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A B S T R A C T

In this study, we consider the purchase prediction problem in the context of e-tourism, an emerging and pre-
vailing application in e-commerce. Although a wide array of studies have been taken on purchase prediction,
little analysis has been done on the purchasing behaviors towards tourism products. Also, the design of the
corresponding purchase prediction model deserves researchers’ full attention. We begin by introducing a real-life
e-tourism dataset and constructing a suite of variables based on the detailed current and historical clickstream
information. To validate the effectiveness of variables, we then perform a quantitative analysis to address quite a
few interesting characteristics of purchase patterns. To predict whether or not a purchase is made for a current
visiting session, we present a novel model called co-EM Logistic Regression (co-EM-LR) which combines the
semi-supervised learning and the multi-view learning into its procedure. The co-EM-LR model has at least two
outstanding merits: (1) it inherits the ease interpretation of the logistic modeling; and (2) it fully exploits both
unlabeled data and the compatibility of multiple views to improve the prediction accuracy. Comprehensive
experiments demonstrate the proposed co-EM-LR model yields significant prediction performance advantages
over five competitive methods. Furthermore, two complementary views can mutually improve the performance
with each other and finally offer fast convergence.

1. Introduction

As one of the primitive adopters of Internet, the tourism industry
has become one of the most successful and profitable applications in e-
commerce (Huang et al., 2017). In the e-tourism environment, tourists
increasingly fall back on various online platforms to collect more rich,
comprehensive and personalized information for planning their travel.
As a result, a large amount of travel data has been readily available to
firms, who are eagerly seeking the novel use of data analytic techniques
to release the potential for businesses from their data (Navío-Marco
et al., 2018). Similar to the other types of e-commerce, the foremost
concern of e-tourism is also to understand and predict the online buying
behavior, in order to improve the visit-to-purchase conversion rate
(Sismeiro & Bucklin, 2004; Chen et al., 2009). As it is common
knowledge that even a small improvement in the conversion rate (CR)
would be worth millions of dollars to firms (Ayanso & Yoogalingam,
2009; Ludwig et al., 2013). For instance, Ludwig et al. (2013) claimed
that only 1% increase in CR can translate into millions of dollars in sales
revenues on Amazon.com.

To understand consumer preferences and thus to match them with
the most desired products are now more important than ever in online
shopping worlds. Existing customized promotion studies (Zhang &

Wedel, 2009; Wan et al., 2017) have established the three-stage pur-
chase decision model including (i) purchase incidence, (ii) product
choice and (iii) purchase quantify. The first stage is also termed as
purchase prediction in the literature (Kim et al., 2003; Sismeiro &
Bucklin, 2004; Van den Poel & Buckinx, 2005; Mokryn et al., 2019) and
it is indeed the fundamental step of the purchase decisions model. This
paper offers studies on analyzing and predicting online purchasing
behaviors of tourism products by regarding the distinct characteristics
of real-life e-tourism dataset. Also, this paper aims to explore how
characteristics of tourism products and online behavior of consumers
affect buying decisions.

In the marketing and data analytics literature, there has been ex-
tensive re-search on the analysis and prediction of online purchasing
behavior (Van den Poel & Buckinx, 2005; Pavlou & Fygenson, 2006;
Kooti et al., 2016). In these studies, the clickstream constitutes the main
component of data obtained from the e-commerce site, and it provides
the opportunity for thoroughly understanding customers’ online beha-
viors (Sismeiro & Bucklin, 2004; Van den Poel & Buckinx, 2005). Along
this line, a rich set of variables that may determine the purchasing
behaviors have been defined, evaluated and used as the feed of pre-
diction models (Sismeiro & Bucklin, 2004; Van den Poel & Buckinx,
2005; Pavlou & Fygenson, 2006), including the demographic of the
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customer, detailed browsing behavior, repeat visitation, historical
browsing or purchasing behav-ior, etc. Besides the clickstream data,
some recent studies (Lu et al., 2010; Kooti et al., 2016) attempted to
add external factors (e.g., social contacts or friends, virtual community)
into the purchasing behavior analysis. Unlike most of previous studies
that focused on e-retailers (e.g., Amazon and Walmart) selling a broad
assortment of low-cost products, we used the real-life data from an e-
tourism site. Hence, the tasks of understanding and predicting the on-
line purchasing behavior on such intangible, experiential and perish-
able tourism products are markedly different from those at grocery e-
commerce sites. Furthermore, there has been less research focusing on
developing more sophisticated learning models to improve the predic-
tion accuracy. Instead, most of existing research utilize general-purpose
classification models for addressing the purchase prediction problem.
As one of the contributions of our study, we will present a specific
model for the task of online purchase prediction, which is built upon
the semi-supervised learning and the multi-view learning techniques.

The tourism product usually refers to an integrated package con-
taining a set of necessary travel-related ingredients (Liu et al., 2014),
such as the departure/destination city, financial cost, the number of
days, transportation, accommodation, and so on. Many studies (Liu
et al., 2014; Ge et al., 2014; He et al., 2016) have been performed on
personalized recommendation for travel products. Based on the tourism
products consumption data provided by an offline travel agency, they
have shown that the travel-product recommendations possess distinct
characteristics compared with traditional products such as movies,
books and groceries. However, little is known about the characteristics
of consumer behavior when browsing the e-tourism sites and how these
behavioral variables affect customers’ purchase decisions. This paper
makes multiple contributions in this regard.

• We first introduce a real-life e-tourism dataset obtained from a large
tourism e-commerce company in China and then define a suite of
effective variables for the task of online purchase prediction. Then, a
quantitative analysis is performed to address quite a few interesting
characteristics of purchase patterns on the e-tourism data.

• A novel learning model named co-EM Logistic Regression (co-EM-
LR) for online purchase prediction is proposed. The co-EM-LR model
exploits unlabeled data (i.e., semi-supervised learning) and the
compatibility of multiple views (i.e., multi-view learning) to im-
prove the prediction accu-racy. Also, the use of regression within
our model can provide the good interpretation of control variables.

• Extensive experiments are conducted to evaluate our proposed
model on purchase prediction by using the real-life e-tourism da-
taset. The experimental results demonstrate the superiority of our
methods.

The reminder of this paper is organized as follows. In Section 2, we
summarize the related work. Section 3 describes the problem that we
study in this article. Section 4 introduces the real-life e-tourism dataset,
defines the variable set that will be used in our prediction model, and
performs a quantitative analysis on purchase patterns. Section 5 details
our proposed purchase prediction model co-EM-LR. The experimental
results are presented in Section 6, followed by the conclusion in Section
7.

2. Literature review

In this section, we survey the relevant literature in two streams of
research: travel behavior modeling as well as online purchase analysis
and prediction.

Travel Behavior Modeling. Recent developments of ubiquitous com-
puting and location-based social networks have given birth to nu-
merous location-based ap-plications within the urban computing.
Among them, much of work focuses on understanding users’ travel
behaviors by mining the human mobility data in daily life. For instance,

many researchers attempt to predict the next location a user will visit
and further to generate itinerary as a sequence of locations under trip
constraints such as time limits, start and end points, etc (Khan et al.,
2017; Wen et al., 2017). Meanwhile, quite a few work has been done on
developing effective recommendation methods for travel packages (Liu
et al., 2014; Ge et al., 2014; He et al., 2016). For instance, by taking the
travel cost (i.e., the financial and the time) into the consideration, Ge
et al. (2014) provided focused study of matrix factorization used in the
cost-aware latent factor models. There are also extensive studies on
mining transportation data to estimate passengers’ future travel pattern
(Zhao et al., 2017a; Liu et al., 2018). For instance, Zhao et al. (2017a)
proposed an effective data-mining procedure to better understand the
travel patterns of individual metro passengers in Shenzhen, a modern
and big city in China. The above studies have repeatedly verified that
the travel behavior is very complex and it is influenced by various
contextual factors, e.g., cost (Ge et al., 2014), season (Liu et al., 2014)
and social relationships (He et al., 2016). In light of this, we explore the
online purchasing behavior for travel products by mining the click-
stream data sourced from an e-tourism website, which is barely touched
in the study of travel-related data mining. Here, we review only a few
papers on several representative research directions. Interested reader
can refer to Calabrese et al. (2015), Dong et al. (2018) for a more
comprehensive review of the previous literature.

Online Purchase Analysis and Prediction. A wide array of studies
within this field is available in information systems, economics, com-
puter science and marketing. Many empirical studies target at revealing
that what visitors are exposed to, and what they do in a site visit, will
affect a visitor will buy online. For example, Moe and Fader (2004)
developed an individual probability model to accommodate a variety of
visit-to-purchase relationships, where some visits were motivated by
planned purchases while others were simply browsing visits. Bucklin
and Sismeiro (2003) proposed a model to predict whether a visitor
decided to continue browsing or to exit the site, as well as how long the
visitor would spend browsing a web page. They also presented a task-
completion approach to estimate the user’s online shopping behavior
(Sismeiro & Bucklin, 2004). Additionally, Moe (2006) applied the em-
pirical two-stage model to Internet clickstream data and modeled the
consumer decision process on e-commerce sites as two choice stages:
products viewed and products purchased. Similarly, Pavlou & Fygenson
(2006) presented a prediction model for two-staged online behaviors:
getting information and purchasing products. These work explained the
online purchasing behavior as the result of deliberate planning, which
is known as theory of planned behavior. The studies presented thus far
have established the general causality correlation between visits and
purchases.

There is a large number of published studies on investigating how
the specific factor will affect the online purchasing behavior. For in-
stance, Lo et al. (2016) studied user activity and purchasing behavior
with the goal of building models of time-varying user purchasing intent,
which provides a promising starting point in terms of identifying po-
tential purchasers and better understanding their long-term behavior.
Ludwig et al. (2013) studied how the affective content and the lin-
guistic style of product reviews influence the conversion rate. Lu et al.
(2010) explored how trust in virtual communities affect the purchase
decision making. Iwanaga et al. (2016) investigated the relationship
between the recency/frequency of customers’ page views and the
probabilities of their product choices on e-commerce sites. Other factors
that have been addressed include social factors (Kooti et al., 2016),
search behavior (Schlosser et al., 2006), live chat (Lv et al., 2018), prior
purchases (Brown et al., 2003; Morisada et al., 2019) and trusting be-
liefs (McKnight et al., 2002).

Several studies suggest to construct detailed clickstream variables
for predicting the online purchasing behavior. Young Kim & Kim (2004)
evaluated the importance of variables from four dimensions, i.e.,
transaction/cost, incentive programs, site design and interactivity, on
the prediction of purchase intentions for clothing products. Van den
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Poel & Buckinx (2005) defined variables from four different categories
and demonstrated that detailed clickstream variables are the most im-
portant ones for the task of online purchase prediction. Furthermore,
Liu et al. (2016) created a more comprehensive view of variables in-
cluding profiles for users, merchants, brands, categories, items and their
interactions for predicting the repeating buying behavior. Although
these studies shed light on the construction of variables for predictors,
the prediction models used so far are limited in some classical models
such as Logistic Regression (Van den Poel & Buckinx, 2005), Random
Forest (Liu et al., 2016), Gradient Boosting Decision Tree (Volkovs,
2015). In fact, Kim et al. (2003) have compared five combination
methods of multiple classification models for online purchase predic-
tion. They showed that the combination of multiple classifiers out-
performed the single classifier. Therefore, it would be expected that to
design a purchase prediction model using advanced machine learning
techniques will result in an increase of the prediction accuracy. Our
work, in this respect, is unique to the relevant research on the purchase
prediction. That is, we present a novel model that is built by using the
semi-supervised learning and the multi-view learning, which is more
suitable for the purchase prediction task.

3. Modeling online purchase prediction

To predict and understand online buying behavior typically rely on
the browsing behavior by using the page-to-page clickstream data re-
corded in server log files (Sismeiro & Bucklin, 2004; Van den Poel &
Buckinx, 2005). Meanwhile, the consecutive clickstream is usually di-
vided into a series of sessions, each of which represents a single visit to
the website. From a data perspective, we model the online purchase
prediction problem as shown in Fig. 1. The live system aims to predict a
user whether to buy in the near future time mainly based on the current
session of this user. Furthermore, existing research (Moe & Fader, 2004;
Jerath et al., 2011; Iwanaga et al., 2016; Morisada et al., 2019) has
repeatedly verified that the recency and frequency of customers’ pre-
vious purchases and visits are important indicators for forecasting
purchases in future. So we should take the recent clickstream into
consideration for part of users. As a result, this prediction model is
mainly trained with the clickstream data and labels in the observed
window, and with recent clickstream and demographics if available for
experienced customers.

User Segmentation. Existing literature (Tkaczynski et al., 2009;
Berthon et al., 2012; Morisada et al., 2019) have shown the one-size-fits-
all marketing strategy is far from the best practice. So the customer
segmentation is essential for deeply understand and also accurately
predict users’ purchasing behaviors. In general, users in the observed
window can be divided into three disjoint categories, solely according
to the browsing records.

• First-Time Visitors. This kind of users visit the Website for the first
time, which implies none historical information is known about
these users except the current clickstream.

• Ever-Visited Users. This kind of users have ever visited the Website

but did not visit recently, e.g., in recent one month. So some de-
mographic information is available besides the current clickstream.

• Recent-Visited Users. This kind of users are very active, i.e., they
visited the Website recently. As a result, recent, current clickstream
and some demographic information are available.

It is noteworthy that the standard for user segmentation is not un-
ique. For instance, Hernández et al. (2010) distinguished users as two
groups according to whether they have purchased: potential e-custo-
mers who have never purchased and experienced e-customers who have
made at least one purchase. Although our above user segmentation is
based on previous visits, we will further distinguish recent-visited users
as “not purchased” and “purchased” groups for carefully examining
their purchasing behaviors in Section 4.3.

4. e-Tourism dataset and analysis

The goal of our research is to investigate the online purchasing
behavior on the tourism e-commerce platform, which has been verified
to have many different characteristics with other comprehensive e-
business platforms (e.g., Amazon, eBay). Hence, in this section, we first
introduce a real-life e-tourism dataset used in our study and then con-
struct a suite of effective variables for the task of online purchase
prediction. We then perform a quantitative analysis to show some in-
teresting characteristics of purchase patterns on this dataset.

4.1. Data description

The dataset is provided by Tuniu1, one of the largest online travel
agency (OTA) platforms in China. At the time of this study, Tuniu is
capable of providing over 1 million tourism products and has provided
tourism service for approximately 15 million customers. For these
reasons, Tuniu is a compelling setting in which to investigate Internet
buying behavior on the tourism e-commerce. This dataset is mainly
made up of the page-to-page clickstream data from server logs, which is
in fact the common setting within the research on online purchasing
behavior analysis (Sismeiro & Bucklin, 2004; Van den Poel & Buckinx,
2005). In our study, we extract the clickstream of three disjoint weeks
with different contexts, as listed in Table 1. In particular, D1 corre-
sponds to a week during summer holidays, D2 is the last week before
China’s National Day holiday, and D3 is a typical week in working day
(i.e., slow season for travel). Moreover, each session consists of a se-
quence of pages clicked by a user during a certain period and it is re-
garded as a sample (i.e., an instance) hereafter in our study. Each ses-
sion is labeled purchased or not according to whether it contains the
booking pages. Thus, the number of purchased sessions and the corre-
sponding conversion rates (CR) are obtained. Not surprisingly, the
conversion rates of weeks during or near holidays (i.e., D1 and D2) are
higher than that of working day (i.e., D3). As reported by Moe and Fader
(2004) and Ludwig et al. (2013), conversion rates average approxi-
mately 2%–3% across online retail sites. We can thus believe that the
conversion rate on e-tourism sites is quite low, that is, the CR of slow
season is only 1.26% (i.e., D3) and the CR of week near long holiday
barely reaches 2.54% (i.e., D2).

In addition to the clickstream, our dataset also includes a bank of
attributes associated with every page. A majority of pages are used to
introduce different tourism products such as travel packages, attraction
tickets and visa services. For these product pages, the descriptive at-
tributes contain price of the product, departure city of the product, and
two tourism product classifications from two angles. In detail, the first
product classification is according to the travel region and thus each
product is described as local/around tour, domestic short/long haul and
oversea short/long haul. Another product classification addresses the

Fig. 1. A general model for the online purchase prediction. 1 http://www.tuniu.com
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travel type including Tuniu special tour, package tour, self-driving tour,
selfguided tour, company’s package tour, and local-attended tour.
Meanwhile, if a list page is returned by the search engine, then the
search engine and the corresponding search keywords will also be re-
corded. Besides, IP address of every session is recorded, and thus the
city that a customer lives in can be inferred from the IP address. The
above descriptive information plays a vital role in constructing different
variables for the prediction task, which will be introduced in Section
4.2.

In our dataset, there are many basic variables exhibiting the heavily-
tailed characteristic. Fig. 2 shows the distribution of three variables: the
length of sessions, price of all products and purchases made by users. As
can be seen, an overwhelming majority of users clicked less than 10
pages. What’s more, less than 2% of users have clicked more than 20
pages (Fig. 2(a)). Similarly, existing research (Bucklin & Sismeiro,
2003; Sismeiro & Bucklin, 2004; Van den Poel & Buckinx, 2005;
Iwanaga et al., 2016) generally suggests that the number of browsed
pages of each session and its dwell time exert the positive impact on
purchases. To examine these on our e-tourism data, we employ the
Mann-Whitney U test (Mudambi & Schuff, 2010) on two groups of
samples (i.e., buy and not-buy). According to the results (p-
value≤ 0.001), we find a statistically significant positive association
between length (dwell time) of a session and purchases. Most tourism
products cost hundreds of dollars (Fig. 2(b)), but customers are likely to
buy products around 100 dollars (Fig. 2(c)). Compared with daily-used
commodities (the average expenses is around 10 dollars (Kooti et al.,
2016)), the tourism products are quite expensive.

4.2. Variable definitions

In our settings, the demographics of users are scarce due to the
privacy and resources concerns, which is largely different from a body
of existing studies (Kim et al., 2003; Van den Poel & Buckinx, 2005; Lu
et al., 2010; Kooti et al., 2016). There also exist a large number of new-
visited users of which the unique data is their current clickstream.
Hence, it is required to fully exploit the clickstream data to define a rich
set of variables, including not only browsing behaviors but also
tourism-specific behaviors. Furthermore, based on clickstream in the
last month, we can define another set of variables for recent-visited
users. Formally, we denote i as the user number and j as the session
number. Thus, a variable associated with i indicates it is defined at the
user-level (analogically for j at the session-level). Every instance to be
predicted is a session, rather than a user, and a user may lead to

multiple sessions. However, given a session, we can associate this ses-
sion with a specific user and then variables defined on this user will be
added onto this session.

Table 2 summarizes the variables that will be used for the task of
online purchase prediction and gives their brief descriptions. The one
but last column indicates whether this variable is already used in ex-
isting studies. Most of the variables are self-explanatory, whereas for
several intricate variables including Locationj, TRegionsj, PTypesj and
RPagesj, we present their computational details in Appendix A. Van den
Poel & Buckinx (2005) classified the variables for purchase prediction
into several categories: clickstream measures, customer demographics
and purchase behavior. Besides these categories, we add a new category
called spatio-temporal measures to address some particular feature of
tourism products. For example, Locationj measures the distance between
the city that a customer lives in and the departure cities that he has
clicked, and Holidayj indicates the interval between current time and
the next holiday.

To validate the utility of the variables (Bacharach, 1989), many
studies have provided an in-depth analysis on hypothesis testing or
statistical significance for the variables (e.g., Van den Poel & Buckinx,
2005; Brown et al., 2003; Lu et al., 2010; Pavlou & Fygenson, 2006).
The Mann-Whitney U test enjoys great popularity among scientists
comparing two independent groups of observations, and tests specifi-
cally whether there is a difference between randomized groups in terms
of their mean ranks (Bergmann et al., 2000). We employ the Mann-
Whitney U test on two groups of samples (i.e., buy and not-buy) and
show the statistical results in the last column of Table 2. As can be seen,
all of variables are statistically significant at least at the 0.05 level.

4.3. Purchase pattern analysis

In this subsection, we perform a quantitative analysis to address
quite a few interesting characteristic of purchase patterns on both re-
cency and current clickstream, especially for some domain character-
istics in e-tourism. Each group of analysis corresponds to some variable
as listed in Table 2. In fact, these numerical results reflect the observed
phenomena in e-tourism domain. From this perspective, we validate the
selected variables are incapable of providing explanations of observed
phenomena, which is a primary criteria for evaluating variables
(Bacharach, 1989).

First, we investigate the correlation between purchasing behavior
and the user segmentation. As introduced in Section 3, we have divided
users into three groups: first-time visitors, ever-visited users and recent-
visited users. Also, by collecting the buying behavior recent-visited
users, we further divide them into recent-purchased users and recent-
not-purchased users. Table 3 shows the conversion rates of every kind
of users. We first observe that a majority of users are first-time visitors
that account for 52.3% on D1, 61% on D2 and 55.6% on D3, respec-
tively. This situation is somewhat like the cold-start problem addressed
in recommendation (Liu et al., 2014; Ge et al., 2014; He et al., 2016):
the purchasing behavior prediction is complicated by the lack of
abundant information for the first-time visitors. As expected, existing
customers (i.e., members) bring about higher conversion rates, which is
modeled by the variable Memberi. However, it is striking that the

Table 1
Statistics of e-Tourism Datasets Used in Our Study.

Time #Record #User #Session #Purchase CR

D1 1 to 7 Aug., 2012 2,022,633 364,067 431,321 7284 1.69%
D2 24 to 30 Sept., 2012 1,980,299 341,878 403,032 10,236 2.54%
D3 1 to 7 Nov., 2012 941,930 190,292 217,692 2731 1.26%

Note: (1) “#Purchase” indicates the number of sessions including the buying
events;
(2) “CR” means the conversion rate:#Purchase/#Session*100%.

Fig. 2. Distributions of session length and price.
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conversion rates (CR) of recent-purchased users achieves an ex-
ceptionally high rate, i.e., over 17% on three datasets. This indicates
that the historically purchasing behavior is strongly correlated to pre-
dicting the future purchases, which coincides with the results reported
in previous studies (Brown et al., 2003; Iwanaga et al., 2016; Morisada
et al., 2019). In contrast, we are fully conscious of that approximately
60% purchases are made by non-members. The primary data in hand
for understanding non-members is the current clickstream, where the
browsed pages are still very few according to Fig. 2(a). Therefore, how
to fully exploit implicit information from current clickstream is very
critical to the purchase prediction task.

Second, we consider the search behavior that affects purchasing
decisions for current clickstream. Users often utilize search engines to
find a needle and whether a user has used search engine is recorded for
each current session. We further distinguish the search behavior as
onsite search and offsite search. Note that the offsite search indicates
one of sources directed to the e-travel site, e.g., from Baidu. The search
behavior is modeled by the variable Searchj. To quantitatively char-
acterize the effect of search behavior, we adopt two indicator random
variable: X=1 means the search behavior is included in a session; and
Y is associated with the event in which the purchasing behavior occurs
(Y=1), otherwise for Y=0. Then, we are interested in comparing two
pairs of conditional probabilities over all samples (i.e., current ses-
sions): P (Y=1|X=versus P (Y=0|X=1); and P (X=1|Y=1)
versus P (X=1|Y=0). As can be seen from Table 4, the onsite search
behavior is a strong signal of purchases, because over 95% customers

using onsite search have bought products and over 20% customers have
ever used onsite search during their purchasing process.

Third, we focus on analyzing the recent-visited users in order to
examine the recency effects of visiting and purchasing behaviors, cor-
responding to variables LVDaysi and LPDaysi. For this purpose, we ex-
tract the set of users who have purchases and count the number of days
elapsed since the last visit and purchase. From the CDF distributions as
depicted in Fig. 3, we first observe that both distributions are heavy-
tailed, implying the recency effects are significant. Moreover, the re-
cency effect of last visit is even stronger, i.e., approximately 90% multi-
visited users completed their purchases during their second visits
within five days. However, time between purchases grows relatively
gradually. This is in contrast to the findings of (Iwanaga et al., 2016;
Kooti et al., 2016), which find that the time between purchases of daily-
used commodities has bursty dynamics and weekly cycles. When ex-
amining the products purchased in a short time interval (e.g., about
60% users perform the second purchase within three days), we find
these products are mostly trivial ones with the low cost, such as tours
around, attraction tickets, etc. Once a user bought the package tour
with high cost, such as domestic long haul and oversea short/long haul,
etc. There is a relatively long time interval until the second purchase
happens, e.g., approximately 18% second purchases occur after over
11 days.

Fourth, we evaluate a domain-specific factor on purchase decisions,
i.e., the distance between the city that a customer lives in (inferred by
IP address) and the departure cities that he/she has clicked. This factor
corresponds to the variable Locationj of which the computation details
are shown in Appendix A. Fig. 4 shows the comparison results of buy
and not-buy group. It is obvious that sessions without purchasing be-
haviors mostly own smaller similarity values (e.g., falling into the in-
tervals (0, 0.25] and (0.25, 0.5]), while sessions with purchasing be-
haviors mostly own larger similarity values (e.g., falling into the
interval (0.75, 1.0]). The impact of variable Locationj accounts for that
customers who frequently browse travel products departing from cities
near to his living city are likely have strong purchase intents.

Table 2
. Variable Definitions: ✓ means the variable has been used in previous studies.

Variable Description p-Value

Variables for Recency Clickstream Customer demographics
1 Memberi Whether user i is member (1= yes, 0= no) ✓ ***

Clickstream measures
2 LVDaysi Days elapsed since user i’s last visit (Sigmoid) ✓ ***
3 TotVi Number of visits made by user i in last month ✓ ***
4 PAvgVi Average price in dollars of products browsed by user i in last month ✓ **
5 PDevVi Stand. Dev. of price of browsed-products for user i in last month ✓ **
6 LDwelli Dwell time in seconds of the last session of user i ✓ *
7 DwellAvgi Average dwell time in seconds of user i’s sessions in last month ✓ *

Purchase behavior
8 TotPi Number of purchases made by user i in last month ✓ ***
9 LPDaysi Days elapsed since user i’s last purchase (Sigmoid) ✓ ***
10 MAvgPi Average monetary spending in dollars of user i in last month ✓ ***

Clickstream measures
Variables for Current Clickstream 11 PAvgj Average price of products within session j (Log) ✓ ***

12 PDevj Stand. Dev. of price of products within session j (Log) ✓ **
13 Lengthj Length of session j (Log) ✓ ***
14 Dwellj Dwell time in seconds of session j (Log) ✓ ***
15 Searchj Which search engine is used in session j (0=none, 1=offsite, 2= onsite) ✓ ***
16 TRegionsj The entropy of travel destination distribution in session j ✓ ***
17 PTypesj The entropy of travel type distribution in session j ✓ **
18 RPagesj Percentage of pages containing travel product displays in session j ✓ ***

Spatio-temporal measures Average price of products within session j (Log)
19 Locationj Average semantic Sim. between user i’s living city and departure cities of products in session j ✓ ***
20 Holidayj Number of days between log-time of session j and the latest holiday ✓ **
21 Weekendj Whether current time of session j is weekend (1=yes, 0= no) ✓ **

Note: (1) “Sigmoid” means the variable is normalized into [0, 1] by Sigmoid function
+ −e x

1
1

;

(2) “Log” means the variable is taken its logarithm as log10 x.
(3) Mann-Whitney U test: *< 0.05; **<0.01; ***<0.001.

Table 3
Conversion Rates of Different Users.

First-Time Visitors Ever-Visited Users Recent-Visited Users

Not Purchased Purchased

D1 0.88% 2.55% 2.19% 17.15%
D2 1.34% 1.39% 4.47% 17.70%
D3 0.61% 1.73% 1.92% 17.60%
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Finally, we investigate the impact of regions of travel products that
customers have browsed. This factor is expressed by the variable
TRegionsj (see computation details in Appendix A). The boxplots in
Fig. 5 compare the entropy distributions of regions, where small en-
tropy indicates one customer centers on browsing few regions. As can
be seen, the entropy of the buy group has small medians as well as small
variances on three datasets. This implies that customers who have
strong purchase intents are likely to browse travel products taking his
interested regions as destinations. In contrast, customers who ex-
tensively browse various travel products hardly make purchase deci-
sions.

5. The purchase prediction model

In this section, we present the purchase prediction model named co-
EM Logistic Regression (co-EM-LR). In what follows, we first describe
the motivation for our co-EM-LR model and present its general settings.
Then we derive the inference algorithm based on the semi-supervised
learning and multi-view learning approaches.

5.1. Model specification

Most of research (Kim et al., 2003; Van den Poel & Buckinx, 2005;
Volkovs, 2015; Liu et al., 2016)on the use of machine learning methods
to predict purchasing behavior focused on designing a variety of ef-
fective variables. Then, the well-formed classification models were
adopted as predictors, e.g., the Logistic Regression model was used by
Van den Poel & Buckinx (2005), and multiple classifiers were combined
by a genetic algorithm in Kim et al. (2003), etc. However, little atten-
tion has been paid to develop advanced learning models making an
attempt to fit the characteristics of purchase prediction problem. We
adopt Logistic Regression as the base model, because it is a most
widely-used model in marketing realm due to the ease of its inter-
pretation on variables (Van den Poel & Buckinx, 2005). Furthermore,
we extend the infrastructural Logistic Regression model to handle two-
fold difficulties within the purchase prediction problem. Firstly, the
labeled users used for training (i.e., the users are labeled whether
purchased) are more limited than unlabeled ones, which is likely to
reduce the generalization capacity of supervised predictors. So, we
would like our model to be able to bootstrap the weak predictor, that is

built with an initial small set of labeled instances, by using a large
amount of unlabeled data. Secondly, as introduced in Section 4.2, we
have two classes of variables: one for current clickstream and the other
for recent clickstream. Inspired by the multiview learning (Zhao et al.,
2017b), the compatibility between different views (i.e., classes) of
variables can be exploited for improving the learning performance. So
we might expect two classes of variables can work cooperatively to
deliver a consistent decision. Based on the above discussions, we pre-
sent a novel learning model, called co-EM Logistic Regression (co-EM-
LR), for purchasing prediction. The co-EM (Fan et al., 2018) is a well-
known and conceptually simple model that combines multi-view
learning with the probabilistic Expectation Maximization (EM) algo-
rithm. Our co-EM-LR model contributes to combine the discriminative
model (e.g., regression) with the generative probabilistic model (e.g.,
EM). This novel model brings about several advantages: (i) it inherits
the ease of model’s interpretation in marketing research; and (ii) its
learning procedure is in semi-supervised as well as multi-view style.
Mathematically, we denote D as the data collection, where each in-
stance corresponds to a session in the case of purchase prediction. Thus,
the set of labeled instances is denoted as D D D= ⋯((x , y ), , (x , y ))l 1 1 | | | |l l
where the binary valued variable yi ∈ {1, 0} denotes session i results in
purchasing or not, and the remaining set of unlabeled instances is de-
noted as D D= ⋯∗ ∗(x , x )u 1 | |u . We have D D D= ∪l u. Recall that two
groups of features are constructed for each session in Section 4.2. Ac-
cording to the common setting of the multi-view learning, we hereafter
denote V1 and V2 as the set of variables for recency and current click-
stream, respectively. Any instance xi can then be decomposed as (xi1,
xi2), where xi1∈ V1, xi2∈ V2. It is noteworthy that the session delivered
by the first-time visitor only has the single view V2. So these sessions in
the labeled data will be utilized for training V2 and their labels will
ultimately be determined by V2.

Our goal is to learn a Logistic Regression (LR) function which as-
signs high values to positive and low values to negative samples in Du.
Let hθ(xi) denote the posterior probability output by the LR classifier
governed by parameters θ=(θ1, θ2), where θ1 and θ2 correspond to the
parameters for V1 and V2 respectively. If we set xi1 as a zero-vector
when V1 is missing for the first-time visitors, the LR function can be
defined as

=
+ −

=
+ − −

h x
θ x θ x θ x

( ) 1
1 exp( )

1
1 exp( )θ i

i i i
T

1
T

1 2
T

2 (1)

Table 4
Impact of Search Behavior on Purchases.

D1 D2 D3

Onsite Offsite Onsite Offsite Onsite Offsite

P (Y|X=1), Buy 95.12% 3.74% 96.23% 4.19% 94.78% 4.69%
Y={0, 1} Not-Buy 4.88% 96.26% 3.77% 95.81% 5.22% 95.31%
P (X=1|Y), Buy 21.76% 61.47% 25.61% 53.25% 20.39% 59.65%
Y={0, 1} Not-Buy 1.67% 56.83% 1.78% 49.37% 1.22% 58.89%

Note: “Onsite“ and “Offsite” stand for onsite search and offsite search, respectively.

Fig. 3. Recency effects of last visit and purchase.
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To estimate the class posterior p(yi|xi), yi ∈ {1, 0}, we assume a
generative model: the decision function values for a class (i.e., p
(hθ(xi)|yi)) are assumed to follow a Gaussian distribution N (µ, σ2).
Hence, our model needs to learn two types of parameters: θ within the
LR function as well as µ and σ within the generative model.

5.2. Inference and learning

The co-EM-LR model is actually a semi-supervised learning proce-
dure, which benefits from the Gaussian generative model for fully ex-
ploiting the unlabeled data. This is very similar to the co-EM model
(Fan et al., 2018). In particular, we first build an initial LR classifier
based on labeled data, and we can obtain the value of ∗h x( )θ j for each
unlabeled instance ∗x( )j . By picking up a certain percentage of unlabeled
instances with the largest ∗h x( )θ j values, we obtain a set of positive in-
stances (i.e., sessions being likely to purchasing), denoted as Du

1. To
keep balance of whole data, we set the percentage of positive instances
inDu

1 as equal to the percentage of instances with yi= 1 in the labeled
dataset. Thus, the set of negative instances is obtained byD D D=u

0
u u

1.
The parameters of the generative model are µ1, σ1

2 and µ0, σ0
2 for two

classes. We can estimate these parameters by

D D
D D

∑ ∑=
+

⎛

⎝
⎜⎜

+
⎞

⎠
⎟⎟∈ ∈

∗

∗
μ

λ
h x λ h x1

| | | |
( ) ( ) ,y

x
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(3)

where the preset hyper-parameter λ∈ [0, 1] is the weight that controls

the importance of unlabeled instances in Du. For each unlabeled in-
stance ∗xj , we can compute the conditional probability ∗p x y( | )j j by using
the Gaussian estimator.

N ̂̂ ̂= ∈∗ ∗p x y μ σ( ) (h (x ) , ), y {1, 0}j j θ j yj yj
2

j (4)

Then, according to the Bayesian theorem, we can infer the desired
class probabilities  ∗p y x( | )j j :

N

N

  

 

̂̂ ̂

=

=

∗
∑

∑

∗

∈
∗

∗

∈
∗

p y x θ μ σ( ; , , )

,

j j y y

p x y p y

p x y p y

μ σ

μ σ

2
( ) ( )

( ) ( )

(h (x ) , )p(y )

(h (x ) , )p(y )

j j

j j j

y j

θ

y θ

{1,0}

j yj yj
2 j

{1,0} j y y
2

j (5)

where p y p y( )( ( ))j is the prior probability computed on labeled dataset
Dl.

The second component of the co-EM-LR model is how to retrain the
LR model based on labeled dataset Dl and probabilistically labeled
dataset Du with class probabilities  ∗p y x( | )j j . This is equivalent to
building a semi-supervised LR classifier. First, we assign every un-
labeled instance a crisp label by   = −∗ ∗ ∗y p y x p y xmax ( | ) min ( | )j y j j y j jj j .
Second, we define a weight as wj =

  = −∗ ∗w p y x p y xmax ( | ) min ( | )j y j j y j jj j which is used to measure the de-
gree of reliability for each unlabeled instance ∗xj , and if wj > η, the
unlabeled instance ∗xj will be selected for training in the following
process. Finally, a pseudo-labeled dataset, denoted as
D D D D′ = 〈 ⋯ 〉∗ ∗

′
∗

′
∗

′(x , y , w ), (x , y , w )u 1 1 1 | | | | | |u u u , is generated according to
the selected unlabeled instances in Du.

In general, given a parameter θ, LR model expresses the posterior
probabilities for an instance xi in a compact form as:

Fig. 4. Impact of geographic information on purchases. The semantic similarity measures the distance between the city that a customer lives in and the departure city
of tourism product.

Fig. 5. Impact of travel regions distribution on purchases.
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′ = − −p y x θ h x h x( ; ) ( ( )) (1 ( ))i i θ i
y

θ i
y1i i (6)

Algorithm 1 co-EM-LR

Input: Dl: Labeled dataset; Du: Unlabeled dataset;
Output: The probabilities ′ ∗p y x( | )j j , yj∈ {1, 0} for each instance D∈∗xj u;

1: Train an initial LR model governed by θ2 on view V2 of Dl;
2: repeat
3: for v=1 to 2 do

4: Obtain Du
1 by ∗h x( )θν j on complementary view Vv¯; D D D=u

0
u u

1;

5: Estimate µ1, µ0, σ1
2 and σ0

2 according to Eqs. (2) and (3);
6: Estimate  ∗p y x( | )j j , D∀ ∈∗xj u by θv¯ according to Eq. (5);

7: Generate a pseudo-labeled dataset D ′u;
8: Update θv by maximizing Eq. (7) using SGD method with a smoothing factor Λj;
9: end for
10: until converge
11: return Probability ′ ∗p y x( | )j j , ∈y {1, 0}j , D∀ ∈∗xj u, computed by Eq. (6);

As a result, given labeled datasetDl and pseudo-labeled datasetD ′u, to
train the semi-supervised LR model can be performed by maximizing
the following log-likelihood:

D D

∏ ∏= ′ ′
∈

∧

∈ ′

∗ ∗ ∧l θ p y x θ p y x θ( ) log( ( ; ) ( ; ) ),
x

i i
x

j j
i

i

i

j

i u (7)

where Λi=1 and Λj= λ ∗wj are the smoothing factors to measure the
contributions of every labeled instance xi in Dl and every crisp labeled
instance ∗xj in D ′u, respectively. Specifically, the Stochastic Gradient
Descent (SGD) (Mandt et al., 2017) method is employed to update
parameters for increasing the log-likelihood through one instance at a
time. The computational details will be presented in Appendix B.

Algorithm 1 presents a sketch of our co-EM-LR model. Lines 3–9
address the multi-view learning, another important component within
our model. Initially, when v=1, we utilize the = =θ ν( 2)ν to split
unlabeled dataset Dl into a positive set and a negative set, since an
initial LR model governed by θ2 has been built in Line 1. Then, we
update parameters, i.e., µ and σ2, of the generative model on the
complementary view Vv¯, and thus compute predicted probabilities of
every unlabeled instance. Afterwards, a pseudo-labeled dataset D ′u is
generated. In line 8, we invoke a semi-supervised LR training to update
parameters of the current view θv based on Dl and D ′u. In this way,
parameters of two views, i.e., θ1 and θ2, are updated alternatively with
each other. Note that the loop achieves convergence when the max-
imum difference between new and old θ values is smaller than a
threshold (e.g., 0.0001 is set in our experiments).

6. Experimental results

In this section, we first demonstrate the effectiveness of the pro-
posed co-EM-LR model on the real-world travel data. Next, we validate
that two complementary views can mutually improve the performance
with each other and finally offer fast convergence. Last but not the
least, we evaluate the importance of every variable to discover the key
factors that affect online purchase decisions.

6.1. Experimental setup

Baseline Methods. The proposed co-EM-LR approach adopts the LR as
the base classifier and trains the classifier in a semi-supervised and
multi-view learning way. So we first employ the following three
methods for the performance comparison.

• co-EM (Fan et al., 2018). co-EM is a semi-supervised learning
method that assumes a Gaussian generative process on unlabeled
data.

• co-Training (Yu et al., 2011). co-Training is a multi-view learning
method that assumes each example is described by two different and
complementary feature sets. Here, the LR model is also used as the
base classifier of co-Training.

• LR. Logistic Regression is the base classifier of our co-EM-LR model
and also is one of the most widely-used classifier models in the
purchase prediction (Van den Poel & Buckinx, 2005; Kim et al.,
2003).

In addition, we employ two famous ensemble classification models:
Random Forest (RF) and Gradient Boosting Decision Tree (GBDT). They
often exhibit an excellent performance on various prediction tasks in-
cluding the purchase prediction (Li et al., 2015; Volkovs, 2015) and
other highly-related tasks such as the repeat buyer prediction in e-
commerce (Liu et al., 2016). In total, five competitive methods are used
in the experiments for the purpose of performance comparisons. Spe-
cifically, we use 10-fold cross-validation to provide robust results for
different methods. We randomly split D1, D2 and D3 into two parts,
respectively, 10% of which as the training setDl and the rest set as the
test setDu (the class size distribution holds). Our co-EM-LR, co-EM and
co-Training are implemented in Python by ourselves. We select in-
stances having 10% highest and 10% smallest decision function values
from Du into Dl in co-Training. The same as co-EM-LR, we set the
threshold for convergence as 0.0001 in the setting of co-Training and
co-EM. Besides, LR, RF and GBDT are implemented by scikit-learn2, a
machine learning library for Python. We adopt default parameters
setting of scikit-learn in LR, RF and GBDT.

Evaluation Metrics. Since the ground-truth is known, we adopt the
widely-used metrics such as precision (P), recall (R), and F-measure (F)
for the performance evaluation (Brzezinski et al., 2018). Specifically,
we focused on the ability of detectors to recognize the sessions with
online purchases, where

=
+

=
+

=
+

P TP
TP FP

R TP
TP FN

F PR
P R

, , 2 ,
(8)

with TP being the number of truly identified sessions with online
purchases, TN the number of truly identified sessions without online
purchases, FP the number of wrongly identified sessions with online
purchases, and FN the number of missed sessions without online pur-
chases. In general, P and R highlight the accuracy and completeness of a
classifier, respectively, and F provides a global view.

Parameter Analysis. Here, we study the impact of thehyper-para-
meter λ on the performance of our co-EM-LR model. Fig. 6 shows the
classification performance in terms of F for online purchase prediction
given different weights of unlabeled dataset Du, where η is empirically
set to 0.4 to select convincing unlabeled instances for training. We find
that λ=0.6 is a relatively robust choice, becoming the default setting
in our experiments. It validates the important role of unlabeled dataset.

Goodness-of-Fit Test. The goodness-of-fit measures how well our co-
EM-LR model fits the training data. Since co-EM-LR employs the
Logistic Regression as its base model, the statistical methods designed
for evaluating the goodness-of-fit of Logistic Regression are appropriate
for evaluating the co-EM-LR model. Here, we select the Hosmer-
Lemeshow statistic (Hosmer et al., 1988), a chi-squared test, to access
the goodness-of-fit of co-EM-LR. First, we set up the null hypothesis as-
suming that there is no significant difference between the observed and
the predicted values. We then randomly sample 10% instances as ob-
served data and compute the significant level p-value on three datasets.
We repeat 10 times and takes the median p-value as the final results. As
a consequence, all the p-values are more than 0.05 on three datasets. To
be specific, the median p-values are 0.138, 0.156 and 0.145 on D1, D2

and D3 respectively. According to Hosmer et al. (1988), the null hy-
pothesis is accepted when p-value > 0.05. In turn, this implies that the
co-EM-LR model shows a good fit based on the chi-square of Hosmer-
Lemeshow goodness-of-fit statistics.

2 http://scikit-learn.org/stable/
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6.2. Overall performance comparison

In this subsection, we present the overall performance comparison
between the co-EM-LR model and five baseline methods to demonstrate
the effectiveness of the co-EM-LR model for online purchase prediction.
Table 5 reports the results of overall performance comparison, where
the column “Overall” lists the mean metric values and their standard
deviations on three datasets and the row “Average” is the mean metric
values of all methods on different user segmentations. Note that the
mean metric value and its standard deviation is computed on the 10-
fold cross-validation (Lo et al., 2016) results.

It is clear to observe that the co-EM-LR is noticeably superior to
baseline methods in terms of R but slightly inferior to some baseline
methods in terms of P. However, the global performance of co-EM-LR,
indicated by F, surpasses all of competitive methods. In particular, our
co-EM-LR method makes an improvement rate of 14.6%–28.3% on R
and of 5.6%–11.5% on F, compared with the second-best method on
three datasets. We have to stress that the recall is much more important
than the precision in the application of purchase prediction. Image tens

of thousands of customers are visiting the e-tourism website every day
and the call center team wants to call them all for improving the visit-
to-purchase conversion rate, but it is impossible (Navío-Marco et al.,
2018). Hence, it is expected that customers with good chances to be a
buyer are always in their selection (Moe, 2006; Pavlou & Fygenson,
2006). From this point of view, the higher R values of our co-EM-LR
model make it more valuable to the e-tourism platform. Nevertheless,
the co-EM-LR model owns an acceptable performance over P, i.e., P
values of co-EM-LR are all more than 85% on three datasets. When we
examine the standard deviation of 10-fold cross-validation trails, our
co-EM-LR also shows the best of all in stability. Among five baseline
methods, two ensemble classifiers RF and GBDT indeed perform better
than other baselines. Perhaps this is why they were largely applied to
the purchase prediction task (e.g., Kim et al., 2003; Volkovs, 2015). We
further look inside the performance on three user groups. As shown by
the “Average” rows of Table 5, regardless of any approach, the per-
formance on recent-visited users (U3) is the winner, followed by ever-
visited users (U2) and first-time users (U1). The reason for this is pretty
obvious: the recent-visited user has more clickstream data which helps

Fig. 6. Impact of the parameter on the co-EM-LR model.

Table 5
Overall Comparison of Purchase Prediction Performance. The highest metric values among six methods are in bold.

Metric Method D1 D2 D3

U1 U2 U3 Overall U1 U2 U3 Overall U1 U2 U3 Overall

P co-EM-LR 0.857 0.923 0.947 0.927 ± 0.006 0.835 0.861 0.874 0.869 ± 0.006 0.845 0.896 0.913 0.899 ± 0.005
co-EM 0.951 0.972 0.986 0.974 ± 0.007 0.876 0.931 0.956 0.920 ± 0.008 0.861 0.894 0.925 0.887 ± 0.009
co-Training 0.827 0.896 0.926 0.864 ± 0.013 0.766 0.852 0.883 0.843 ± 0.012 0.879 0.943 0.978 0.952 ± 0.011
LR 0.751 0.894 0.912 0.879 ± 0.028 0.853 0.882 0.913 0.861 ± 0.020 0.793 0.836 0.886 0.882 ± 0.021
RF 0.891 0.944 0.977 0.962 ± 0.019 0.948 0.979 0.985 0.980 ± 0.016 0.965 0.978 0.982 0.975 ± 0.021
GBDT 0.912 0.971 0.978 0.969 ± 0.011 0.941 0.980 0.987 0.982 ± 0.012 0.948 0.974 0.979 0.973 ± 0.014
Average 0.865 0.933 0.954 – 0.870 0.914 0.933 – 0.882 0.920 0.944 –

R co-EM-LR 0.357 0.462 0.568 0.493 ± 0.005 0.423 0.547 0.719 0.643 ± 0.008 0.358 0.569 0.716 0.605 ± 0.009
co-EM 0.181 0.201 0.221 0.196 ± 0.009 0.198 0.291 0.301 0.281 ± 0.008 0.182 0.217 0.230 0.203 ± 0.009
co-Training 0.303 0.383 0.431 0.356 ± 0.009 0.542 0.476 0.578 0.492 ± 0.011 0.298 0.337 0.349 0.321 ± 0.009
LR 0.271 0.351 0.421 0.336 ± 0.022 0.372 0.461 0.487 0.424 ± 0.019 0.291 0.378 0.418 0.347 ± 0.021
RF 0.328 0.411 0.441 0.394 ± 0.015 0.365 0.468 0.521 0.465 ± 0.019 0.381 0.473 0.489 0.501 ± 0.018
GBDT 0.335 0.429 0.481 0.422 ± 0.016 0.391 0.502 0.545 0.501 ± 0.014 0.427 0.521 0.553 0.528 ± 0.017
Average 0.296 0.373 0.427 – 0.382 0.458 0.525 – 0.323 0.416 0.460 –

F co-EM-LR 0.509 0.618 0.717 0.644 ± 0.005 0.563 0.670 0.789 0.739 ± 0.006 0.507 0.697 0.809 0.723 ± 0.007
co-EM 0.304 0.333 0.361 0.326 ± 0.007 0.323 0.443 0.458 0.431 ± 0.007 0.300 0.349 0.367 0.330 ± 0.009
co-Training 0.444 0.537 0.588 0.504 ± 0.012 0.587 0.689 0.709 0.660 ± 0.011 0.445 0.497 0.514 0.480 ± 0.010
LR 0.398 0.504 0.576 0.486 ± 0.017 0.518 0.606 0.635 0.568 ± 0.014 0.426 0.521 0.568 0.498 ± 0.012
RF 0.479 0.573 0.608 0.559 ± 0.018 0.438 0.520 0.581 0.631 ± 0.019 0.429 0.503 0.565 0.635 ± 0.018
GBDT 0.490 0.595 0.645 0.588 ± 0.012 0.552 0.664 0.702 0.663 ± 0.015 0.583 0.679 0.705 0.685 ± 0.015
Average 0.437 0.527 0.583 – 0.497 0.599 0.646 – 0.448 0.541 0.588 –

Note: (1) U1, U2 and U3 denote first-time visitors, ever-visited users and recent-visited users, respectively.
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to construct the complete view of variables.

6.3. Effect of the multi-view learning

In this experiment, we try to reveal the run-time mechanism and
validate the effectiveness of multi-view learning inside our co-EM-LR
model. To this end, for each iteration of the co-EM-LR, we extract the
intermediate values of θ=(θ1, θ2) and predict the label of every in-
stance by using Eq. (1). Then, by comparing with ground-truth, we
compute values of three evaluation metrics for each iteration. Fig. 7
reports the results on three datasets in terms of P, R and F when the
number of iteration is set to 6, where “View V1” (“View V2”) represents
the prediction is only performed by θ1 (θ2) and “Multi-view” denotes
the prediction is made by θ.

The results of Fig. 7 yield the following conclusions. First, the
characteristics of two views are different and complementary. That is,
the view V1 corresponding to recency clickstream often delivers low P
values but high R values, which implies the classifier on V1 tends to
label a great many of sessions as “will be purchase”. In contrast, the
classifier on V2 corresponding to current clickstream is much more
conservative, which tends to produce a list of sessions being likely to
purchase once it labels “will be purchase”. However, both P and R
curves of the multi-view learning are sandwiched between those of V1

and V2. This implies that our co-EM-LR model utilizes the multi-view
learning (Zhao et al., 2017b)to balance the precision and recall of two
single views and ultimately improves the global classification accuracy.
Second, our co-EM-LR model converges fastly. All curves of Fig. 7 show
a sharp increase in the second iteration, and then remain broadly flat
until the convergence. The increase after the first iteration is caused by

the complementary effect which are first perceived in the second round,
which is consistent with the result of multi-view semi-supervised ap-
proach (Fan et al., 2018). In practice, by setting the threshold of the
change of θ as 0.0001, our co-EM-LR model usually converges after
around 10 iterations. The flat region of Fig. 7 indicates the 10 iterations
are more than sufficient.

6.4. Importance of variables

Inspired by the study (Young Kim & Kim, 2004), importance of
variables could provide managerial implications for future online
marketing. Hence, we attempt to evaluate the importance of every
variable introduced in Section 4.2, by the impurity measure commonly
used in the classification model (Li et al., 2017). To this end, given
labeled dataset Dl, then variables set V is regard as the combination of
V1 and V2 variable sets for all instances in Dl. Here, we adopt Fisher
Score (Zhang & Parhi, 2018) as the impurity measure for the evaluation
of variable set V. Specifically, for the f-th variable, let ∗μy

f and ∗σy
f de-

note the mean and standard deviation of the y-th class, respectively. Let
∗μ f and ∗σ f denote the mean and standard deviation of dataset Dl cor-

responding to the f-th variable, respectively. As a result, the Fisher score
of the f-th variable is computed as:

=
∑ −=

∗ ∗

∗F V
n μ μ

σ
( )

( )

( )
f y y y

f f

f
0

1 2

2 (9)

where = ∑∗
=

∗σ n σ( ) ( )f
y y y

f2
0

1 2, and ny is the number of instances in
class y. A higher Fisher score value indicates the variable has more
discriminative power (i.e., more important).

Fig. 8 shows evaluation results of all variables by using Fisher score

Fig. 7. Effect of the multi-view learning on co-EM-LR performance.
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on three datasets, where color bars denote top-10 important features,
whereas unified gray bars devote other variables having a low level on
Fisher score. As can be seen, top-10 important variables on three da-
tasets are very similar. Furthermore, top-3 important variables on three
datasets are either “Mem-beri→ LVDaysi→ RPagesj” or “Memberi→
RPagesj→ LVDaysi”, which indicates that demographics of users, per-
centage of pages containing travel product dis-plays in current sessions
and recent-visited time in recency sessions are the key factors that
significantly affect online purchase decision. Besides, current browsing
behaviors (e.g., Searchj and Dwellj), recency browsing behavior (e.g.,
LPDaysi), cost of finance (e.g., PAvgj) and users’ geographic information
(e.g., Locationj) also have slight effects on online purchase decisions.

7. Concluding remarks

With the rapid uptake of e-tourism industry, understanding the
online purchasing behavior of customers and thus devising the pur-
chase prediction strategies in the case of e-tourism application are of
substantial interest to decision makers (Navío-Marco et al., 2018). In
this paper, we study this problem by taking full advantage of a real-life
e-tourism data provided by a large online travel agency platform in
China. We perform a quantitative analysis to address quite a few in-
teresting characteristics of purchase patterns. Based on this analysis, we
construct a bank of variables for the current clickstream and recency
clickstream, which serve as the feature set of the classification model.
Our paper contributes to the existing body of knowledge on the design
of purchase prediction models. Specifically, we present an advanced
purchase prediction model co-EM-LR that combines the semi-supervised
learning and the multi-view learning. Also, our co-EM-LR adopts the
regression model as its base classifier to provide the good interpretation
of control variables. Through the extensive experiments, we find that

our co-EM-LR model yields significant prediction performance ad-
vantages over five competitive methods. In particular, the co-EM-LR
model can remarkably improve the recall which is crucial to increase
the marketing opportunities of converting visitors to buyers. This ad-
vantage will help to single out potential buyers from a huge number of
visitors, and will possess a source of huge value to big e-commerce
platforms that require the follow-up of many thousands customers
every day.

This study has several limitations and opens up opportunities for
further research. First, the prediction model is performed mainly ac-
cording to the customers’ browsing behaviors on product pages. Unlike
the traditional e-commerce websites, the content of pages in e-tourism
platform is not limited to product descriptions, whereas there are a
large number of pages about travel notes and strategies. Also, to un-
derstand the content of user-generated travel notes is not a trivial task.
Hence, to model such complex browsing behavior and incorporate it
into the purchase prediction is an interesting avenue for future re-
search. Second, despite our current work provides a solid foundation on
the three-staged purchase decision model (Zhang & Wedel, 2009; Wan
et al., 2017), a comprehensive examination of how customers make
online purchase decisions on e-tourism websites is still worthy of fur-
ther studies.
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Appendix A. Definitions of some intricate variables

As a supplement to Table 2, we introduce the definition and computational details of four variables: Locationj, TRegionsj, RTypesj and Re-
latedPagesj.

To reduce the financial and time cost, a customer usually choose a departure city near to the city that he/she lives in (inferred by IP address) to
start the trip. On this account, we use the structural similarity upon a tree to define a semantic relationship between two cities. In detail, we utilize
the hierarchical structure from United Nations geoscheme3 to construct a geographical tree including all departure cities of product and customers’
live cities in the real-life e-tourism dataset. Fig. A.9 shows an illustrative example of this hierarchical structure. Then, the distance between cities is
transformed to the similarity of two nodes in this geographical tree.

Definition A.1 (Locationj). Locationj is average semantic similarity between user’s living city and departure cities of products that the user has
clicked in session j. Let C denotes the living city and Cj denotes the set of departure cities extracted from session j.

∑=
∩

+
∈

Location
C

Depth C C
Depth C Depth C

1
| |

2 ( )
( ) ( )

,j
j C

jk

jkjk Cj (A.1)

where Depth(·) is the depth of a node (the depth of root is 1), and ∩C Cjk denotes the last common ancestor of two nodes in the geographical tree.
As introduced in Section 4.1, travel region and travel type are the two angles of classification to describe travel products in the session. Generally

speaking, customers who have strong purchase intents are likely to browse travel products taking his interested travel region as destination or
interested travel type as target. Hence, we utilize entropy to measure the degree of dispersal or concentration of travel region and travel type

Fig. 8. The importance of all variables on Fisher score.

3 http://en.wikipedia.org/wiki/United_Nations_geoscheme
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associated with products in the session. Definition A.2 (TRegionsj). TRegionsj is the entropy of travel region distribution in session j. Let Tj denotes the
set of travel regions extracted from session j, and for each travel region t in Tj, travel region distribution π assigns a probability π(t) which is
calculated by the ratio between the number of travel region t and the number of all travel regions in Tj. We have:

∑= −
∈

TRegions π t π t( )log ( ).j
t T

2
j (A.2)

The minimum value 0 of TRegionsj indicates that the customer browses the travel products which are in the same travel region in session j.
Whereas the bigger value of TRegionsj indicates that the customer browses travel products which are in various travel regions in session j.
Analogously, PTypesj is defined as the entropy of travel type distribution in session j, and the computational details is consistent with definition of
TRegionsj.

Customers who have strong purchase intents are more likely to browse related product pages to get rich information which can help to make
online purchase decisions. In this real-life e-tourism dataset, category page is one type of pages which usually displays a set of travel products
according to a specific topic (e.g., Beijing tour, amusement park and sea island, etc). Therefore, apart from product pages themselves, category pages
in the session are also important for identifying customers’ purchase intents.

Definition A.3 (RPagesj). RPagesj is the percentage of pages containing travel product displays in session j. Let Categoryj and Productj be the
number of category pages and travel product pages in session j, respectively. We have:

=
+

RPages
Category Product

Length
,j

j j

j (A.3)

where Lengthj is the length of session j as shown in Table 2.

Appendix B. Computational details of maximizing the log-likelihood

SGD is one of the simplest and most popular stochastic optimization methods, which can be used to optimize any convex function based only on a
finite sampled training set. Consider a labeled instance xi in Dl and a crisp labeled instance ∗xj in D ′u, a loss function J(θ) in SGD is defined as:

∏ ∏= − ⎛

⎝
⎜ ′ ⎞

⎠
⎟ −

⎛

⎝
⎜ ′ ⎞

⎠
⎟

= =

∗ ∗ ∧J θ
n

p y x θ
n

p y x θ( ) 1 log ( ; ) 1 log ( ; ) ,
l i

n

i i
u j

n

j j
1 1

l u
j

(B.1)

where, D≤ ≤n n(1 | |)l l l and D≤ ≤ ′n n(1 | | )u u u denote the number of stochastic mini-batch instances in Dl and D ′, respectively. We commonly set
nl=5%D| |l and nu=5%D ′| |u in this process.

Since the loss function J(θ) defines a negative correlation with log-likelihood function l(θ), maximizing l(θ) could be converted to minimizing J
(θ) by using SGD. Thus, the updated θ at each epoch t is

= −

= − ∑ − + ∑ − ∧

+ ∂
∂

= =
∗ ∗ ∗( )

θ θ α

θ α h x y x h x y x( ( ) ) ( ( ) ) ,

t t J θ
θ

t
n i

nl
θ i i i n j

n
θ j j j j

1 ( )

1
1

1
1l u

u

where α is the learning rate to control the magnitude of the changes to parameters. The iterative procedure will be suspended if the value of loss
function J(θ) is less than the threshold s. Here, we set the parameters of SGD as follows:α=0.01 and s=0.0001, respectively.
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