumer receives a link to share with their connections upon buy-
ing the product. Every purchase made through the link generates
a monetary reward for the customer sharing it. Additionally, the
optimization schema developed incorporates an incentive rate as
a control parameter and utilizes dynamical systems methodologies
to extract results related to the dynamic epidemic phenomena that
take place over social networks.

IRD problem does not assume a constrained set of individuals
to start off a diffusion process. This means each individual is re-
warded upon generating sales. In addition to the information dif-
fusion process, IRD is dependent on the behavioral characteristics
of individuals when offered an incentive to act as sales agents.
Naturally, one expects to observe an increasing likelihood of will-
ingness to share information by individuals as the sales commis-
sion increases. On the other hand, increasing sales commission can

be detrimental to the profit margins of a business that aims at
maximizing its marketing campaign outreach. Similarly, decreasing
sales commissions can hurt the profit through a reduced size of
consumers’ population exposed to the marketing campaign. Thus,
there is a tradeoff between influence maximization through incen-
tivizing potential consumers and optimizing profit.

In this study, a monopolist is interested in targeting a network
of consumers, represented as a graph. The nodes and links of the
graph represent the individual consumers and their relations ac-
cordingly. Furthermore, it is assumed that each individual can be
either a buyer (“B”), an owner (“0”), or a seller (“S”). A buyer is a
potential consumer who may purchase the advertised merchandise
in the marketing campaign. An owner is a consumer who owns the
product but does not share information and, thus, does not func-
tion as a sales agent. A seller is a product owner that shares infor-
mation actively and may generate sales by introducing the prod-
uct or service to her contacts within the social network. The mo-
nopolist generates revenue every time a potential buyer turns into
an owner or a seller. In this regard, sellers take the vital function
of promoting the product and facilitate the process of the buyer
to owner/seller conversion. Thus, the monopolist may want to en-
courage a larger body of the consumers to become sellers by mon-
etarily incentivizing them. A more generous incentive schema can
create more sellers. However, over-incentivization can hurt the mo-
nopolist’s profit. On the other hand, under-incentivization can dis-
courage consumers from promoting the product and restrict the
sales and hence, the profit. Thus, the monopolist has to strike a
balance between the extra sales generated by reaching more con-
sumers and the cost of outreach through incentivization.

This study takes advantage of a continuous-time Markov pro-
cess to model the transition of consumers between different roles
of buyers, owners, and sellers based on the individuals’ interac-
tions in the network, and the subsequent monopolist’s profit. For
this purpose, an N-intertwined model (Van Mieghem et al., 2009a)
that is the mean field approximation of the considered continuous-
time Markov process, is utilized. Compared to the exact Markov
model, the N-intertwined model makes only one approximation of
a mean-field kind that results in upper bounding the exact model
for finite network size N (Mieghem, 2011). Two general cases of
homogeneous and heterogeneous incentive rates are investigated.
In each case, the optimum incentive rate (i.e., the rate which max-
imizes the profit) and the conditions under which the trade-free
and endemic equilibrium can exist and the corresponding stabil-
ity conditions are identified. The trade-free equilibrium is the triv-
ial equilibrium point where the individuals will steadily remain
in Buyer state after a transient time and there will be no trad-
ing, while in endemic equilibrium state transitions between the
states B, O and S occur continuously. By deriving explicit expres-
sion for the reproduction number! in each case, we show that the
two determining elements of the sales propagation process are the
amount of the incentive given and the spectral radius of the net-
work (i.e., the largest eigenvalue of network’s adjacency matrix).
This study sheds light on some characteristics of optimal incen-
tivization policies under homogenous and heterogenous incentive
quantities, which can help with executing effective viral marketing
campaigns.

The remaining sections of the paper are organized in
the following manner. Section 2 briefly reviews the exist-
ing literature. Section 3 demonstrates the developed model. In

T The basic reproduction number, a key concept in epidemiology, is defined as
the expected number of new cases of infection caused by a typical infected individ-
ual in a population of susceptibles (Fall, Iggidr, Sallet, & Tewa, 2007). In the context
of this study, the reproduction number translates into the expected number of in-
dividuals that become an owner or seller of the product as a result of neighboring
a consumer that owns or promotes the product.
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Section 4, we study the existence and stability conditions of
trade-free and endemic equilibrium states in the homogeneous
incentive rate case. In Section 5, we introduce the profit func-
tion and investigate its properties. In addition, we define a non-
linear programming model that determines the optimal incentive
that results in the maximum profit for homogeneous rates. The
next two sections examine the case of heterogeneous incentives.
In Section 6, we introduce the heterogeneous IRD model, and
characterize the trade-free and endemic equilibria properties. In
Section 7, we examine the problem of profit maximization in het-
erogeneous cases. In Section 8, we provide some managerial impli-
cations. Finally, Section 9 concludes the study.

2. Literature review

The effect of network externalities and seeding policies on viral
marketing strategies and TSS problems are studied extensively
in the literature (Ajorlou & Jadbabaie, 2019; Arthur, Motwani,
Sharma, & Xu, 2009; Bloch & Quérou, 2013; Candogan, Bimpikis, &
Ozdaglar, 2012; Chen et al., 2011; Cohen & Harsha, 2019; Hartline,
Mirrokni, & Sundararajan, 2008). As a result, multiple influence
maximization schemas are suggested. For example, inspired by
the policy of influence maximization (Domingos & Richardson,
2001; Kempe et al., 2003), influence-and-exploit seeding strategies
initially influence the population by providing free products to a
chosen set of buyers. Then revenue is realized from the remaining
potential consumers using a greedy pricing strategy (Arthur et al.,
2009; Hartline et al., 2008). Other research found in the literature
emphasizes the role of network centrality measures. These studies
recognize that optimal monopoly pricing in social networks is
mainly affected by the set of central or influential agents (Bloch
& Quérou, 2013; Candogan et al.,, 2012; Cohen & Harsha, 2019;
Hinz et al,, 2011). These influential agents may be offered either
favorable prices, whenever they are targeted to influence other
agents or unfavorable prices, whenever they are targeted for sale
(Carroni, Pin, & Righi, 2019). The optimal prices in social networks
can be time-varying. Indeed, a dynamic pricing strategy (Ajorlou
et al., 2016) reveals the conditions when the optimal prices are
neither monotone nor reach a steady state; instead, they fluctuate.

While similar in nature and objectives, IRD differs from TSS in
the allocation of resources (i.e., incentive) to individuals and the
structure of its incentive system. In IRD, one concern is how to
distribute the available incentive throughout a given contact net-
work so that the profit is maximized. This issue is best answered
in the framework of optimal distribution of resources (Preciado,
Zargham, Enyioha, Jadbabaie, & Pappas, 2013; 2014; Shakeri, Sah-
neh, Scoglio, Poggi-Corradini, & Preciado, 2015; Watkins, Nowzari,
& Pappas, 2017; 2018). Optimization strategies are proven more ef-
fective, in particular, when individuals in the network show differ-
ent levels of reaction to an epidemic or the spread of information.
To be solved more efficiently, these problems are usually reformu-
lated as convex, semidefinite, or quasiconvex optimization prob-
lems known as geometric programs (Boyd, Kim, Vandenberghe, &
Hassibi, 2007). The solutions of the optimization problems yield
nontrivial patterns that cannot, in general, be described using sim-
ple heuristics based on common network centrality measures.

Some related studies are concerned with a general representa-
tion of contact networks when investigating the general epidemic
phenomena and optimal resource allocation problem. In these
studies, a contact network is usually represented in a multilayer
setting where the agents interact through different layers, each
modeled by a separate graph (Sahneh & Scoglio, 2013; Sahneh,
Scoglio, & Chowdhury, 2013a; Sahneh et al., 2013b; Shakeri et al.,
2015; Xia et al., 2019). For example, the spontaneous behavioral
patterns of individuals in response to the progress of an epidemic,
which have a significant impact on how the infection spreads

(Shakeri et al., 2015), form through an information network layer
that is interconnected with, but different from, the physical contact
network layer (Sahneh et al., 2014; Sahneh & Scoglio, 2012). This
interconnection between different network layers is interwoven.
For example, the spectral centrality of the nodes and edges in
the physical contact network determines the optimal information
dissemination network (Sahneh & Scoglio, 2012).

In this study, we present a deterministic approximation of
stochastic viral marketing (i.e., an epidemic) dynamics using mean
field theory. The deterministic models have offered remarkable an-
alytical results for nonlinear characterization of equilibria, stability
properties, and threshold conditions in epidemic models (Hethcote,
2000). In Fall et al. (2007), the Lyapunov techniques (Khalil, 2014)
and Metzler matrix theory (Bullo, 2019) are utilized to establish
existence, uniqueness, and stability of the equilibrium points be-
low and above the epidemic threshold over networks. The epi-
demic goes extinct by converging to the zero-state epidemic-free
equilibrium below the threshold while propagating by converging
to a positive endemic equilibrium above the threshold. These re-
sults are extended to epidemic dynamics over directed graphs by
utilizing the positive system theory (Khanafer, Basar, & Gharesifard,
2016). A further extension of primary results is found in (Ogura
& Preciado, 2018) where, in search of tighter epidemic thresholds,
a deterministic network with second-order mean field approxima-
tion is analyzed. A review of mathematical analysis of determin-
istic networked epidemic models is found in Mei, Mohagheghi,
Zampieri, and Bullo (2017).

Early epidemic models were based on the assumption that in-
dividuals in the population have the same chances of interact-
ing with each other (Hethcote, 2000). This strategy is suitable
for a well-mixed homogenous population and overlooks the inter-
nal structure of the network over which the propagation occurs
(Sahneh & Scoglio, 2012). To model the local dynamics at each
node, and to discover how interaction among population members
can influence spreading dynamics, individual-based epidemic mod-
els were proposed where a graph represents the contact network.
In a modern mathematical language, the influence of the network
characteristics on the information spread can be demonstrated
through an N-intertwined Markov chain model (Van Mieghem
et al, 2009a). The spectral radius of the network is found as
one determining factor in the epidemiological spreading so that
for a small spectral radius, an initial infection ceases to spread,
while even tiny infections diffuse for spectral radius larger than a
threshold.

Epidemic dynamics has proven effective in studying various
phenomena related to the spread process in networks. Studies in
epidemic dynamics range from the spread of infectious diseases
to the spread of information, rumor, cultural norms, computer
viruses, social behavior, and disasters (Hu & Sheng, 2015; Kiss
et al., 2017; Urena, Kou, Dong, Chiclana, & Herrera-Viedma, 2019;
Van Mieghem et al., 2009a; Yang, Li, & Giua, 2020; Yu et al., 2015).
Although the underlying mechanisms of each phenomenon are
different, their mathematical description often leads to similar
constitutive equations that can be conceptually modeled as a
contagion process based on classic epidemic models such as the
susceptible-infected-susceptible (SIS) and susceptible-infected-
recovered (SIR) models (Antulov-Fantulin, Lan¢i¢, Stefanci¢, & Sikic,
2013; Kiss et al., 2017). While network-related frameworks are
extensively utilized to study the viral marketing strategies and
influence maximization problems, to the best of our knowledge,
dynamic epidemic models are not considered in the context of
incentive rate determination. In this study, we examine the IRD
problem in a network of consumers to establish a new dynamic
model that is based on epidemic spreading dynamics. Our goal
is first to discover how the connection and interaction between
individuals who can be incentivized to behave as sales agents
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Fig. 1. BO model.

Fig. 2. BOSO model.

can affect the marketing of a product or service. Then, we will
investigate incentive control policies that can maximize the profit
by affecting the decision process of individuals.

3. Model development

The contact topology in this paper is considered as an undi-
rected generic graph G(V, £) of individuals where V denotes the
vertex set and £ denotes the edge set. Each node i € V is allowed
to be in one of the three states “B: buyer”, “O: owner”, and “S:
seller”. We denote the probability of i € V being in B as b; €[0,
1], in O as p;€0, 1], and in S as g; [0, 1]. In the remainder of
this section, first, we describe some initial possible models for the
spread of information and sales over networks. Then, we introduce
our Buyer-Seller-Owner-Buyer (BSOB) model.

3.1. Irreversible process

One straightforward approach to model a good’s sale under
network externalities is to assume an irreversible process in which
each individual is either in state B or O and a consumer stays
in state O after transitioning to it from state B. This dynamic is
similar in nature to a susceptible-infected (SI) model in epidemi-
ology and may perform reasonably for goods that are purchased
once and have negligible probability of being repurchased by
a consumer. The stochastic compartmental transition of a node
with Ng neighbors in owner state is depicted in Fig. 1. We call
this model as Buyer-Owner (BO) model. In BO model, the rate by
which a potential buyer becomes owner is 8, times the number
of an individual’s neighbors who are in owner state (i.e. Ng) where
B1 represents the network externality effect originated from
owners. Since BO models an irreversible process, it can be used
to estimate the survival duration of a good’s sales under network
externalities.

To accelerate the diffusion process, the irreversible BO model
may be extended to include the third compartment of seller,
called Buyer-Owner-Seller-Owner (BOSO). The individuals in seller
state receive an incentive to promote the good and encourage
their neighbors, who are in state B, to purchase the good. Com-
partmental transition of BOSO is shown in Fig. 2. Here, the rate
of a potential buyer becoming an owner is 8; times the number
of its owner neighbors, Np, plus B, times the number of its
seller neighbors, Ns. Here, 8, and B, represent the externality
effects originated from owners and sellers in a network. The
effect of incentive is modeled through a factor r that augments
the transition rate from state B to S. The factor §, is the rate of
transitioning from state S to O and corresponds with the suspen-
sion of the good’s promotion by an individual. We assume that

01

Fig. 3. BOB model.

Fig. 4. BSOB model.

sellers have higher impact on their neighbors compared to owners
(i.e. B2 > B1). Similar to the BO model, BOSO can be applied to a
sales survival estimation, in which some individuals are willing to
promote the good if incentivized.

3.2. Reversible process

To model a scenario in which a good can be consumed more
than once, BO and BOSO models need to be modified so that
an individual can transition back to a potential buyer state. The
BO model can be extended to a buyer-owner-buyer (BOB) model
that encompasses a transition from the state O to B with a rate
of §,. BOB model closely follows the well-known N-intertwined
Susceptible-Infected-Susceptible (SIS) model for epidemic spread
(Wang, Chakrabarti, Wang, & Faloutsos, 2003). The transition di-
agram of BOB model is shown in Fig. 3. In this model, a poten-
tial buyer becomes owner by an edge-based transition equal to 8,
times the number of its owner neighbors, and an owner returns to
the buyer state with the nodal transition rate §;. Using b; + p; = 1,
the N-intertwined equation is written as (see Appendix B):

pi=1=p)B1 Y ayp;—ip; (1)
Jj

where A = |q;j| € RN*N is the network adjacency matrix. Based on
model (1), the probability being owner, p;(t), will die out expo-
nentially if the spreading strength t 4 ‘3—1 satisfies T 2 f—: < ﬁ,
where p(A) is the spectral radius of the adjacency matrix. There-
fore, for the BOB model, the trading continues in steady state if

and only if (Wang et al., 2003)
B 1

= — > Tr= ——
&7 p@A)

If (2) is satisfied, the steady state values of the owner proba-
bilities, denoted by p; for the i-th individual, are the non-trivial
solution of the following set of equations:

P . pi
ng:aiij= 1_1- (3)

T

(2)

Di
3.3. Buyer-seller-owner-buyer model

In this study, we extend the BOB to an N-intertwined BSOB
model by augmenting a seller compartment to the transition dia-
gram (Fig. 4). Similar to the BOSO model, transitioning to the seller
state depends on an incentive rate r. In BSOB, a potential buyer be-
comes owner by B; times the number of its owner neighbors plus
B, times the number of its seller neighbors. An owner recovers
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back to the buyer state by the nodal transition of rate §;. Poten-
tial buyers who are aware of the incentive r, may be encouraged
to become seller, and in turn influence their neighbors to buy the
good. In this regard, a potential buyer will go to the seller state
with the rate it goes to the owner sate times r. The sellers then
go to the owner state by the nodal transition of rate §,. Since the
seller individuals affect their potential buyer neighbors actively, it
should be that 8, > 84, which indicates the sellers are more in-
fluential in persuading their neighbors than the owner individu-
als are. Naturally, an owner cannot become seller without buying
the good. Thus, there is no direct transition from the owner state
to the seller state. Furthermore, we assume that transition from
a seller individual to a potential buyer state is much slower than
other transitions. Hence, in our modeling setup, a seller never goes
back directly to the buyer state.

For each node ie{1,..., N}, let us define a random variable
X;i:{B, 0, S}, and denote X! the value of X; at time t. The epidemic
spread dynamics of BSOB is modeled as the following continuous-
time Markov process:

Pr(X{*2" = 0|X! = B,X") = B1 AtY! + B, AtZ + o(At)
Pr(X{HA0 = S|X{ = B, X") = rB1 AtY] + B AtZ} + o(At)
Pr(X{HA" = BIX! = 0,X") = 81 At + o(Al)

Pr(X/+At = OX! =S, X") = 8, At + o(Al) (4)
where ie{l....N}. Y[2Y¥, Gl pxizo)  and ZEY

aijl{x;:s], with 1;,, being the indicator function. In (4), Pr(.)

denotes probability, X' 4 {X{,i=1,...,N} is the joint state of the
network, and At is a time step. Using a proper mean field ap-
proximation, it is possible to express the transition probabilities in
terms of the corresponding expected values. Specifically, the terms
1{X§:O} and 1{x€:5} are, respectively, replaced with E[l{xjf,:o}] and

E[l{xjr_zs}], where E[.] denotes the expected value. Then, using the

fact that p;, q;, and b; are not independent, since b; + p; +q; =1,
we obtain the N-intertwined equation as:

=1-pi—q) (,31 Zaijpj + B2 Z%‘%’) —81pi + 82q;
j j
qi=r(1—pi—qi) (/31 > aipj+ B2 Zaiij) — 824 (5)
j j

Eq. (5) is written in vector form as

p=(I—-P—-Q)(B1Ap+ B2Aq) —81p+ b2q
g=r(I-P—-Q)(B1Ap+ B2Aq) — 82q (6)

where py.i =[p1.....pn]". Gnxt = [41. ... an]". Py = diag(p).
Qnxn = diag(q), and I is the identity matrix with appropriate di-
mension.

Remark 1. It can be easily verified that, the set [0, 1]2N is a com-
pact positively invariant set for system (6). In fact, it can be con-
cluded from (5) that starting from an initial condition p;, g; € [0, 1],
neither p; nor g; can become less than zero. This is because p; > 0
when p; =0 and ¢; > 0 when g; = 0. Moreover, taking s; = p; + g,
we have from (5) s;= (r+ 1)(1—s)(B1 X, a;pj + B2 X a;d;) —
81p;. This indicates s; < 0 when s; =1, for p;, q; > 0. Therefore, s;
can never exceed 1 when starting from an initial condition s; < 1.

Remark 2. From (6), by b; + p; + ¢; = 1, we note that
P =B(Bi1Ap + B2Aq) — 81p + 829
b=—(r+ 1)B(B1Ap + B2Aq) + 81p

with B = diag(b), by, = [b1,...,bN]T. For nonnegative states and
r>0, we observe that —b > 8;BAp — 81 p. The right hand side of
this inequality is nothing but the BOB dynamics demonstrated in
(1). In fact, denoting by () the states in the BOB model, it follows
that —b = p = B1BAP — 81 ., so that —b(t) > —B(t). Therefore, when
the two systems start from the same initial conditions, the de-
crease of Buyers in the BOB is slower than is in BSOB. This shows
that, the probability of remaining in Buyer state is smaller in BSOB
than is in BOB. In other words, compared to the BOB model, sellers
help to generate more sales.

4. Equilibrium states: homogeneous incentive values
4.1. Trade-free equilibrium

In this subsection, we investigate the stability of the trivial
equilibrium point [quT]T =0 of (6). In such conditions, the in-
dividuals will steadily remain in Buyer state after a transient time
and there will be no trading (i.e. no transition from B to S or O)
in steady state. The main outcomes of this subsection are as fol-
lows. First, by studying the spectrum of the model, we derive the
stability conditions for the zero state in Theorem 1. We then deter-
mine in Eq. (11) the minimum incentive required to destabilize the
trade-free equilibrium and establish active trading in steady state.
The minimum incentive is important as it determines a thresh-
old, above which individuals continue transitioning from state B
to states S or O and generate sale while below this threshold, no
sales will be generated after a certain amount of time elapsed. We
also determine an explicit expression for the reproduction number
in Eq. (12). Henceforth, A¢(.) will denote the largest eigenvalue of
corresponding matrix argument.

Proposition 1. Consider the N-intertwined BOSB model (5). Then if

MA)<—-€, €>0 (7)
where
A—841 A+ 8,1
A B1 1 B2 2 )
T,B]A T',BzA — 821

an initial condition [pT(0)q"(0)]T [0, 112N will converge to zero ex-

ponentially fast.
Proof of Proposition 1. See A1 O

Proposition 2. The spectrum of A is given in terms of spectrum of A
as

20(A) = —[81 + 8, — (B1 +TH)A(A)]
—8) — (B1 — TB)MA +4rBi[82 + B2A(A)IM(A)
(9)

where the notation A(.) denotes the eigenvalue of the corresponding
matrix, so that A = A(A). Therefore, for each eigenvalue of A we get
two eigenvalues for A, i.e., the total number of 2N eigenvalues for A.
Moreover, since the eigenvalues of the adjacency matrix A are all real,
since it is symmetric for undirected graphs, Eq. (9) indicates that the
eigenvalues of A are real as well.

+/1(51

Proof of Proposition 2. See A2 O

Theorem 1. The trivial equilibrium of the N-intertwined BOSB model
(5) is globally exponentially stable if and only if

(r+1)&+r&

PR (10)

Proof of Theorem 1. See A3 O
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To have an active trading (i.e. sales) in steady state, the trivial
equilibrium point should be unstable. By the assistance of (10), we
conclude that for trading to continue in steady state, the incentive
should be lower-bounded as r> r. where

(B B (B
“‘(&*82) (M(A) &) ()

The threshold r. is the minimum incentive required to make
steady profit in a viral marketing campaign. Below this threshold,
sales will eventually diminish while above this threshold, sales will
continuously exist as individuals are incentivized enough to pro-
mote the good and collect profit upon sales. Eq. (11) shows that
the incentive threshold rc is conversely related to A;(A), 81/81, and
B2185. Therefore, when the spectral radius A;(A) or the externality
effects B, and B, are small, larger incentives are required for ac-
tive trading. Moreover, smaller recovery rates §; and §, translate
to a smaller incentive threshold re.

Following the epidemiology literature, we can define the repro-
duction number R, as the expected number of new transitions
to O or S states caused by a typical individual in owner or seller
state within a population of potential buyers only. Many conven-
tional results have demonstrated the global stability of the trade-
free equilibrium when Ry < 1. By this convention, we conclude
from the stability condition in (10) that the basic reproduction for
the proposed BSOB is given as

Ro = [(r+ 1)3?] +r§jx1m) (12)

It is observed that, Ry is an increasing linear function of the
incentive r with slope (81/81 + B2/82)11(A). By setting r =0, we
reach the reproduction number B;/81A;(A) in the BOB model.
Therefore, in comparison to the BOB model, with the reproduction
number B1/51A;(A), we observe from (12) that the BSOB model
holds a larger reproduction number. This expedites the spread pro-
cess in the BSOB. Another consequence is that, the BSOB trade-free
equilibrium is stable in a narrower band of the parameters. That
is to say, compared to the BOB, the trade-free equilibrium in the
BSOB becomes unstable under weaker contact characteristics, i.e.
it is unstable in smaller 1{(A) and/or smaller 8;/§;. From a mar-
keting perspective and compared to a no-incentive scenario, this
means a viral marketing campaign that incentivizes individuals to
act as sales agents can facilitate sales generation in networks with
lower number of contacts between individuals.

4.2. Endemic equilibrium

In this subsection, we investigate the existence and stability
conditions of endemic equilibrium state where transitions between
the states B, O and S occur continuously. This means the network
externality effect is influential enough to keep the individuals mo-
tivated for changing states. The main results of this subsection are
found in Lemmas 1,3 and Theorem 2, where we show that for val-
ues of reproduction number greater than one, i.e. Rg > 1, there is
a unique endemic equilibrium that is strongly positive and glob-
ally asymptotically stable. We also suggest a convergent sequence
in (19) to calculate the endemic equilibrium.

The nontrivial equilibrium point [ QT]T is obtained by setting
in(6) p=q4=0:

(I=P—=Q)(B1AD + B2AG) — 81D+ 624 =0
r(I—P—Q)(B1AD + B2AG) — 8,4 =0 (13)
where P = diag(p) and Q = diag(q). Multiplying the first of (13) by
r and subtracting the result from the second equality, we have
r81 _

%" o

q=

Inserting (14) into the second of (13), we obtain the following non-
linear equation for p

B Bl [, i+ +D8 5],
|:6](r+1)+r82] p_|:1(r+1)82Pi|Ap (15)

Lemma 1. Any endemic equilibrium is strongly positive, [pT 7|7 >
0, where 0 is the zero vector. Therefore, in an equilibrium state, either
all elements of the vector [pT q7'|T are zero, or no element has a zero
value.

Proof of Lemma 1. See A4 O

Lemma 1 indicates that in an equilibrium state, either all indi-
viduals have nonzero probabilities of purchasing the good, or no
one purchases the good at all. Since p > 0, and so Ap>»> 0 for a
connected graph, Eqgs. (14) and (15) indicate that every endemic
equilibrium satisfies

(r+1)5;
T81 =+ (T+ 1)82 ’
T81
r81 —+ (r =+ 1)82

Therefore, any solution of (14) and (15) is smaller than 1, p,§ « 1,
where 1 is all ones vector. Moreover, in an irreversible process,
where §; =0, we have mex(r) =0, indicating a steady state in
which the probability of being a seller is zero. In such a steady
state, since transitioning to the seller compartment is possible only
from the potential buyer compartment, we can conclude that the
probability of being a potential buyer is zero as well. Thus, in an
irreversible process shown in Fig. 2, starting from a nonzero ini-
tial condition, all individuals will eventually wind up in the owner
state. As r in (16) goes to infinity, we have

pi < Iamax(r) =

>

di < Gmax (1) (16)

. - - A $ . = = A §
Mmoo Pi < Poo = 525, liMreoo §i < (oo = 555 (17)

that shows for extremely large incentive values, the only determin-
ing factors of the steady state bound are §; and 8,, which implies
a diminishing role of the underlying network structure as the in-
centive rate increases.

Lemma 2. The existence of any endemic equilibrium is subject to
Ro> 1.

Proof of Lemma 2. See A5 O

Using (12), the endemic equilibrium condition (15) may be re-
arranged as

-1
- . aRry - Ro -

= | diag( 1+ A A 18
p [ g( A p)} A p (18)
where a = % > 1. To reach (18), we have considered that

PAp = diag(Ap)p.
Lemma 3. There is a unique endemic equilibrium when Ry > 1.
Proof of Lemma 3. See A6. O

Remark 3. The proof of Lemma 3 in A.6 provides us with a conver-
gent sequence to calculate the endemic equilibrium. Indeed, under
the initial condition y(0) a scalar multiple of u;, with u; being the
eigenvector corresponding to A; and amax;y;(0) <1 —1/Rg, the
sequence {y(k)}reny € RV,

R
v+ 1) =F(2Ay(o)) (19)
where [F(y)]; = %"]yl a= % converges to p:

lim y(k) = p
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Fig. 5. (a) Individual, and (b) average, equilibrium states.

We can additionally relax the initial condition y(0) being a scalar
multiple of u; since we have already proved the endemic equi-
librium is unique. Hence, by starting from any initial condition
0£y(0)e[0, 1]V, it is expected the series (19) converges to p.

Theorem 2. Suppose that Rg > 1. Then the endemic equilibrium is
globally asymptotically stable.

Proof of Theorem 2. See A.7. O

Fig. 5 shows the equilibrium of the BOSB for different values
of incentive factor r in an Erdos-Renyi network with 1000 nodes
and the connection probability 0.0138 (A{(A) = 14.938). The nu-
merical values are 6; = 1,8, = .2, §; = 0.0175, B, = 0.0225. As it
can be observed, for incentive factors below r¢, only the trade-free
equilibrium is possible. After this critical incentive, the probabili-
ties of settling into owner and seller states increase monotonically
and for larger incentives r converge to values associated with (17),
while the probability of being a potential buyer decreases mono-
tonically for r>r.. Fig. 6 presents the time response of BSOB for
r=2 > r. where GEMF simulator (Sahneh, Vajdi, Shakeri, Fan, &
Scoglio, 2017) is used to track the behavior of the stochastic model
(4) over time. As it can be observed in the example of Fig. 6, mean
field closely follows the Markov process. It is noteworthy that in
some instances, such as the ones investigated by Van Mieghem,
Omic, and Kooij (2009b), the mean filed approximation error may
Srow.

5. Maximizing profit: homogeneous incentive values
5.1. Profit function: evidence of existence of an optimal incentive r*

Every time an individual transitions to the state O or S, a certain
amount of profit is generated. The sales profit generated during a
time period T can be defined as

[1(r) = Hong_o + (TTo — f(r))np_s (20)

where ng_, o and ng_, s represent the number of transitions from
potential buyer to owner and seller states during the time period
T, respectively, and I is the profit due to a single transition from
Buyer to Owner. In (20), the function f{(r) is the incentive given to
potential buyers to encourage their transition to the seller state,
and is a non-decreasing function of the incentive factor r. In the

1 T

= Owner
Seller [
Buyer

=
o
T

Average individual states
SO
[\ w E (%] N ~ o]

‘ e e e
‘ L . L

o
=
T
|

0 L L L L
0 10 20 30 40 50
Time

Fig. 6. The number of individuals in Owner, Seller, and Buyer states at each time
for a given initial condition for the BSOB model (4) obtained by GEMF simulator
in an Erdos-Renyi graph with 1000 nodes (the black lines represent the mean field
approximation (5)).

simplest scenario, we may suppose the incentive value is a linear
function of the incentive factor r through a constant coefficient «,
i.e. f(r) = kr. In other words, it is supposed that the probability of
a potential buyer becoming a seller grows linearly with the amount
of the incentive given through the coefficient «. For the mean field
model (5), the expected profit is computed as

E[TT(r)] = MoE[np_0] + (TTo — f(r))E[np_s] (21)

In general, the expected transitions during the time period T are
obtained according to the transition digraph 4 as

1
E[np_o] = FE["BQS]

T
:/o Z(l_p"_q") ﬂ1zaz‘fpj+ﬁzzauq,- dt
1 j 7

(22)
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Fig. 7. The profit as a function of the incentive factor in an Erdos-Renyi graph with
1000 nodes calculated for the time period T = 100.

Fig. 7 shows the normalized profit as a function of the incen-
tive factor r in an Erdos-Renyi graph with 1000 nodes. Here, the
incentive was computed for x =2 and the time period T = 100,
and was normalized by making the maximum profit equal to 1. As
illustrated by Fig. 7, before the incentive threshold rc, the profit
is almost zero (some minor profit is expected in transient due to
the initial conditions). The profit starts to grow after the threshold,
until it reaches its maximum value at an incentive value r*(T) and
then starts to decrease with increasing incentive.

Fig. 8 depicts various transitions and the number of their oc-
currences for different values of incentive r in an artificial example
when T = 100. The number of transitions below the threshold r. is
practically zero (there are only few transitions during the transient
period). Above the threshold r., all transitions, but the transition
from a potential buyer to owner, are non-decreasing functions of
the incentive. However, the transition from B to O reaches a max-
imum value at an incentive amount less than r*. After the thresh-
old r¢, the transition from B to O grows due to increased number
of sellers who are willing to promote the good and generate sales.
However, after a certain incentive value, for which the number of
transitions from B to O reaches its maximum, the incentive amount
given is large enough to encourage the potential buyers to domi-
nantly become sellers, rather than owners. Thus, the number of
transitions from a potential buyer to an owner decreases. Consid-
ering these observations, one can conclude that the profit increases
after r. due to an escalated level of transitions from B to O and S.
Furthermore, the profit starts to deteriorate after r* due to the ex-
cessive amount of incentive given (over-incentivization) and as a
result, reduced number of transitions from B to O.

5.2. Maximizing the steady state profit: nonlinear programming

To find the maximum profit over a time period T (i.e. r(T))
We can optimize the profit function (20) subject to the stochastic
model (4), or by mean field approximation, optimize (21) sub-
ject to (5). These optimization models, result in stochastic and
deterministic optimal control problems, and the corresponding
dynamic programmings. An alternative approach is to maxi-
mize the steady state profit. For this purpose, and considering
E[ng_s] = rE[np_o] in (22), we observe that the expected profit in
(21) may be rewritten as E[I1(r)] = [[1o(r + 1) — rf(r)]E[ng_0]- By
(22), we know that the expected number of transitions from state

B to O at each time step At is (1—p—q) (B1Ap + B2Aq)At.
Thus, the expected profit at each time step becomes
[Mo(r+1) —rf(")](1 —p—q)T (B1Ap + BoAq)At. To maximize
the profit in steady state, the dynamics constraint (6) needs
to be replaced with the static equilibrium condition (13), or
equivalently, by (14) and (15). We may utilize (13) to express
the expected profit at each time step under endemic equilibrium
condition as 8;(ITg — r/(r+ 1)f(r))1" pAt, where p is subjected
to satisfy the nonlinear constraint (15). By this argument, we
consider the following nonlinear programming for maximizing the
profit in the steady state:

r T_
max (M- 7/ 0)1's

B Bl [, i+ +D8 5], (23)
ot |:8](r+1)+r82] p_[l_(r+1)82 Pi|Ap

r>0

By Lemma 3, we know that, for each r>r¢, there exists a unique
p that satisfies the equality constraint in (23). Hence, the feasi-
ble set of the optimization problem is nonempty. In addition, if
we suppose f(r) is such that r/(r+1)f(r) is convex for r> 0, the
cost function (ITg — r/(r + 1)f(r))17 p will be concave. This shows
that (23) holds a unique optimal solution, which may be obtained
using the Interior-Point (IP) or Sequential Quadratic Programming
(SQP) approaches (Nocedal & Wright, 2006). Note that by (23), we
neglect the transient profit. This is meaningful if the transient trad-
ing is not significant compared to the steady state trading. This is
also the case when the profit is to be maximized for a sufficiently
large time period T.

Denoting the solution of (23) as (1§, p*), Fig. 9 shows the opti-
mal incentive values r*(T) and their corresponding endemic equi-
librium for different time periods T. We observe that, by increasing
the time period T, during which the profit is computed, the opti-
mal incentive uniformly approaches r} from above. The manner by
which different optimal incentives converge in Fig. 9 guide us to a
control strategy, in which we start by a maximum possible incen-
tive for optimal profit in transient, gradually reduce the incentive
as time goes on, and finally switch to the incentive r} for optimal
profit in the steady state (i.e. the solution of (23)). As Fig. 9 shows,
for optimum incentive value in the steady state, probability of be-
ing in state S is higher than the probability of being in each state
B or O.

6. Equilibrium states: heterogeneous incentive values

Depending on their position in a network, individuals wield
a different degree of influence in information diffusion. Thus, it
may seem natural to assign different incentive values to individ-
uals based on the amount of influence they can exert, which is
usually quantified in the form of centrality measures. The most ba-
sic and trivial centrality measure may be the number of neighbors
an individual has. However, since the importance of an individual
can be measured through various definitions, there are many dif-
ferent definitions of centrality (Liao, Mariani, Medo, Zhang, & Zhou,
2017; Nasirian, Pajouh, & Balasundaram, 2020). Therefore, to iden-
tify essential qualities and quantities for determining an important
individual in a viral marketing campaign, we consider the case of
heterogeneous incentive values in the BSOB model and investigate
its dynamics properties. Then, we will examine the problem of
profit maximization with heterogeneous incentive values. One of
the main results of this section is expressed in Theorem 3 where
we derive the exponential stability conditions of the trade-free
equilibrium in terms of the reproduction number (27). Then we
express the existence and stability conditions of a unique en-
demic equilibrium in Lemmas 5 and 6. We also demonstrate by
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Fig. 8. The number of transitions from (a) potential buyer to owner, (b) potential buyer to seller, (c) seller to owner, and (d) owner to potential buyer.

Lemma 7 how large the value of standard deviation in incentive
distribution should be to have an active steady state trading when
the average incentive is smaller than the threshold r¢ in (11).

When different agents can receive different incentives, we con-
sider the following mean field dynamics:

Pi=0—-pi—a)|B1Y_aypj+ B2 a;q; | — 81pi+ 820
j j

g=ri(1-pi—q)| B Zaiij+,32 Zaiij —82q; (24)
j j

where r; denotes the incentive factor corresponding to the ith in-
dividual. In vector form we have

p=(I-P—-Q)(BiAp+ B2Aq) — 81p + 629
G=R(UI—-P—-Q)(BiAp + B2Aq) — 629 (25)

where R = diag([r;]), or R = diag(r) where r denotes the incentive
factor vector with components r;. Similar to Remark 1, it can be

verified that the set [0, 1]2N is a compact positively invariant set
for (25). To establish the main results in this section, we introduce
the reproduction matrix R = diag(|R;]) as a diagonal matrix with
the following positive pivot entries:

Ri:(ri+1)4+ri@ (26)
81 82
The reproduction number in the heterogeneous incentive is the
largest eigenvalue of the matrix RA:

Ro = A1(RA) (27)

Note that since A is Metzler irreducible? and R is diagonal with
positive pivot entries, RA is Metzler irreducible. Hence, the largest
eigenvalue of RA and its corresponding eigenvector are strictly
positive due to Perron-Frobenius theorem. By the same procedure

2 Recall that a square matrix A is Metzler if all its off-diagonal elements are non-
negative and it is irreducible if additionally its associated graph is connected (Bullo,
2019).
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Fig. 9. Optimum incentive value for different time periods.

in the proof of Proposition 1, we can conclude the following propo-
sition for the heterogeneous incentives:

Proposition 3. Consider the N-intertwined model (24), or (25). If
A1(A) < —€, € >0, where

B |:/3]A—(S]I ﬂ2A+821j|

= 28
B1RA BaRA — 8,1 (28)

then an initial condition [pT(0)q"(0)]T [0, 1]2N will converge to zero
exponentially fast.

For further results on stability of trade-free equilibrium, we
consider the regular splitting of a real Metzler matrix M as M =
A +W where A is Metzler stable®> and W> 0 is a nonnegative ma-
trix (Fall et al., 2007, Definition 2.2). According to Fall et al. (2007,
Proposition 2.1), if M = A + W is a regular splitting of M, then M
is Metzler stable if and only if p(—WA*‘) <1.

Lemma 4. The trivial equilibrium of the N-intertwined BOSB model
(24), or (25), is globally exponentially stable if and only if
p(-WA=1) <1, where

A A =61 8ol
W= Bi B2 A= 1 2
B1RA B2RA 0 —&,1
Proof of Lemma 4. See A.8. O

Theorem 3. The trivial equilibrium of the N-intertwined BOSB model
(24), or (25), is globally exponentially stable if and only if Aq(RA) <
1, 0r Rg < 1.

Proof of Theorem 3. See A9. O

The endemic equilibrium condition is attained by setting p =
g =0 in (25) as:

p = [diag(1 + aiRi(Ap);)] ' RAp

.6 _
= 2A+R)7'Rp (29)
82
8q1i+8, (ri+1) L .
where q; = S > L Similar to Lemma 1, any endemic
2 (rit+1)

equilibrium is strongly positive. We can repeat the same procedure

3 i.e. A is Metzler with negative eigenvalues real parts (Fall et al., 2007).

in the proof of Lemma 3 for A;(RA) > 1, to reach the following
lemma for heterogeneous incentives.

Lemma 5. Suppose Ry = A1(RA) > 1. There is a unique endemic
equilibrium for (25) that is strictly positive and is the solution of (29).
In fact, under the initial condition y(0) a scalar multiple of uy, with
uq being the eigenvector corresponding to Aq(RA) and max; a;y;(0) <
1—1/A1(RA), the sequence,

y(k+1) = F(RAy(k)) (30)

8y1i+8, (1+17)

)

where {y(k)}ie C BN, [FO)]; = i+ and a; =
verges to the equilibrium state p: limy_, . y(k) = p.

Similar to the Theorem 2, we have the following stability result
for the endemic equilibrium of (25):

Lemma 6. Suppose Rg = A1(RA) > 1. Then, the endemic equilibrium
of (25) is globally asymptotically stable.

Remark 4. Using the conditions on A;(RA), we can obtain some
criteria directly based on the incentive vector r. Let 1, and rmax
be the minimum and the maximum incentive given to all agents
(i.e Tpip = Min; 1; and rmgx = mMax; r;). Since Aq(RA) < A1 (R)A1(A),
we can conclude that, if

B2 1

5, < A (31)
then, A1 (RA) <1, and the trivial equilibrium of the N-intertwined
BOSB model (5) is globally exponentially stable. In the same
manner, since Aq(RA) > Apin(R)A1(A), with A,;,(.) denoting the
smallest eigenvalue, we can conclude if

(Tmax + 1)5—] + Tmax
1

1
(rmin+l)87]]+rminl§722 > A.](A) (32)
then, A{(RA) > 1, and there exists a unique endemic equilibrium
that is globally asymptotically stable. Moreover, we understand by
(31) and (32) that for heterogeneous incentives, the reproduction
number is bounded as

|:(rmin + ‘1)5*11 + Tmin'?j:|)»1 (A)

<Ro = I:(rmax + 1)% + rmaxlgzzi|}\l A) (33)

Remark 4 indicates that, to destabilize the trade-free equi-
librium, the maximum incentive given is required to be lower-
bounded by the critical incentive (11) as rmgx>7c. On the other
hand, the condition r,;;, >r. assures the existence and stability of
an endemic equilibrium. Thus, if all incentives are less than the
critical incentive r. the trade-free equilibrium is globally exponen-
tially stable, and when all incentives are larger than the critical
incentive r. there is a unique endemic equilibrium that is glob-
ally asymptotically stable. However, these are conservative results
in that we have still no explicit finding about the intermediate sit-
uation where some incentives are less than and some others are
larger than re, 1y, <Tc <rmax. We have the tight explicit results
of Theorem 3 and Lemma 6 that demonstrate if R is such that
A1(RA) <1 the origin is exponentially stable, and if 1;(RA) > 1
there is a unique asymptotically stable endemic equilibrium. How-
ever, these criteria yield no explicit result directly based on indi-
vidual incentives r;. For more explicit criterion, we may attain fur-
ther conditions based on a factor other than maximum or mini-
mum incentive; e.g. based on average incentive. In an attempt to
achieve some criterion based on the average incentive, we pose
the following Lemma 7. First, let us consider the incentive vec-
tor r = rgye + 7 Where rge denotes the average of components of
r and 7 denotes the deviation from the mean value g, and con-
sider R = diag(F).

of Operational Research, https://doi.org/10.1016/j.ejor.2020.07.046

Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al., Incentive rate determination in viral marketing, European Journal



https://doi.org/10.1016/j.ejor.2020.07.046

JID: EOR

[m5G;August 24, 2020;23:46]

A. Tavasoli, H. Shakeri and E. Ardjmand et al./European Journal of Operational Research xxx (XXxx) xxx 1

09

e e
o N oo
T T T

Individual equilibrium states
Lh

0.1

Lemma 7. Let A be defined with replacing r = rqye in (8) and sup-
pose the incentive r = rqye Satisfies (10), so that rqpe < rc. Then the
trivial equilibrium of the N-intertwined BOSB model (5) is globally
exponentially stable when the maximum deviation gy = max 7> 0
from the average value is such that

7, < € < _)\1 (jl)
T 2Bh1(A) T 2Bh(A)

Proof of Lemma 7. See A10 O

Remark 5. The importance of Lemma 7 is establishing a lower-
bound for deviation from the average incentive in order to desta-
bilize the origin and have a stable endemic equilibrium. There-
fore, when the average incentive rye is less than the critical value
re in (11), the standard deviation of incentive assignment should
be large enough to have a stable endemic equilibrium and active
trading.

Fig. 10 shows the equilibrium of the BOSB with heterogeneous
incentives for different values of average incentive factor rqye in
an Erdos-Renyi graph with 1000 nodes. Here, we have randomly
assigned an incentive value 0<r; <3 to each agent i, and next,
have multiplied all incentives by an increasing factor starting
from zero to obtain a spectrum of values for rgpe. As it can be
observed, below the threshold Ry = A1(RA) =1, only the trade-
free equilibrium exists, while incentive distribution leading to
Ro = A1(RA) > 1 gives birth to a unique endemic equilibrium. In
addition, comparing Figs. 10a and 5a, we note that the equilibrium
state for heterogeneous incentives is more distributive, i.e. the
standard deviation of equilibrium states for heterogeneous incen-
tives is higher than that in homogeneous incentive. In general, the
higher the standard deviation of incentive distribution, the higher
the standard deviation of equilibrium states. By Fig. 10b we also
note that, the average incentive factor rq yields a good criterion
for estimating the threshold in this case, although this is not the
case always and the average incentive can not yield a precise
criterion when the standard deviation of incentive allocation is
effectively large. Here, r. is the same as in (11).

Owner
Seller H

e
“

o
>N

Average equilibrium
o o
~ W

o
w

(b)

Fig. 10. (a) Individual, and (b) average, equilibrium states with heterogeneous incentive values.

7. Maximizing profit: heterogeneous incentive values

For heterogeneous incentive values, the profit function over
time period T is defined as

T(r) =Tlo ) My o+ ) (Mo~ f(ri))nh_s (34)
i i

where nh ,=ni (T) and nj ¢=nj ((T) are the number of

transitions from states B to O and S, respectively, for an individ-

ual i during the time interval T. The expected profit is computed

as

E[TI(r)] = Tlo 3 JE[m_o] + 3 (TTo = f(ri))E[mys] (35)
where
. 1.,
E[nh_o] = r—iE[ng_,s]
T
=/0 (A =pi—a)| B D aypj+ B2y _ayq; |dt (36)
J J

With E[n} (] =rE[n} ], the profit is written as E[TI(r)] =
>iT(ri+1) — r,-f(r,-))E[ng%O]. By repeating the same procedure
performed to reach (23), that is by using (36) to obtain the tran-
sition E[n;'s_m] at each time step At as (1 - p;—q;)(B1 Xja;pj +
B >jaijq;)At and inserting the equilibrium condition (29), the
profit at each time step of the steady state can be calculated as
§1[TTp17 —eriag([%])]ﬁAt. The following constrained nonlin-
ear programming is then established to maximize the steady state
profit:

max [HOIT - eriag<|:rj;(%:|>i|ﬁ

[diag(1 + a;R;(Ap);)|p — RAp =0
std{rf1<c (37)
r>0

where the total incentive given to all individuals is supposed to
be upper-bounded by the constant c. The case where there is no

of Operational Research, https://doi.org/10.1016/j.ejor.2020.07.046

Please cite this article as: A. Tavasoli, H. Shakeri and E. Ardjmand et al., Incentive rate determination in viral marketing, European Journal



https://doi.org/10.1016/j.ejor.2020.07.046

JID: EOR

[m5G;August 24, 2020;23:46]

12 A. Tavasoli, H. Shakeri and E. Ardjmand et al./European Journal of Operational Research xxx (XXxx) Xxx

3.5

257

157

Optimal incentive

0.5 : :
0 10 20 30
Degree centrality

(a)

3.5

257

157

Optimal incentive

|

I

0.5 ]

04 05 06 07 08 09 1
Katz centrality

(c)

Fig. 11. Optimal incentives for different centrality measures when the total incentive is

(d) PageRank centrality.

constraint on the total incentive is equivalent to ¢ = co. We can
conclude that the nonlinear programming (37) holds a unique op-
timal solution by using Lemma 6 to assure that the feasible set
of the optimization problem is nonempty, and by assuming f(r;) is
such that r;/(r; + 1) f(r;) is convex for r; > 0.

We solve the nonlinear programming (37) for an Erdos-Renyi
network with 1000 nodes using the SQP (Nocedal & Wright, 2006).
Fig. 11 shows scatter plots of optimal incentives versus some com-
mon centrality measures (Liao et al., 2017), when there is no re-
striction on the total incentive c. As a general pattern, it can be
observed in Fig. 11 that less central nodes receive more incentives.
This observation indicates that when there is no limit on the in-
centive amount, the optimal strategy strengthens the externality’s
effect on less central nodes by increasing their incentives. In such
conditions of no restriction on optimal incentives, externalities’ ef-
fect on most central nodes is essentially due to the number of
their owner and seller neighbors. In spite of the general pattern
observed in Fig. 11, not all less central individuals receive larger
incentives. This indicates that although there is a strong correla-
tion between centrality and incentive allocation, there is no trivial
law to achieve the optimal incentives absolutely based on usual
centrality measures.

In Fig. 12, we show scatter plots of optimal incentives versus
eigenvector centrality for different values of total incentive c. We
do not show other centrality measures due to qualitatively similar
results (as implied by Fig. 11). When the total incentive budget ¢
is very limited, as in Figs. 12a and b, the optimal incentive allo-
cation holds a completely unbalanced pattern. While the majority
of individuals receives no incentive, some very few others, mostly
nodes with highest centrality, receive large amounts. This observa-
tion can be explained by recalling Lemma 7, which suggests when

Optimal incentive
= N> ©
(9] [\ W W (9,

Ju—

0.5
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Eigenvector centrality

(b)

Optimal incentive
= N> ©
(9] [\ W W Wi

—_

05—
03 04 05 06 07 08 09 I

PageRank centrality
(d)

not limited (¢ = o0) (a) Node degree. (b) Eigenvector centrality. (c) Katz centrality.

the average incentive is below the critical value, large standard
deviation of incentive distribution is needed to have a stable en-
demic equilibrium. In fact, the average incentives in Figs. 12a and
b are rge = 0.25 and rge = 0.1, respectively, which are less than
the critical value r. = 0.3803 computed by (11). Therefore, based
on Lemma 7, the optimal mechanism in each case leads to a high
standard deviation in incentive allocation for reaching a stable en-
demic equilibrium. Examining the reproduction numbers, we have
Ro = A1(RA) = 1.5746 in Fig. 12a, and Rg = A1(RA) = 1.6668 in
Fig. 12b. Hence, both cases result in reproduction numbers greater
than 1 and stable endemic equilibria, despite having average in-
centives significantly smaller than the critical incentive r. In gen-
eral, when the incentive budget is tight, the incentive to consumers
with the least centralities is effectively wasted since these individ-
uals have little chance to influence the whole network with limited
resources. Instead, the less central nodes are influenced by their
central neighbors. This situation continues by increasing the total
incentive to ¢ = 500 and ¢ = 750, the cases shown in Figs. 12¢ and
d, respectively, where the number of more central nodes receiv-
ing incentive increases while the least central nodes still receiv-
ing no incentive. For the larger total incentive ¢ = 1000 in Fig. 12e,
we note there is no nodes receiving no incentive and almost all
nodes receive incentive, with nodes of larger centralities still re-
ceiving larger incentive.

This implies that, when there is a limited total incentive, the
optimal incentive determination mechanism prioritizes and assigns
more incentive to central individuals since they can produce larger
externalities effect on the whole network even with limited re-
sources. Therefore, when the total incentive is limited, the tradeoff
between the exploitation and the influence (Bloch & Quérou, 2013)
is in favor of influence, so that the monopolist promotes the good
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Fig. 12. Optimal incentives versus eigenvector centrality when (a) ¢ = 100, (b) ¢ = 250, (c) ¢ =500, (d) ¢ = 750, (e) ¢ = 1000, (f) c = 1200, (g) ¢ = 1500, (h) c = 2000, (i)

the total incentive is not limited (¢ = 00).

through more central consumers in order to maximize influence
over neighboring nodes. Some similar results have been reported
in optimal resource allocation for containing disease spreading
(Preciado, Zargham, Enyioha, Jadbabaie, & Pappas, 2014) where for
limited resources the nodes with larger centralities are assigned
most of available budget.

However, the situation changes and the system dynamics
bifurcates as the incentive budget c increases further. First, Fig. 12f
indicates that, when ¢ = 1200, there is almost no regular pattern
for incentive allocation, and it is neither increasing nor decreasing
with individuals centrality. With Figs. 12g, h, and i, we observe
a completely different pattern where, given an unrestricted or a
large available total incentive, there are no individuals receiving
no incentive, while less central nodes commonly receiving larger
incentive amounts. In such conditions, i.e. when the total incentive
is not significantly limited, the tradeoff between exploitation
and influence is resolved in favor of exploitation of more central

consumers, so that these nodes are charged higher prices in order
to exploit their higher degree of influence. In this case, the less
central nodes are stimulated by receiving larger incentive amounts,
and not by influence of their central neighbors. This observed dy-
namic sheds light on a long standing dispute in the TSS literature
as to whether more central individuals should be selected as
initiators of a viral campaign. While there are contradicting points
of view on this issue (Christophe, Wuyts, Dekimpe, Gijsbrechts, &
Pieters, 2010; Cohen & Harsha, 2019; Hinz et al., 2011; Iyengar &
Lepper, 2000; Van der Lans et al., 2010; Watts & Dodds, 2007),
our results show that under different incentive budgets, relying on
more central individuals may or may not be the best strategy.

Finally, Fig. 13 shows the maximum expected profit attainable
at each instant of steady state for different total incentives c. As il-
lustrated in Fig. 13, the maximum profit is a monotonically increas-
ing function of incentive budget c and approaches a fixed value as
c increases.
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Fig. 13. Maximum expected profit attainable at each instant of steady state for dif-
ferent total incentives c.

8. Managerial implications

This study has three key takeaways for practitioners and
managers. First, a low incentive rate may not have a sustainable
effect on sales. Our model revealed that the incentive values
that fall below a threshold might not be encouraging enough to
keep the consumers trading, and thus, the sales eventually might
vanish (i.e., trade-free equilibrium). Second, it was found that if
the monopolist is willing to reward every consumer equally (i.e.,
homogenous incentives), there is a unique optimum incentive
rate that maximizes the profit and whose value decreases as the
planning time horizon increases. This finding led to an optimal
strategy in designing the homogenous incentive rates, which tends
to begin with a maximum permissible incentive value for optimal
profit in a short time horizon and gradually decreases it to a value
that maximizes the profit in an infinite time horizon (i.e., endemic
equilibrium). A third takeaway pertains to the case where a firm
rewards each individual differently (i.e., heterogenous incentives).
While our intuition may induce an incentive allocation based on
the individuals’ centrality, we observed that different centrality
measurements could not trivially determine the optimal incen-
tive allocation, although some strong correlation exists between
centrality measures and incentive allocation. Indeed, our model
explicated that there is no straightforward incentive rate determi-
nation strategy in a heterogeneous incentive scenario. However,
there seems to be a relationship between the individuals’ mea-
sure of centrality and the optimum reward they receive upon
generating sales. The centrality of a node can affect the optimal
incentive rate in two different countervailing manners. On the one
hand, a more central node generates more positive externalities
on its neighbors and hence, should be incentivized more. On the
other hand, more central individuals have more opportunities to
generate sales, and if they receive a larger incentive, they can
negatively impact the monopolist’s profit. Thus, a monopolist
may choose to price discriminate by trading off “influence” and
“exploitation” (Bloch & Quérou, 2013). This tradeoff either leads to
higher incentive rates at more central nodes to maximize influence
over neighboring nodes or to lower incentive rates at more central
nodes to exploit the higher valuation of more central consumers.

Similarly, our findings show that the optimal incentive alloca-
tion makes a tradeoff between lowering the incentive at more cen-
tral nodes to exploit the nodes centrality or raising the incentive
at more central nodes to maximize influence on other consumers.
When the total incentive is not limited or is loosely limited, the
tradeoff between influence and exploitation is resolved in favor of
exploitation, and more central nodes are given smaller incentives.

rected, the agents that are offered the most favorable prices are
the ones that influence highly central agents.

9. Conclusion

In this paper, we have established a new model of viral mar-
keting for a monopolist selling a single good under network ex-
ternalities. In our so called BOSB model, the individuals interact
with each other while assuming three possible roles of potential
buyers, owners, or sellers. A potential buyer can become a seller
by promoting the good to his neighbors while collecting a reward
(i.e., incentive) for the sales she generates. The state of an indi-
vidual depends on the state of his neighbors over the network. By
constructing different transition probabilities, we developed an N-
intertwined model that is the mean field approximation of the cor-
responding continuous-time Markov process. We investigated two
cases of homogeneous and heterogeneous incentive values. In each
case, by studying the spectra of the developed model, we estab-
lished the existence and stability conditions of trade-free and en-
demic equilibrium states and expressed different criteria in terms
of the epidemic reproduction number. We have also suggested two
convergent sequences to compute the unique endemic equilibria
for homogeneous and heterogeneous cases.

Taking the incentive as a control parameter, we investigated
the optimal incentive rate determination problem to achieve maxi-
mum profit. To this end, we determined the optimal homogeneous
incentive and the optimal heterogeneous incentive allocation
through the proposed corresponding nonlinear programmings. In
the case of homogeneous incentive, the optimal incentive rate is
such that a tradeoff is made between the number of transitions
from the potential buyer state to each of the owner and seller
states. While raising the incentive rate increases the monopolist
profit through shifting individuals to the owner and seller states,
an excessive incentive rate can inadvertently lessen the profit
by encouraging more individuals to stay in the seller state and
hence, fewer transitions from potential buyers to owners. The
situation is more involved in the case of heterogeneous incen-
tives where more central individuals are favored more when the
incentivization budget is tight, and conversely, less central nodes
are rewarded more generously when the incentivization budget is
abundant.

In the context of viral marketing, one is typically interested in
amplifying the spread process through an incentivization schema.
However, the methods proposed in this paper can likewise be
applied to the scenarios where a spreading process is to be con-
tained. One such process is encountered in epidemiology, where
the spread of a virus needs to be restrained. For this purpose,
the incentive rate r can be repurposed to represent the cost of
protecting an individual against receiving or passing a virus to
others. Investigating homogeneous and heterogeneous protection
costs and their effect on the virus spread process can be a fruitful
application of the presented methods in this study.
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A natural direction to extend this study is to consider incentive
determination in a competitive environment. In the simplest case,
when only two firms compete over the sales of a particular good,
a model such as the competitive epidemic spreading studied by
Sahneh and Scoglio (2013) can be considered and extended under
viral marketing setting. The problem becomes more interesting
when the competition occurs in a multilayer network where
network layers represent the distinct transmission routes of the
information. Then, characterizing the existence/coexistence con-
ditions of different goods and the IRD problem as functions of
various network layers structures will be a challenging problem
whose solution can establish meaningful results. Moreover, since
our results are limited to undirected graphs, we can use more
recently developed approaches, such as the one considered in
Khanafer et al. (2016), to explore how our results may change
when examined on directed graphs and extend our work. An-
other interesting subject for future work is time-varying incentive
determination and the corresponding dynamic optimization. The
analyses of the model considered in this paper, and the associated
static optimizations are based on the assumption that the incentive
amount given to each individual is constant. To extend the ob-
tained results, optimal time-varying incentive (Ajorlou et al., 2016)
determination can be considered and resolved in the framework
of optimal control (Lorch et al., 2018) or model predictive control
(MPC) (Watkins, Nowzari, & Pappas, 2018). Furthermore, the power
of more recently developed data-driven and machine learning ap-
proaches (Brunton & Kutz, 2019) in the identification and control
of complex systems seems promising when studying dynamical
phenomena over complex networks. Therefore, their application to
dynamic incentive determination is expected to yield significant
results.

Appendix A. Proofs
A.1. Proof of Proposition 1

We first note from (6) that

|:I'7i| _ |:.31A -1 BA+ 521i| |:Pi| )
q N r,31A rﬂzA — 821 q '
=f{s}—?unq> (A1)
where
P A A
H(p’q):[( +Q)(B1Ap + B2 q)}ZO (A2)
r(P+Q)(B1Ap + B2Aq)

for p, ¢>0. Now, consider the Lyapunov candidate V (t) = 1/2x'x,
x=[p"q"]". By (A1), we have

V =xTAx — x"1 < x" Ax < —€|x|)?

where the first inequality follows from #(p.q) >0 and the
fact that x=[pTq"|" is trapped in the positive compact set
[0, 112N,

A.2. Proof of Proposition 2

If A is an eigenvalue of A, then A[z] = A[ﬁ] with the corre-

sponding eigenvector[ﬂ e RZN~1 Upon (8), we have

{(,3114—811)114’ (,32A+821)U= Au (A3)

rB1AU + (rB2A — §1)v = Av

Multiplying the first equality in (A.3) by r and subtracting the re-
sult from the second equality, it follows:

A+ (r+1)8;
== /¢ A4
T(81 + )\) ( )
Inserting (A.4) in the second of (A.3), we get
(yA-6Dhv=1v (A.5)

with y = <ﬁ1+rﬁz)k+§:++1k>ﬂlaz+félﬂz. Dividing both sides of (A.5) by
y it follows that % is an eigenvalue of A — §,I. Recall that A(A —
21) = 2(A) - 2. Then, dividing (A5) by y yields A(A) - % =
HA) op inserting y as defined after Eq. (A.5), we conclude the

following second order algebraic equation for A(A):
AM(A)+ (@+b)A(A) +ab—c=0 (A.6)

where a=§8; — Bi1A(A), b=68, —rBA(A), and
BoA(A)]A(A). The solution of (A.6) is given by (9).

c=rpi[d +

A.3. Proof of Theorem 1

With Inequality (7), it is sufficient to show that all eigenvalues
of A are negative. Of 2N eigenvalues computed by (9), N eigen-
values are always negative. The remaining N eigenvalues become
negative if

[81+ 85 — (B1 + B (A
>mrwn—wrwmnmﬁ+mmm+mumnm%
A7

By canceling common terms in (A.7), we get
8] 82 > (1 + T)ﬂ182)\.(A) + rﬂ281A(A)
which can be divided by &;8,A(A) to yield
(r+l)§—;+r%<ﬁ (A.8)

Now if (A.8) is satisfied for the maximum eigenvalue of A, we can
be sure that it is satisfied for all other eigenvalues.

A.4. Proof of Lemma 1

Suppose there exists a node j in the neighbor of node i with
nonzero owner probability, so that ¢;; =1 and p; > 0. Then, ex-
amining the ith row of (15), it is observed that p; >0 and by
(14) g; > 0. This procedure can be repeated for the nodes in the
neighbor of i, and so on. Hence, if the contact network is connected
and at least one of the agents have nonzero owner (or seller) prob-
ability, then p;,g; > 0 for all i e {1,..., N}.
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A.5. Proof of Lemma 2

We note by (15) and the first of (16) that [f—:(r+1)+
r%]—lﬁ < Ap. From (12), we have p <« %Aﬁ. Then, the in-

ner product of both sides of this inequality by p, with us-
ing the fact that pTAp < A1 (A)||p||2, indicates ||p||? < }f&) PTAp <

Rollpll2, which proves the lemma.

A.6. Proof of Lemma 3

The proof is based on the approach utilized in the proof
by Mei et al. (2017, Theorem 4.3). We first investigate the ex-
istence problem. Consider the monotonically-increasing function
fy)= Hy—ay for y € R>0. For vector variables y e RI;’O, let F(y) =
(fv1),..., f(yn)). Observe that p is an equilibrium if and only

if F(f?Aﬁ):[). That is, p is an equilibrium if and only if it

is a fixed point of F, where F(p) =F(%Aﬁ). It is noted that

F(%’Ay) > F(%Az) when y>z>0. This is due to the facts that

f is monotonically increasing and also the contacting graph is
connected so that Ay:»>Az. Moreover, for any o >1 and y >0,
we have floy)>y if and only if ay <1-1/0. Now, consider
the sequence {y(k)}xey C RN by y(k+1) = F(y(k)) = F(%OAy(k)).
Let u; be the eigenvector of A corresponding to the largest
eigenvalue A, so Au; = Aquy, and suppose y(0)>0 is a scalar
multiple of u; with amax;y;(0) <1 - 1/Rg. Then, F(%[’Ay(O)),» =
F(Rpy;(0)) > y;(0). This implies y(1)>y(0), which in turn shows
y(2) = F(%}Ay(l)) > F(%Ay(O)) =y(1), where the inequality re-
sults since f is monotonically increasing. By induction, y(k+1) >
y(k). Therefore, the sequence {y(k)} is monotonically nondecreas-
ing and entry-wise upper-bounded by 1. Then, we conclude, by
the fundamental Bolzano-Weierstrass theorem, that the sequence
{y(k)} is convergent. Therefore, y(k) converges to some 0 < p < 1
such that F(%’Aﬁ) =p.

We next show the uniqueness of the endemic equilibrium.
To do so, assume, by contradiction, that p and § are two dis-
tinct equilibriums. We know from Lemma 1 that p,$> 0. Let
a =min; {$;/p;}, and assume without loss of generality that o < 1.
Determine i as « =S;/p;. Then §>o«ap and §;=op;. We now
write

[F(5245) =] = 1(529),) —rh
= (%R0 4py) - i
>af<%0(Ap)i> — ap;

:a[F(%OAﬁ) —ﬁ]i —0

where to write the two inequality relations we have considered
the facts that f is monotonically increasing, the contacting graph
is connected, and 0 <« <1, and the last equality results because
p is an equilibrium. In fact, in the second inequality we have

considered flay)> afly), since (Pflia}:xy) > “i—i’w) for 0<a <1 and

y € R_g. Therefore, [F(%As’) —S§]; > 0 and this contradicts § be-
ing an equilibrium. The uniqueness of the endemic equilibrium is
readily a result of monotonically-increasing function f. In fact, any
monotonically-increasing function f(x), with f(0) = 0, can intersect
the line y = x at most at one nonzero point.

(A.9)

A.7. Proof of Theorem 2

We follow the procedure utilized in the proof by (Khanafer
et al.,, 2016, Theorem 2), motivated by the properties of positive
systems concept (Bullo, 2018; Fall et al.,, 2007; Farina & Rinaldi,
2011; Mei et al, 2017). We first write the model (6) in the
following form:

X =[-D+ (I —diag(Jx))B]x

_|P _ |4l 8,1 _| AA BaA
where x = [q] —D_|: 0 821]’ B= [rﬁm rBoA |

]. So, the equilibrium point X = [p7 qT]T satisfies

(A10)

I I
]:[1 I

[-D + (I — diag(Jx))B]x =0 (A1)
Consider the error function X =x—X%, and note by (A.10) and
(A11) that

X =[-D + (I — diag(J%))B]X — diag(Bx)JX (A12)
Consider the matrix A(X) = —D+ (I —diag(Jx))B. We note that
A(X) is a Metzler matrix since its off-diagonal entries are non-
negative; B(i, j)>0,Vi#j. In addition, since the underlying graph
is connected, A (X) is also irreducible, i.e. there exists no permuta-
tion matrix T such that TT A (X)T is block triangular (note that we
can check a matrix M« 5 is irreducible by verifying that for all par-
titions {Z, 7} of the index set {1,...,n} there existie Z and je J
such that M #0 (Bullo, 2018)). Eq. (A.11) indicates that, for Rq >
1, there exists the endemic equilibrium X > 0 such that A (X)x = 0.
Since x is strictly positive, the Perron-Frobenius theorem for Met-
zler irreducible matrices (Farina and Rinaldi, 2011, Theorem 17)
shows that w(A (X)) = 0, where the stability modulus u(.) denotes
the largest real part in the eigenvalue set of the corresponding ma-
trix. Then, it follows from (Khanafer et al., 2016, Lemma A.1) that
there exists a positive diagonal matrix K such that A (X)TK + KA (%)
is negative semidefinite. Consider the Lyapunov function V(X) =
XTKX. Then, the time derivative of V(X) along (A.12) becomes

V=X"[A®'K+KAX)]X — 2X"Kdiag(Bx)JX

< —2X"Kdiag(Bx)JX < 0 (A13)
where the first inequality results because A(X)TK+KA(R) is
negative semidefinite, and the second inequality is due to the
fact that the matrix Kdiag(Bx)/ is positive semidefinite. In fact,
we note that Kdiag(Bx) is diagonal with positive diagonal entries
for x>0, and that, for any positive definite diagonal matrix
M = diag([My, ..., Mayn]), the matrix MJ is positive semidefinite
with N eigenvalues identically zero and the remaining N eigen-
values A; = M; + M;_y. Next, following the same procedure in the
proof by Khanafer et al. (2016, Theorem 2), it can be shown that
XTKdiag(Bx)JX = 0 if and only if X =0, or x =X. Therefore, the
asymptotic stability of the endemic equilibrium follows from the
LaSalle’s invariant set principle.

A.8. Proof of Lemma 4

We note that A given by (28) and W are Metzler. In addition,
A is Metzler stable, with the repeated eigenvalues {—8;, —6;} < 0.
Therefore, A = A + W is a regular splitting of A. The proof accord-
ingly follows from Fall et al. (2007, Proposition 2.1).
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A.9. Proof of Theorem 3

We examine the condition p(-WA~') <1. Consider the

inverse matrix
1 1

A71 _ —gl _81711
——1
0 5,
Note that A=1A = I. We have,
YT AY
81 8 &

WA =
B Bi | B
5 4 T

Of the 2N eigenvalues of —-WA~!, N eigenvalues are identically

zero, since the N last rows are scalar multiples of the N first rows.
The eigenvalue problem for the above matrix is written as

'B1Au+ <ﬂ1+ﬁz)Au=Au

8
(A14)
’BIRAu—s— <’8] + ’32>RAU:M
5 5

with A and [uT UT]T the eigenvalue and the corresponding eigen-

vector of —-WA~1, respectively. Summing the two equalities in
(A.14) gives

|:ﬂl(R+I)+’32 i|A(u+v)+’32A(v Ru) = A(u+v).

Multiplying the first equation of (A.14) by R and subtracting from
the second one, considering A is symmetric and R diagonal, we get
v — Ru = 0 for A #0. Therefore, the above equation yields

[’31 R+1)+ ’BZR}A(quv) AU +v),

or RA(u+7v)=A(u+v). This means, the nonzero eigenvalues
of —-WA-1 are the same as the eigenvalues of RA. Hence,
p(-WAT) <1 is equivalent to p(RA) <1, or by Perron-
Frobenius theorem, to A1 (RA) < 1.

A.10. Proof of Lemma 7

We first rewrite the second equation of (25) as
4= Tae(I =P = Q)(1Ap + f2Aq) — 829
+R(I P~ Q)(BiAp + P2Aq)

Let # > 0 be defined with replacing r = rqpe in (A.2). Then, (25) is
written as

X=Ax—7(p,q) + K(p. q)
where

0
= [Ra —P-Q)(BiAp+ ﬁqu)}

Since rgpe satisfies (A.8), we know using Proposition 1 and
Theorem 1 that A;(A) < —e. Consider the Lyapunov candidate
V(t) =1/2xTx:

V=xl Ax+xT(-H +K) < —€llx||> + X'k

The indefinite term X' K is upper-bounded as

X"K(p.q) = q"R(I - P— Q) (B1Ap + B2Aq)
< llqllIRIIT =P =)l (B IAIPI + B2llAlllgl)
< gllFmaxr1 (A)(Ballpll + B2 llgl)
< FmaxA1 (A) B2llql (I pll + Nl
< TinaxA1 (A) Bz |l (I|x[| + [1x]])
= 2Fmaxh (A) B2 |IX |12

where to write the third inequality, we considered B < f>.
Hence,

1 < —(€ — 2FmaxM1 (A)ﬂZ) ”XHZ

Having fingx < €/2B211 (A) renders V negative definite.

Appendix B. Mean field approximation of BOB model

To see how the N-intertwined model (1) is derived as a mean
field approximation of the exact Markov process, let, for each node
iefl,..., N}, X;:{B, O} be a random variable, and Xit the value of
X; at time t. The epidemic spread dynamics of BOB is then modeled
as the following continuous-time Markov process:

Pr(X{*A" = 0|X! = B, X") = B1 AtY] + o(At)

Pr(X/ A = BIXf = 0,X") = 81 At + 0o(Al) (B.1)

where i e {1,..., N}, Yf = Yjen; ij1(xi—oy» With 1(4 the indicator
! J

function. In (B.1), Pr(.) denotes probability, X¢ 4 Xri=1,..., N} is
the joint state of the network, and At is a time step. Now, the
mean field approximation (1) is obtained as explained as follows.
By taking expectation of (B.1), the exact Markovian dynamics of the
system is obtained where the evolution of the marginal informa-
tion of each state depends on the evolution of pairwise joint prob-
ability of combination of states that itself depends on the higher
order joint probabilities and so forth; therefore, the size of the
state space increases exponentially. The mean-field closure approx-
imation estimates the marginal probabilities using only marginal
information and thus prevents the explosion of the state-space.
Using this mean field approximation procedure, it is possible to
express the transition probabilities in terms of the correspond-
ing expected values. Specifically, the term 1{X]@:O} is replaced with

E[l{th_:O}], where E[.] denotes the expected value. Then, using the

fact that p; and b; are not independent, since b; + p; = 1, we obtain
the N-intertwined Eq. (1).

Appendix C. Networks with small-world effects

To illustrate that our results remain unaffected with varying
the network type and that they also well apply to networks with
small-world effects (Newman, 2018), we examine the heteroge-
neous optimal incentive distribution for a Watts-Strogatz (WS)
network with 1000 nodes. All other conditions are similar to those
considered for Fig. 12, to minimize the effect of parameters other
than the network type. We also admit an spectral radius A;(A) =
14.3066 for WS network, which was achieved with an average de-
gree of 14 and rewiring probability 0.5 in a WS network with 1000
nodes. Hence, the spectral radius for WS network is near to that of
ER network in Fig. 12 with A;(A) = 14.9380. The results are seen
in Fig. C.14. A comparison of Figs. 12 and C.14 reveals that results
are qualitatively unchanged.
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Fig. C14. Optimal incentives versus eigenvector centrality for a WS network of 1000 nodes and average degree 14 when (a) ¢ =100, (b) ¢ = 250, (c) ¢ =500, (d) ¢ = 675,
(e) ¢ =750, (f) c =1200, (g) ¢ =1500, (h) c = 2000, (i) the total incentive is not limited (¢ = 00).
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