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ARTICLE INFO ABSTRACT

Keywords: This study investigates whether tourism forecasting accuracy is improved by incorporating
Tourism demand spatial dependence and spatial heterogeneity. One- to three-step-ahead forecasts of tourist arri-
Spatial spillover vals were generated using global and local spatiotemporal autoregressive models for 37 European
Spatial heterogeneity countries and the forecasting performance was compared with that of benchmark models in-
Ez:eeclasting cluding autoregressive moving average, exponential smoothing and Naive 1 models. For all

forecasting horizons, the two spatial models outperformed the non-spatial models. The superior
forecasting performance of the local model suggests that the full reflection of spatial hetero-
geneity can improve the accuracy of tourism forecasting.

Local estimation

Introduction

With the rapid development of the tourism industry, tourism demand forecasting has become increasingly important for gov-
ernments and business. According to the United Nations World Tourism Organization (UNWTO) (2019), growth in international
tourism continues to outpace the global economy, which makes the tourism sector a global driving force for economic growth and
development. Tourism demand forecasting has therefore attracted increasing attention in recent decades, especially in light of the
perishable nature of tourism services (Li, Song, & Witt, 2005). More accurate forecasts would enable stakeholders to plan ahead and
allocate resources more efficiently, and businesses could adjust their strategies to enhance their performance. To improve forecasting
accuracy, new methods have been continually developed in the tourism demand forecasting field. Time series models and econo-
metric models are most frequently used, and artificial intelligence (AI) models have started to gain popularity in the past decade (Jiao
& Chen, 2019). Reviews of tourism demand forecasting models have identified a number of new trends, including the use of spatial
models (Wu, Song, & Shen, 2017).

Spatial econometrics, which concerns the spatial interactions of economic units (Lee & Yu, 2010b), has recently become a popular
research area and has been applied in many different fields of study. Because locations and destinations are highly relevant to the
tourism industry, spatial analysis has been applied in some tourism studies to account for the spatial spillover effect among desti-
nations or between origins and destinations (Yang & Wong, 2012). For example, given the Schengen visa arrangements in the
European Union, long-haul tourists in particular tend to visit multiple destinations during a single trip to Europe. Previous tourism
studies (e.g., Romao, Guerreiro, & Rodrigues, 2017; Romao & Nijkamp, 2019) have confirmed the existence of significant spatial
dependency among European countries. This study attempts to examine if the incorporation of both spatial dependence and spatial
heterogeneity can improve forecasting performance in 37 European countries.
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Although the spatial effects on tourism growth and tourism flows have been analysed in many studies, only two have incorporated
the spatial spillover effect into tourism demand forecasting. Long, Liu and Song (2019) and Yang and Zhang (2019) used spatio-
temporal models to forecast domestic tourism demand in China and compared the forecasting performance with other benchmark
models: Naive 1, Naive 2, ordinary least squares (OLS), autoregressive integrated moving average (ARIMA) and other models. The
spatiotemporal spatial autoregressive (SAR) model used in these studies has the advantage of incorporating both spatial and temporal
lags in a panel data model. Following these initial attempts in introducing spatiotemporal models into tourism forecasting, the
present study aims to further develop the spatiotemporal model and examine the accuracy improvement in tourism forecasting. It
should be noted that, although the empirical setting of this study is in a tourism context, its contributions go beyond the tourism
forecasting literature, because to the best of our knowledge the models developed in this study have not been applied in any field of
forecasting yet.

The structure of this paper is as follows. Section O presents a literature review on tourism demand forecasting and spatial
econometrics. Section 0 explains the methodology. Section 0 discusses the empirical results and Section 0 concludes the study.

literature review
Tourism demand forecasting

Tourism demand forecasting is a longstanding stream of tourism research and has continuously attracted scholars' attention since
the 1970s. Tourism demand modelling and forecasting models can be broadly classified into three categories: time series models,
econometric models and Al models. Time series models identify patterns and trends from historical data to predict the future. Among
the time series models, ARIMA and seasonal ARIMA models are most frequently used in tourism forecasting (Song & Li, 2008). They
are commonly used as benchmark models along with other popular time series models (e.g., exponential smoothing and Naive
models) to examine the forecasting performance of newly developed models (Jiao & Chen, 2019). Unlike time series models,
econometric models incorporate explanatory variables into a forecasting model. Commonly used economic variables associated with
origin and destination countries include tourism prices and tourist income (e.g., Ayeh & Lin, 2011; Lee, 2011). Many advanced
econometric models have been developed for tourism demand forecasting, such as the error correction model (ECM) (Kulendran &
King, 1997), time-varying parameter (TVP) models (Song & Wong, 2003), almost ideal demand system (AIDS) model (Li, Song, &
Witt, 2004) and global vector autoregressive (GVAR) model (Cao, Li, & Song, 2017). In addition, a few nonlinear models have been
used in tourism forecasting, such as the smooth transition autoregressive (STAR) model (Saayman & Botha, 2015), the Markov
switching VAR (MSVAR) model (Chaitip & Chaiboonsri, 2014) and the Markov switching dynamic regression (MSDR) model (Pan &
Yang, 2017). Nonlinear models allow for nonlinear combinations of parameters in a way that the values of parameters can switch
across different regimes, thus capturing the nonlinear pattern of tourism demand. Compared with time series and econometric
models, the use of Al models in tourism demand forecasting is relatively new. As data volume is increasing and data characteristics
are becoming more complex, Al models have gained popularity because they can capture complex relations and patterns in a large
volume of data. Popular Al models used in tourism demand forecasting include artificial neural networks (ANN) (Chen, Lai, & Yeh,
2012), support vector machines (SVM) (Chen, Liang, Hong, & Gu, 2015) and fuzzy time series models (Chen, Ying, & Pan, 2010),
along with some new deep learning approaches (Law, Li, Fong, & Han, 2019). However, without theoretical underpinning, Al models
largely remain a ‘black box’, which limits their application (Gareta, Romeo, & Gil, 2006).

Spatial spillover

Spatial analysis begins with an introduction to the concept of spatial spillover. ‘Spillover’ is a frequently used economic term
representing externalities generated by economic events or processes exerting indirect effects (Yang & Wong, 2012). The addition of
the term ‘spatial’ takes geographical effects and interactions into account. Fingleton and Lopez-Bazo (2006) stated that spatial
spillover is related to spatial externalities across regions according to new economic geographies, and to endogenous growth models.
Spatial spillover effects have been widely and frequently analysed in the fields of economics and economic geography, in which
spatial dependence and regional interactions have been comprehensively discussed (Fingleton & Lopez-Bazo, 2006; Huang, Zhou,
Wang, Chang, & Ma, 2017). Spatial effects have also been widely considered in other fields in which location is highly relevant,
including networking and transport infrastructures (Alvarez, Barbero, & Zofio, 2016; Condeco-Melhorado, Tillema, de Jong, &
Koopal, 2014) capital inflow and outflow analysis (Miranda, Martinez-Ibanez, & Manjon-Antolin, 2017).

In the context of tourism, spatial spillover is the indirect effects that a destination's tourism industry exerts on the tourism growth
and tourism flows of other destinations (Yang & Wong, 2012). Empirical studies applying spatial spillover analysis in relation to
tourism mainly focus on two things: regional tourism growth and tourist flows to specific destinations (Yang & Fik, 2014). Research
on regional tourism growth suggests that regional growth is significantly influenced by tourism development in both local and
neighbouring regions (Capone & Boix, 2008). Ma, Hong, and Zhang (2015) confirmed that domestic tourism has a significantly
positive spillover effect in China. Li, Chen, Li, and Goh (2016) examined how tourism development contributes to reducing regional
income inequality, using global and local spatiotemporal models to capture spatial spillover effects across different regions in China.
Zhang, Xu, and Zhuang (2011) discovered a significant neighbouring effect in the distributions of both international and domestic
tourists in 299 cities in mainland China.

Spillover effects in tourist flows have also been widely discussed in tourism studies, although the focus has been on spatial
interactions between origins and destinations. More recently, Yang and Wong (2012), followed by Yang and Fik (2014), made initial
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attempts to analyse tourist flows and discuss spatial spillover effects across destinations. Majewska (2015) measured the inter-
regional effects of spatial agglomeration by the spatial dependence and heterogeneity of tourism flows and supply in neighbouring
tourist attractions. That is, the spatial dependence among destinations with regard to tourist flows means that tourist flows to one
destination are influenced by the tourist flows to another geographically related destination. The reasons for spatial dependence
among destinations have been discussed by Yang and Wong (2012). Their study divided the factors and determinants contributing to
the spatial spillover effect in tourist flows into the supply-side effect and the demand-side effect. Supply-side factors include pro-
ductivity spillover, market access, joint promotion and negative events; the demand-side factor is the multi-destination travel pattern
of tourists. Applications of spatial modelling in tourism demand forecasting are still rare. Only two studies (i.e., Long et al., 2019;
Yang & Zhang, 2019) have been found that applied spatial models to forecast domestic tourism demand in Chinese cities.

Spatial heterogeneity

Spatial heterogeneity is another spatial effect considered in many empirical spatial studies. According to Zhang et al. (2011),
spatial heterogeneity reflects the uniqueness of different regions, and can be identified in the form of distinct distributions, means,
variance and patterns among subsets of observations. For instance, Capone and Boix (2008) found that different cities in Italy had
different patterns with regard to regional tourism growth.

Geographically weighted regression (GWR) (Pédez, Uchida, & Miyamoto, 2002) and spatial autoregressive local estimation (SALE)
(Pace & LeSage, 2004) have been used in tourism modelling to measure spatial heterogeneity. However, before 2016, spatial het-
erogeneity was only captured for cross-sectional analysis in the tourism literature. Li et al. (2016) filled the gap by extending the
SALE method to examine tourism and regional income inequality in China based on panel data. Although spatial heterogeneity has
been captured in tourism modelling studies, it has not been considered in tourism forecasting yet. In the studies of Long et al. (2019)
and Yang and Zhang (2019) on domestic tourism demand forecasting, only the global model was used for forecasting, which con-
sidered only the average spatial spillovers among all 341 Chinese cities in forecasting. Further to the spatial spillover effect men-
tioned above, this study will fill the gap and take both spatial spillover effect and spatial heterogeneity into account in tourism
forecasting.

Spatial methodology development

Spatial econometrics has received much attention in regional and geographical economic studies because of its ability to capture
spatial interactions among geographically related regions. Spatial regression models for cross-sectional data can be seen as an ex-
tension of traditional regression models, with the incorporation of spatial lags into the model specification. The spatial lag is defined
as the weighted average of neighbouring values of a location (Kelejian and Prucha, 1998). Various spatial models have been de-
veloped that differ in the way they incorporate spatial lags. In this section, spatial models for cross-sectional data are presented first,
and then the addition of the time dimension to spatial models for panel data is discussed.

Spatial models for cross-sectional data

Initially, most spatial models were designed to handle cross-sectional data. According to Lee and Yu (2010a, 2010b), the spatial
autoregressive (SAR) model introduced by Cliff and Ord, 1973 received the most attention. Many Bother spatial regression models
have also been applied to model and capture spatial spillover effects based on traditional simple regression models. Anselin (1988)
provided a comprehensive analysis and review of spatial econometric models. Based on Anselin's study, LeSage and Pace (2009)
further considered spatial dependence and summarised the spatial econometric models used in spatial modelling. However, those
models share similar formulations based on traditional regression models. Spatial models extend regression models by incorporating
a spatial lag to take spatial effects into account. The differences between spatial models are reflected in the way they incorporate
spatial lags. The first way is to add a spatially lagged variable as an additional regressor in the regression model, which is referred to
as a spatial lag model. In SAR, the spatial lag is incorporated into the dependent variable only, and the endogenous effect is reflected
by the lagged dependent variable. That is, the value of the dependent variable is influenced by the dependent variables of neigh-
bouring regions. Exogenous effects can also be reflected in spatial regression models by imposing spatial lags onto independent
variables, which means that the value of the dependent variable of a certain region is influenced by the values of the independent
variables of neighbouring regions. A model incorporating both endogenous and exogenous interaction effects is the spatial Durbin
model (SDM), which was thoroughly explained by LeSage and Pace (2009). The SDM includes both a spatially lagged dependent
variable and spatially lagged independent variables. Other types of spatial model impose a spatial lag on the error term including the
spatial error model (SEM) and spatial autoregressive combined (SAC) model, which combines the SAR and SEM, meaning that spatial
lags are incorporated into both the dependent variable and the error term.

Spatial models for panel data

Besides cross-sectional data, panel data, defined as multidimensional data containing observations about multiple objects over
multiple time periods, have attracted increasing attention recently, especially for spatial econometrics, because it is now easier to
access large data sets that include a time dimension since the development of technology to sort and save data. By incorporating
temporal panel data with time variants, Elhorst (2014) introduced static and dynamic spatial panel data models. The use of panel
data extends modelling possibilities to multiple equations and more variations compared with cross-sectional data sets, which are
limited to only one equation. Static spatial panel data models resemble the formulation of spatial dependence models for cross-



X. Jiao, et al. Annals of Tourism Research 83 (2020) 102937

sectional data, except that spatial panel data models include observations over multiple time periods for the same set of cross-section
observations. Dynamic spatial panel data models incorporate time lags into both the dependent variable and the spatial lagged
dependent variable. With the addition of the time dimension, spatial models for cross-sectional data can be extended to spatial
models for panel data, as in the spatiotemporal models applied in this study. The mathematical formulations of the models used are
presented in the methodology section.

In the general field of forecasting, spatial forecasts have been found to outperform non-spatial forecasts in many studies. Spatial
autocorrelation has been taken into account when using spatial panel data models in forecasting. As discussed by Dormann et al.
(2007), spatial data analysis is complicated by spatial autocorrelation phenomena, which occur when variables sampled within a
region are not independent of each other (Tobler, 1970). Although it is complicated to account for spatial autocorrelation, many
studies have implemented it in spatial models, usually leading to improved forecasting performance. For instance, Baltagi and Li
(2006) predicted the demand for liquor based on panel data for 43 states in the period from 1965 to 1994, and the results showed that
estimators accounting for spatial correlation and heterogeneity across states yield the best one-year-ahead forecasting results. Fol-
lowing Baltagi and Li (2006), Longhi and Nijkamp (2007) compared different methods of forecasting regional labour market de-
velopments to analyse whether the consideration of spatial autocorrelation improves forecasting performance. Their results showed
that spatial models outperform their non-spatial counterparts, and the spatial error model with spatial autocorrelation outperforms
models that ignore spatial autocorrelation. This is consistent with the findings of Giacomini and Granger (2004), which show that
ignoring even weak spatial autocorrelation can lead to inaccurate forecasts.

The literature review reveals several research gaps. First, in the field of spatial econometrics, SAR and SDM are most frequently
used when spatial lags are incorporated into the dependent and independent variables. For spatial panel data models with a time
dimension, SEM and SAC are rarely used because of the difficulty in estimating the spatial moving average term. However, as
Yesilyurt and Elhorst (2017) noted, if countries in the same regions face similar unobserved fluctuations, then the spatial lag on the
error term might be pertinent. Thus, in this study, the spatiotemporal autoregressive model uses full specifications of spatial and time
lags on both the independent variable and the moving average term. For the first time in any field of forecasting, this fully specified
spatiotemporal model is employed for a forecasting exercise. Second, local spatial models allowing for different specifications for
different geographical locations have not been applied in any field of forecasting either. This study fills the gap by locally estimating
the spatial model for every country to fully reflect spatial heterogeneity. Thus this study contributes not just to the tourism fore-
casting literature, but the broader field of forecasting in general. In terms of the context of forecasting, previous studies applied
spatiotemporal models to forecasting tourism demand at the city level in a context of domestic tourism, whereas this study forecasts
tourist arrivals in 37 European countries in a context of international tourism. From a demand perspective, the spatial effect of
international tourism demand can be different from that of domestic tourism demand. Multi-destination travel is more common
among international, especially long-haul, tourists. Thus, it is worth examining if capturing the spatial effect may contribute to
accuracy improvement in international tourism demand forecasting. Moreover, previous studies using spatiotemporal models gen-
erate forecasts up to two steps ahead whereas in this study, the forecasting horizons are extended to three steps ahead.

Methodology
Global model

To account for both spatial dependence and time variants, a spatiotemporal autoregressive model is used in this study. The global
model is developed first, which assumes consistent model specifications for all countries, and spatial heterogeneity can only be
reflected through spatial fixed effects.

The global dynamic spatiotemporal autoregressive model proposed in this study can be written as follows:

Y=2WY, +yY 1+ pWY 1+ u+ S
S =¢WS, + ¢PS;_1 + & @

where Y, denotes an N x 1 vector consisting of one observation of the dependent variable for every spatial uniti = (1,---,N) in the
sample at time t (t = 2,---,T), where N and T are the numbers of spatial units and time periods respectively. Y,_; denotes the
dependent variable lagged in time. W is the N X N spatial weight matrix determined by the geographical locations of the desti-
nations. It assigns 1 to the destination's k nearest neighbours and 0 otherwise. Distances are measured by great circle distance using
the latitude and longitude of the destination country's capital; WY, denotes the dependent variable lagged in space, and WY,_4
denotes dependent variable lagged in both space and time, p is an N X 1 vector representing country-specific spatial fixed effects,
which indicates that the model is a panel model instead of a pure time series model; S, is an N X 1 vector denoting the error
specification of the model; ¢, is a vector of independent and identically distributed (i.i.d.) disturbance with zero mean, and A, vy, p, ¢
and ¢ are parameters to be estimated.

To determine the number of neighbours k in the spatial weight matrix W, a process known as calibration will be carried out by
estimating the model recursively with an incrementing k (k = 1 to 9). The optimal k that is associated with the smallest in-sample
mean absolute percentage error (MAPE) will be selected with the reason discussed in Section 0.

The model proposed in this study extends the ARIMA model by further incorporating spatial lags into both the autoregressive and
the moving average terms. Compared with the model of Long et al. (2019), which incorporates spatial lag (AWY,) and time lag
(vY,—1) separately, this study proposes a more general specification that incorporates all possible spatial and time lags on both Y and
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e (Elhorst, 2014), including the spatiotemporal lag (pWY,_1), spatial error lag (¢ WS, and error time lag (wS;—_1), thus further taking
into account the spatial dependence of the unobserved fluctuations among tourist arrivals in neighbouring countries. The spatial lag
refers to the weighted average of the neighbouring dependent variable and the spatial error lag refers to the weighted average of
neighbouring unobserved fluctuations.

Local model

As noted in the literature review, spatial heterogeneity, which can be defined as the uniqueness of different geographical regions,
has been identified in previous studies. In the global model, the specification of W and the regression coefficients are assumed to be
the same for all different countries, which can be unrealistic considering the existence of spatial heterogeneity. As a remedy, the local
model, which allows for different specifications for different countries, can fully reflect spatial heterogeneity and provide more
specific implications for individual countries (Wheeler & Tiefelsdorf, 2005). A spatial autoregressive local estimation (SALE) method
was proposed by Pace and LeSage (2004) to estimate the local model, but the time dimension was not considered and thus the limited
localised subsample size makes the local model very sensitive to model specifications. To address this issue, Li et al. (2016) and Long
et al. (2019) expanded the SALE method to incorporate both spatial and time lags into a local SDM and SAR model, respectively. And
this study further extends the local spatiotemporal model by incorporating spatial lags into both the autoregressive and the moving
average terms.

In line with the specification of the global model, the local model can be written as follows:

UWDY, = 2UOWY, + yU (D Y-, + pUOWYi_, + U@u + UGS,
U@@)S; = U H)WS; + pU (i)S;—1 + U (i)e 2)

where U(i) denotes an N X N spatial weight matrix for country i, with m nearest neighbours identified. It assigns 1 to the neigh-
bouring countries of country i and 0 otherwise. Therefore, U(i) extracts a country-specific subsample from the whole sample for every
country based on geographical distance, k + 1 countries are included in every subsample and the specification of W determines the
number of neighbours within the subsample for country i. Thus, unlike the global model, which only needs one estimation after the
specification of W, the local model needs to be estimated separately N times for every country, where N is the number of countries in
the sample.

Similar to the global model, the number of neighbours k in the local model is determined by a calibration procedure described in
Section 0. The calibration process also selects the bandwidth — a hyperparameter that governs the size of the subsample. Further
details of the calibration process are presented in Section 0.

Data description

According to Song and Li (2008), tourist arrivals at a destination country from an origin country are the most popular measure of
tourist demand. Thus, this study uses tourist arrivals as the measure of tourist demand. A panel data set consists of annual inter-
national tourist arrivals in 37 European countries from 1995 to 2018 (except eight countries for which tourist arrivals data are
available only up to 2017) were collected from the World Bank and international tourism highlights published by UNWTO. Ex-
amination of the performance of annual tourism demand forecasting has useful implications on medium- to long-term strategic
planning of tourism-related businesses and destination governments. As the scale of tourist arrivals in different countries varies
considerably, which makes model estimation as a panel difficult, a logarithmic transformation was undertaken.

Fig. 1 shows the logged tourist arrivals for the 37 European countries, which are classified into Southern Europe, Central and
Eastern Europe, Northern Europe and Western Europe. The shared patterns of neighbouring countries visualise the existence of
spatial dependence, whereas the different patterns for some of the countries (e.g., Poland in Central and Eastern Europe and Lux-
embourg in Western Europe) indicate that spatial heterogeneity should not be neglected.

Empirical results
Model calibration

As explained in Sections 0 and 0, a calibration procedure is carried out to search the optimal number of neighbours k in the spatial
weight matrix W. Data from 1995 to 2012 are used for model calibration and estimation. For the local model, the calibration also
selects the bandwidth, which regulates the number of countries included the subsample for each focal country, in a range from 10 to
37 countries (the whole sample) including the focal country. Therefore, for every local country, the model is estimated 28 x 9
(choices of bandwidth x choices of neighbours) times, totalling 252 times, and the specifications with the best model fit are selected
for forecasting. All models are estimated with a maximum of one lag in time, which is common for estimation based on annual data.
The model selection criterion used in this study is the in-sample MAPE. In previous studies (e.g., Elhorst, Zandberg, & De Haan, 2013;
Li et al., 2016), the residual variance was used as the selection criterion for model calibration. However, the residual variance
measures the average model fit across all countries included in the subsample. As the aim of this study is to generate forecasts for
individual countries, the model fit should be measured on the basis of the focal country rather than its neighbours. Therefore, the in-
sample MAPE of the fitted values is chosen as the model selection criterion. The same criterion is applied to the global model
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Fig. 1. Tourist arrivals in 37 European countries from 1995 to 2018 (logarithmic scale).

calibration for consistency. The choice of MAPE is also supported by the forecasting results which show that specifications selected by
the in-sample MAPE outperform those selected by residual variances in this study. For the global model, the optimal number of
neighbours (k) is one, indicating that for each country, one neighbouring country is identified. And the hyperparameters for each
local model including the bandwidth and the number of neighbours (k) are shown in Table 1.

The average subsample size across all local models is 21 and the average number of neighbours within each subsample is 3.62.
The different bandwidths and numbers of neighbours for different local countries indicate the spatial heterogeneity mentioned in the
previous sections.
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Table 1
Local model specifications.
Destination Bandwidth Neighbour In-sample MAPE
Albania 34 1 13.821
Armenia 11 1 7.435
Austria 16 8 1.602
Belgium 24 1 2.281
Bulgaria 24 3 2.796
Cyprus 22 1 4.154
Czech Republic 9 2 4.635
Germany 36 6 3.670
Denmark 13 8 3.001
Spain 13 9 3.292
Estonia 29 1 5.634
Finland 21 3 4.848
France 10 1 2.413
United Kingdom 19 9 2.068
Georgia 14 1 11.856
Greece 33 1 4.501
Croatia 32 2 3.174
Hungary 12 7 3.741
Ireland 17 2 4.495
Iceland 18 6 7.018
Italy 11 1 2.265
Lithuania 18 2 14.463
Luxembourg 28 6 4.673
Latvia 36 6 7.870
Moldova 17 4 9.815
Macedonia, FYR 16 2 5.703
Malta 30 2 4.917
Netherlands 36 1 4.152
Norway 18 2 4.602
Poland 9 2 7.360
Portugal 21 8 3.420
Romania 20 4 8.364
Russian Federation 11 1 6.368
Slovenia 29 7 4.269
Sweden 13 2 5.351
Turkey 9 5 6.324
Ukraine 12 6 8.206
Forecasting

After model calibration and estimation, one- to three-step-ahead forecasts were generated in a rolling window from 2013 to the
end of the sample period for both the global and local models. In total, six one-step-ahead forecasts, five two-step-ahead forecasts and
four three-step-ahead forecasts were produced. In cases for which the data for 2018 are not yet available, five one-step-ahead, four
two-step-ahead and three three-step-ahead forecasts were generated. Thanks to the multiple forecast points for each step, the in-
fluence of potential outliers can be moderated. To produce the forecasts, Eq. 1 can be rewritten as follows:

I -2, =yYia+ pWYa +u + S
I—-@W)S =S+ & 3)

where I is an N X N identity matrix. And Eq. 3 can be further arranged as follows:
Y= = AW) [y + pWYoa + o+ (I = ¢W)H(@Si-1 + )] )
As ¢, is a vector of i.i.d. disturbance with zero mean, the one-step-ahead forecasts can be computed as:

Y1 = T = AWY 1 [pY, + pWY, + p + I — ¢W) 9 S]]
S=Y%-% 5)

To evaluate the forecasting performance of the proposed spatiotemporal models, ARIMA, ETS and Naive 1 models were chosen as
benchmark models, following the common practice in the recent tourism forecasting literature (e.g., Chen, Li, Wu, & Shen, 2019;
Wen, Liu, Song, & Liu, 2020 ). Similarly, one- to three-step-ahead forecasts were generated using these models for every country. The
forecasting results were evaluated using two criteria: MAPE and mean absolute scaled error (MASE). MAPE is the most popular error
evaluation method in the forecasting literature (Athanasopoulos & de Silva, 2012) and can be expressed as follows:
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Table 2
Average performance of different forecasting models.
Horizon Measure Global Local ARIMA ETS Naive
1 step MAPE 0.066 (2.68) 0.062 (1.92) 0.066 (2.22) 0.079 (3.86) 0.079 (4.05)
MASE 1.765(2.68) 1.629 (1.86) 1.617 (2.27) 1.951 (3.89) 2.114 (3.95)
2 steps MAPE 0.118 (2.54) 0.107 (2.11) 0.136 (2.78) 0.145 (3.86) 0.142 (3.65)
MASE 3.240 (2.30) 2.900 (2.22) 3.426 (2.65) 3.700 (3.76) 3.960 (3.90)
3 steps MAPE 0.163 (2.65) 0.143 (2.03) 0.201 (2.68) 0.204 (3.84) 0.195 (3.62)
MASE 4.694 (2.81) 4.073 (1.82) 5.053 (2.65) 5.443 (3.70) 5.719 (3.89)

Note: The values in bold represent the most accurate model among the five models. Values in brackets represent average rankings among 37
countries.
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Hyndman and Koehler (2006) proposed MASE as another error measurement method which scales the error based on the one-
step-ahead in-sample mean absolute error (MAE) generated by the Naive forecasting method. A scaled error can be expressed as
follows:

Y-F

e T E—
77 Ly 1Y — Y )

T-1 L
where Y, is the real output and F, is the forecast, and the denominator is the one-step-ahead in-sample MAE from Naive forecasts.
MASE = mean (|q,|). The performances after conducting the same forecasting practice as for the spatiotemporal forecasting models
for the three benchmark models for every country are compared and shown in Table 2.

Overall, the global model outperforms the other three benchmark models for two- and three-step-ahead forecasts, which confirms
the conclusions in the previous literature that the incorporation of spatial spillover effects can improve forecasting accuracy com-
pared with non-spatial models. Although the ARIMA model outperforms the global spatial model for one-step-ahead forecasting, the
global model is estimated only once as a whole whereas the ARIMA model is estimated separately for every single country. Thus, the
performance of the ARIMA model is more comparable with that of the local spatial model, which generates better one-step-ahead
forecasts than the ARIMA model if evaluated by MAPE. The MASE values for the two models are quite similar. The forecasting
performance of the two spatial models is more consistent and stable as the forecasting horizon extends, compared with the ARIMA
model. Meanwhile, the local model performs better than the global model across all forecasting horizons, which suggests that fully
reflecting spatial heterogeneity can improve forecasting accuracy compared with the global model, which only reflects heterogeneity
through country-specific fixed effects.

Country-level forecasting performance was also compared among the five models. Average MAPE values from one-step-ahead to
three-step-ahead forecasting were calculated for every country and the results are shown in Fig. 2. As only two MAPE values are
above 0.5 (ARIMA MAPE of Georgia and Ukraine), for clearer presentation, the scale is from 0 to 0.5. For most countries, the global
model and local models perform better than the other benchmarks. For many countries, such as Bulgaria, the United Kingdom and
Malta, notable improvements of the local models over the global model can be observed in the figure. The MAPE and MASE values of
each forecasting method were ranked and the average rankings of the one- to three-step-ahead forecasting results at the country level
are shown in Table 2. At the country level, the local models have the highest average ranks for all forecasting horizons using both
error measures, again confirming that incorporating both spatial dependence and spatial heterogeneity can improve individual
destinations' forecasting performance compared with the global model and the other benchmark models. Among the five forecasting
models, on average for 26 countries out of 37 countries in total, the local spatial models generate the best or second-best forecasting
results at the country level according to both error measures, which further confirms the superiority of the local spatial model in
forecasting.

To confirm the accuracy improvement of the local spatial model, the Harvey-Leybourne-Newbold (HLN) test (Harvey, Leybourne,
& Newbold, 1997) is conducted to examine statistically significant differences in forecasting accuracy between the local spatial model
and the benchmark models (Song, Li, Witt, & Athanasopoulos, 2011). As shown in Table 3, across all three forecasting horizons, the
accuracy improvements of the local spatial model against all benchmark models are significant at the 1% level with only one
exception.

To visualise the improvement forecasting performance of the local spatial models, dynamic forecasts for some countries using the
local spatial models were conducted and compared with the real tourist arrivals and the ARIMA model, the best performing model
among the benchmarks. The two models were estimated based on data from 1995 to 2012 and one- to six-step-ahead dynamic
forecasts were generated. The historical tourist arrivals series of Armenia is relatively stable with steady growth. Fig. 3 displays the
fitted value and dynamic forecasts of tourist arrivals in Armenia generated by the two models. The ARIMA model tends to over-
estimate the increasing trend, whereas the local spatial model generates more steady forecasts with the influence of the spatial
spillover effect from the neighbouring countries. The forecasts generated by the local spatial model clearly outperforms ARIMA for
Armenia.
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Fig. 2. Average out-of-sample mean absolute percentage error (MAPE) at country level.
Table 3
HLN tests for statistical difference between forecasts of the local spatial model and those of other models.
Horizon Global ARIMA ETS Naive
1 step 3.904%** 1.194 5.08%** 6.94%**
2 steps 4.408%*** 4.489%** 5.453%** 7.329%**
3 steps 5.478%*** 4.784%** 5.366%** 6.228%**

Note: *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. Positive values indicate that the local spatial model forecasts
more accurately.

Armenia

----------- Local fitted value «+«@<+ Local forecasts ARIMA fitted value

ARIMA forecasts

Actual series

Fig. 3. Fitted values (1996-2012) and dynamic forecasts (2013-2018) of tourist arrivals in Armenia.
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Fig. 4. Fitted values (1996-2012) and dynamic forecasts (2013-2018) of tourist arrivals in Luxembourg.

Luxembourg, another country with fluctuating and unstable historical data, is also selected for illustration purposes. Again,
dynamic forecasts were generated using the local spatial model and the ARIMA model and compared with the actual values, as shown
in Fig. 4. As the data series of Luxembourg tourist arrivals has a few turning points, the ARIMA model selects p, d, q specifications as
(0,0,1), which is simply a random walk (Naive model). Although the local spatial model cannot capture the turning point of Lux-
embourg in 2015, eight nearest neighbours of Luxembourg were identified and included in the estimation, and thus the forecasting
results are moved closer towards the actual series with the consideration of neighbouring countries' tourist arrivals. Again, the local
spatial model significantly outperforms the ARIMA model. Across the two cases, as the forecasting horizon extends, the superiority of
the local model becomes more evident, which confirms our previous results that for two- and three-step-ahead forecasting, the spatial
model clearly stands out with regard to both average and individual forecasting accuracy.

Conclusion

This study proposes a spatiotemporal autoregressive model incorporating both spatial dependence and spatial heterogeneity to
improve forecasting accuracy. The proposed model spatially extends the ARIMA model in the most general form by applying spatial
lags to both the response variable and the moving average term. Based on this specification, a local model was developed to account
for spatial heterogeneity. The forecasting performance of the proposed approach was empirically tested using international tourist
arrivals data for 37 European countries. The results were compared with those of the three benchmark models including the ARIMA,
ETS and Naive 1 models based on MAPE and MASE criteria. The superior forecasting performance of both the global and local spatial
models compared with non-spatial models suggests that incorporating spatial effects can improve forecasting performance, which is
consistent with previous studies ( Long et al., 2019;Yang and Zhang, 2019). Forecasting accuracy can be further improved by taking
account of spatial heterogeneity, which allows for individual specifications for each country. At the country level, the local spatial
model outperforms all of the other models with respect to average rankings. In over 70% of cases, the local spatial model generates
the most or second-most accurate results. Thus, incorporation of both spatial dependence and spatial heterogeneity can improve
forecasting accuracy compared with non-spatial models. Moreover, as the forecasting horizon extends, the superiority of the local
spatial model clearly stands out, which indicates the advantage of the local spatial model, especially in terms of three-year-ahead
tourism demand forecasting.

In the field of tourism research, spatiotemporal models have rarely been used in forecasting, with only two exceptions (Long et al.,
2019; Yang and Zhang, 2019). The present study for the first time extends the spatiotemporal model by incorporating spatial lags into
both the response variable and the moving average term, thus taking account of all types of spatiotemporal effect. And since this full
specification has never been applied in any field of forecasting, this study contributes to the general literature of forecasting. Second,
both global and local spatiotemporal models are developed for tourism forecasting in this study, which represents the first attempt at
using local spatiotemporal models in forecasting not just in a tourism context, but in the general field of forecasting. In terms of the
context of forecasting, previous studies have focused on city-level domestic tourism. This study is the first to present empirical
evidence on the benefit of accounting for spatial effects in forecasting tourist arrivals at an international level. Additionally, this study
extends the forecasting horizons to three-step-ahead, and the superiority of the local model becomes more obvious as the forecasting
horizon extends. Thus, with an extended spatiotemporal model, this study makes a useful addition to the existing tourism forecasting
literature by expanding the evidence base of the advantages of spatiotemporal forecasting with an extended spatiotemporal model.
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This study has several limitations. The first limitation is related to the short data period, which is a universal problem for spatial
panel data analysis. In this study, only one- to three-step-ahead short-term forecasts were generated. The lack of data makes it
difficult to generate and evaluate long-term forecasting performance. Secondly, for some countries, the turning points of the data
series appeared in the forecasting period. Thus, models that behave more like a Naive model would perform better, but they may not
fit the training data well. The local models tend to be more sensitive to changes in the data, so the specification chosen by any criteria
based on model fit would perform badly in forecasting due to the reverse of trends. Therefore, in future studies, tourist arrivals data
with higher frequencies should be considered to guarantee the sufficiency of the data for estimation and forecasting. Lastly, exo-
genous explanatory variables can be incorporated to test if the effect of turning points can be accounted for, and if the forecasting
performance can be further improved. The limitations of the present study point to possible directions for future research.
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