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A B S T R A C T

The tourism sector, with its perishable nature of products, requires precise estimation of demand.
To this effect, we propose a deep learning methodology, namely Bayesian Bidirectional Long
Short-Term Memory (BBiLSTM) network. BiLSTM is a deep learning model, and Bayesian opti-
mization is utilized to optimize the hyperparameters of this model. Five experiments using the
tourism demand data of Singapore are conducted to ascertain the validity and benchmark the
proposed BBiLSTM model. The experimental findings suggest that the BBiLSTM model outper-
forms other competing models like Long Short-Term Memory (LSTM) network, Support Vector
Regression (SVR), Radial Basis Function Neural Network (RBFNN) and Autoregressive
Distributed Lag Model (ADLM). The study contributes to tourism literature by proposing a su-
perior deep-learning method for demand forecasting.

Introduction

The tourism sector is an engine of economic growth, contributing 10.4% to worldwide gross domestic product (GDP) and a similar
percentage of jobs on the planet in 2018 (WEF, 2019). A critical activity in the tourism sector is Tourism Demand (TD) forecasting.
Organizations need precise forecasts to aid tactical and operational decisions such as pricing, staff, capacity, resources, and revenue
management (Frechtling & Frechtling, 2001; Jiao & Chen, 2019; Wu, Song, & Shen, 2017). Governments require precise TD pre-
dictions for destination infrastructure planning, environmental quality control, and operational flexibility (Li, Wong, Song, & Witt,
2006).

TD forecasting is studied using both quantitative and qualitative methodologies. Qualitative methodologies such as the consensus
and Delphi depend upon experience, intuition, and understanding of a specific destination market and usually suffer from poor
adaptability (Witt & Witt, 1995). Unlike the qualitative approach, quantitative approaches are used widely and forecast tourist
arrivals (demand) using historical tourist arrivals and other factors that affect tourism volume (Wu et al., 2017). Three categories of
methods, namely time-series, econometric, and Artificial intelligence (AI) models, are prominent in quantitative approaches. Time-
Series and econometric models are used in tourism forecasting and demand analysis (Law, Li, Fong, & Han, 2019). This study focusses
on the third category, namely, AI models, which are advanced models for TD forecasting (Jiao & Chen, 2019; Song & Li, 2008).

The objective of time-series models and econometric models is to improve TD forecasting by incorporating relevant factors
(Andrew, Cranage, & Lee, 1990; Frechtling & Frechtling, 2001). This category employs autoregressive moving average (ARMA)
models and its variants, autoregressive distributed lag models (ADLMs or ARDL) (Gunter & Onder, 2015; Huang, Zhang, & Ding,
2017), Bayesian models, generalized dynamic factor models, and markov-switching models (Assaf, Li, Song, & Tsionas, 2019;
Guizzardi & Stacchini, 2015; Li, Pan, Law, & Huang, 2017). Among the AI-based models, artificial neural networks (ANNs) provide a
potential replacement to conventional linear statistical methods in terms of forecasting (Zhang, Patuwo, & Hu, 1998). With the
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advancements in ANNs, deep learning methodologies, specifically the Recurrent Neural Network (RNN) architectures, are found
more appropriate than Feed Forward Neural Network in dealing with time series complexities (Husken & Stagge, 2003).

Prior research has shown that LSTM, a type of RNN, and it's variant Bidirectional LSTM (BiLSTM) networks are efficient in
handling long-term dependencies (Cheng, Ding, Zhou, & Ding, 2019; Law et al., 2019). Subsequently, BiLSTMs have been utilized in
various contexts such as phoneme classification (Graves & Schmidhuber, 2005), natural language processing (Wollmer, Eyben,
Graves, Schuller, & Rigoll, 2010), and electrocardiogram (ECG) signal classification (Yildirim, 2018). A critical step in ANNs is
hyperparameter tuning, which identifies the parameters of the model that leads to the optimal solution. Experienced human domain
experts have traditionally executed the hyperparameter identification process, but their conventional knowledge is being increasingly
challenged by optimization methods such as Bayesian optimization. Herein, we utilize an optimization method to identify the re-
levant hyperparameters of the proposed model. We draw motivation from the application of deep learning methodologies as an
alternate mechanism to forecast tourist demand. We establish the superiority of deep learning technologies, specifically that of
BiLSTM, along with Bayesian optimization over specific AI-Models in predicting tourism demand in this work. The contributions of
this article are as follows:

1. A novel deep learning model is proposed for tourism demand forecasting.
2. Bayesian optimization is employed to optimize the hyperparameters.
3. The effectiveness of the proposed model is validated via robustness analysis with multiple experiments.
4. The effect of multi-lagged variables on model performance is studied.

The rest of the article is organized as follows. In Literature review section, we review the literature on AI-based methods in
tourism demand forecasting. In Material and methods section, we describe the materials and methods used in this study. In Data
section, we describe the tourism dataset employed for the study. We present the results of benchmarking in Results section, followed
by validation of the BBiLSTM method using various case studies as part of robustness analysis in Robustness analysis section.
Conclusion and implications of this research work are presented in the final section.

Literature review

Economic variables related to origin and destination countries, such as tourist income level and tourism price, are predominant
factors in TD forecasting due to their ability to quantify tourist's spending power (Jiao & Chen, 2019). Other variables include
competing destinations prices (Gunter & Onder, 2015; Li, Song, & Witt, 2005), climate change (Moore, 2010), marketing ex-
penditures (Lim, 1997), travel agencies (Icoz, Var, & Kozak, 1998), political stability (Saha & Yap, 2014), hotel's age (Hanly & Wade,
2007), terrorist attacks (Bonham, Edmonds, & Mak, 2006), search engine data from Google and Baidu (Dergiades, Mavragani, & Pan,
2018; Law et al., 2019; Yang, Pan, Evans, & Lv, 2015).

Among demand forecasting methods, AI-based methods have certain advantages over the time series and econometric methods.
Time Series and econometric models require the probability distribution of the data and specification of the chosen model beforehand
(Palmer, Montano, & Sese, 2006). Non-parametric AI-based methods do not require a priori model specification and data distribution
(Hansen, McDonald, & Nelson, 1999). Besides, AI-based methods can capture the nonlinear relationships among time series attributes
and exogenous variables (Jiao & Chen, 2019).

AI-based methods can be broadly categorized into five subtypes: Fuzzy time series, Support Vector Machines (SVMs), Rough Sets,
Grey Theory, and ANNs (Song & Li, 2008). Fuzzy time series in TD forecasting is particularly useful in modeling short time-series data
(Chen, Ying, & Pan, 2010; Hadavandi, Ghanbari, Shahanaghi, & Abbasian-Naghneh, 2011; Shahrabi, Hadavandi, & Asadi, 2013).
SVMs are shown to perform better than multiple regression and time series models in predicting TD (Kon & Turner, 2005; Law et al.,
2019). The Rough Set approach utilizes classical set theory to deal with imprecise or uncertain data (Au & Law, 2000; Goh, Law, &
Mok, 2008). Wang (2004) applied the Grey Theory in predicting TD.

Artificial neural networks are non-parametric models, inspired by the learning process of the human brain. Uysal and El Roubi
(1999) showed that ANN outperformed multiple regression in TD forecasting, leading to an increased research focus on the appli-
cation of ANNs in TD forecasting (refer Fig. 1). Various ANNs architectures like Multilayer Perceptron (MLP) (Claveria, Monte, &
Torra, 2015), Elman NN (Claveria et al., 2015), Radial Basis Function Neural Network (RBFNN) (Claveria et al., 2015) and Denoised
neural networks (Silva, Hassani, Heravi, & Huang, 2019) are used in TD analysis. RBFNN has been shown to outperform Elman NN
and MLP in forecasting TD to Catalonia, Spain (Claveria et al., 2015). Except for Law et al. (2019), who applied LSTM, a type of RNN
for TD forecasting, Fig. 1 shows that the application of deep learning methodologies in TD forecasting is scant. Notably, the Singapore
tourism dataset has been studied with numerous approaches, including Copula-ECM, ARIMA, NN, static regression, and ARFIMA, and
by various researchers (Zhu, Lim, Xie, & Wu, 2018).

The models presented above, except RNNs, take into account each data point separately and perform forecasting at each time step
(Wu, Yuan, Dong, Lin, & Liu, 2018). Unlike RNNs, such models are static and ignore historical information. RNN-based Deep Learning
is employed in wide-ranging areas ranging from image classification (Krizhevsky, Sutskever, & Hinton, 2012; Yildirim, Uçar, &
Baloglu, 2017), electricity price prediction (Cheng et al., 2019), financial markets (Fischer & Krauss, 2018), and forecasting short-
term load (He, Zhou, Feng, Liu, & Yang, 2019). RNN overcomes the shortcoming of regular ANN but suffers from training issues in the
presence of long-term dependencies, which may introduce instability in performance (Bengio, Simard, & Frasconi, 1994). A type of
RNN, namely, LSTM networks, overcomes the shortcomings of RNN.

LSTM with attention mechanism is used in forecasting tourist arrivals to Macau with (Law et al., 2019). Bidirectional LSTM
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network, a variant of LSTM, is especially apt for solving time series-based problems. BiLSTM, in contrast to LSTM, can utilize both
backward and forward information. However, the research on the use of BiLSTM networks to TD prediction is scant. It is pertinent to
note that research calls for the use of novel methods to predict TD (Song & Li, 2008). To this effect, this study utilizes BiLSTM along
with Bayesian Optimization (BO) to predict quarterly tourist arrivals (demand) to Singapore by utilizing tourism price and income
level as explanatory variables. Through this work, the study strives to improve the prediction accuracy of TD forecasts.

Material and methods

In this section, we introduce RNN followed by its advancements, namely, LSTM and Bidirectional LSTM, along with on Bayesian
optimization.

Recurrent neural networks

RNN, first proposed by J.J. Hopfield, is a preferred architecture for sequential data (Hopfield, 1982). The traditional ANN in-
corporates an input layer, a single hidden layer, and an output layer, connected through weights. The major difference between RNN
and traditional feed-forward ANN is that outputs are fed back as inputs in RNN. This connection between outputs and inputs serve as
dynamic memory and make RNN more effective in learning temporal dependencies, thus making it better suited for time series data
such as TD forecasting.

Long short-term memory network

RNNs are better suited than ANNs for sequential learning problems with short-term dependencies. However, they are not effective
for handling problems with long-term dependencies, as the long training process may make the network unstable due to sudden large
changes in training weights, also referred to as exploding gradients. LSTM, a type of RNN, introduced by Hochreiter and Schmidhuber
(1997), uses the concept of memory cells to handle long-term dependencies. The distinguishing feature of LSTM networks as com-
pared to RNN is the memory cells in the hidden layer(s). Memory cells selectively retain or forget relevant contextual information.
Architecturally, each memory cell comprises an input gate (it), forget gate (ft) and output gate (ot) for regulating the information flow
as shown in Fig. 2. The input and forget gates decide the information that is to be added and discarded from the cell state, re-
spectively. The output gate decides the parts of the cell state to be produced as output. The learning process of an LSTM is briefly
described below (Fischer & Krauss, 2018).

At every time step t, the memory cells in the LSTM layer are updated in a multi-step process, described below, by vectorized
equations with the following notation:

• The input vector at time step t is represented by xt.

• Bias vectors are indicated by bf, bc͠ , bi, bo.

• The activation value vectors of the respective gates are represented by ft, it, ot.

• The cell states and candidate values vectors are indicated by ct and c͠t .

Fig. 1. Progression Neural Networks in tourism demand forecasting.
Note: AR-NN: Autoregressive neural network; ARIMA – AR integrated moving average, TFM – Transfer function model; ARIMAX - ARIMA with
explanatory variables; BPNN – Backpropagation NN; GRNN – Generalized Regression NN; NNAR - NN Autoregression; DNNAR - Denoised NN
Autoregression; EMD – Empirical Mode Decomposition; SVR – Support Vector Regression; LSSVR – Least Square SVR; LSTM – Long Short-Term
Memory; SARIMA – Seasonal ARIMA; MLP – Multi-Layer Perceptron; RBFNN – Radial Basis Function NN; SETAR - Self-Exciting Threshold
Autoregression, KELM – Kernel Extreme Learning Machine; BBiLSTM – Bayesian Bidirectional Long-short Memory.
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• ht is the output vector of the LSTM layer.

• Weight matrices are denoted by Wf, x, Wf, h, Wc x,͠ , Wc h,͠ , Wi, x, Wi, h, Wo, x and Wo, h.

The cell states ct and outputs ht at time step t during a forward pass are computed as follows:
First, the LSTM layer regulates the information that should be discarded its previous cell states ct−1. The current input xt, the

outputs ht−1 of the memory cells at the previous time step (t − 1), and the bias terms bf of the forget gates are utilized for computing
the activation values ft of the forgot gates at time step t through a sigmoid activation function (σ).

= + +−f σ W x W h b( )t f x t f h t f1, , (1)

In step two, the LSTM layer decides the new information that needs to be stored in the cell states (ct). This process involves two
steps: (a) the activation values (it) of the input gate at time step t are calculated and (b) new candidate values c͠t are computed through
a hyperbolic tangent function.

= + +−c tanh W x W h b( )͠ t c x t c h t c1, ,͠ ͠ ͠ (2)

= + +−i σ W x W h b( )t i x t i h t i1, , (3)

In step three, we use the results in previous steps to calculate new call states ct with ∘ depicting the Hadamard product:

= ∘ + ∘−c f c i c͠t t t t t1 (4)

Lastly, the output ht of memory cells of the LSTM layer is derived from the following equations:

= + +−o σ W x W h b( )t o x t o h t o1, , (5)

= ∘h o tanh c( )t t t (6)

Bidirectional LSTM

As described in Long short-term memory network section, while LSTM overcomes the limitations of RNN, it is still only able to
process information from the past in a sequence. Whereas, BiLSTM utilizes future information as well. To achieve this, architecturally,
BiLSTM contains forward and backward LSTM layers, as shown in Fig. 3. The inputs from the forward and backward layers are
processed simultaneously by the output layer (Yildirim, 2018).

The output layer is updated in BiLSTM through the computation of the forward hidden sequence
→
ht , the backward hidden

sequence
←
ht and the output sequence yt by iterating the backward layer from t= T to 1 and the forward layer from t= 1 to T. Neural

network update can be formulated as:

→
= +

→
+

→
−h H W x W h b( )t t t1 2 1 (7)

←
= +

←
+

←
−h H W x W h b( )t t t3 5 1 (8)

=
→

+
←

+y W h W h bt t t y4 6 (9)

Fig. 2. Structure of LSTM network.
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where
←
ht ,

→
ht , yt are the vectors for backward propagation, forward propagation and, an output layer, respectively. W's are the weight

coefficients.
→
b ,

←
b , by are the respective bias vectors (Cheng et al., 2019).

We use the adaptive moment (Adam) to optimize the learning rate of the BiLSTM network (Kingma & Ba, 2014). It has been
shown to outperform SGD and RMSProp (Wu et al., 2018).

Benchmark models – LSTM, SVR, RBFNN, and ADLM

For benchmarking the BBiLSTM model, we choose LSTM, SVR, RBFNN, and Autoregressive Distributed Lag Model (ADLM)
models. In the case of SVR, we optimize the parameters epsilon (ε) box constraint (C), and kernel scale (γ) (Alade, Rahman, & Saleh,
2019). RBFNN, a three-layered feed-forward neural network, employs a radial basis function (RBF), usually a Gaussian function, the
spread of which should be appropriate so as not to cause overfitting or underfitting (Claveria et al., 2015). Hence, the spread of the
Gaussian curve is the parameter of RBFNN that needs optimization. In the case of the ADLM model, the critical parameter is lag,
which is selected through automatic lag selection based on the BIC criterion (Onder, Gunter, & Gindl, 2019).

Bayesian optimization

Hyperparameters are the parameters that need to be initialized before training a model. BiLSTM has several hyperparameters
which control the training process and directly affect the predictive performance of the model. The hyperparameters considered for
Bayesian Optimization (BO) are the number of neurons (NN), learning rate, L2 regularization, and the probability of dropout layer in
the BBiLSTM model.

The first hyperparameter is NN. If the NN is too small, the model may not be able to generalize well, and significantly large NN
may impact the computational efficacy (Guler, Ubeyli, & Guler, 2005). The second hyperparameter is the learning rate. The learning
rate controls the rate at which a model adapts to the problem. A large learning rate can lead to a model that converges too quickly to a
suboptimal solution, while a smaller learning rate can lead to a model that may never converge in a given time. The third and fourth
hyperparameters are dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) and L2 regularization (Lago, De
Ridder, & De Schutter, 2018), which are used to prevent overfitting of the model. Dropout is the probability with which some neurons
at each iteration are chosen and prevented from being trained. L2 regularization is exploited to optimize the weight parameters of the
BBiLSTM model, thereby avoiding overfitting (Zhou, Chang, Chang, Kao, & Wang, 2019).

Bayesian Optimization (BO) is a method for identifying hyperparameters (Law & Shawe-Taylor, 2017). Traditionally, human
domain experts with prior user experience identify the optimum set of hyperparameters. This approach often yields suboptimal
results (Bergstra & Bengio, 2012). Another alternative is the grid search or random search. However, these approaches become
complicated, with a large number of dimensions and are time-consuming (Cornejo-Bueno, Garrido-Merchán, Hernández-Lobato, &
Salcedo-Sanz, 2018). Moreover, BO has outperformed grid search, and random search in the tuning of hyperparameters in various
applications (Bergstra & Bengio, 2012; Cornejo-Bueno et al., 2018) and outperformed human domain experts in some cases
(Eggensperger et al., 2013). It is capable of efficiently finding a global optimum for unknown and complex functions, thereby making
it suitable for the automatic tuning process of various algorithms. BO can also obtain satisfactory results with fewer iterations in
comparison with traditional optimization algorithms (He et al., 2019).

Bayesian Optimization tries to approximate the posterior distribution of the black-box function or objective function f(X) to be
optimized using Bayes theorem.

=∗
∈X arg f Xmax ( )X U (10)

where X∗ is the set of optimal hyperparameters.
Fig. 4 shows the procedure of Bayesian optimization. The objective function depicted in Fig. 4 is for visualization of BO procedure.

Fig. 3. Structure of BiLSTM neural network.
(Adapted from Yildirim, 2018.)
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In the first step, the algorithm tries to fit a surrogate function (dark line) over the objective function (dotted line) by randomly
selecting a few data points. In the second step, the surrogate model is updated through a Gaussian process (GP) to form the posterior
distribution over the objective function as the GP model is robust, analytically traceable and accurate (Martinez-Cantin, 2017). Next,
the posterior distribution is utilized to construct an acquisition function (bottom line), which is used to find out where to sample next
in the hyperparameter space. The acquisition function balances the compromise between exploitation and exploration. In the ex-
ploitation phase, sampling is performed in the regions where the surrogate model most likely expects to find the global solution.
Exploration means sampling in the areas where prediction ambiguity is high. Exploration and exploitation occur in the third and
fourth steps, respectively.

This exploration and exploitation process and updates of the posterior GP continue till a predefined stopping criterion is reached.
In this work, this criterion was set to 200 iterations. The aim is to maximize the acquisition function in finding the next sampling
point. Following Cheng et al., 2019, Expected improvement (EI), a widely used acquisition function is employed in this study. EI is
the improvement associated with the candidate solution over the current best solution.

In the current study, we take the first 56 data points (60%) for training the models. The next 19 data points (20%) are used as the
validation set to select the optimal set of hyperparameters, and the last 19 data points (20%) that are not utilized at any step, is
implemented as out-of-sample data to compare the performance of the models (He et al., 2019). The data is then transformed into the
format required by supervised learning techniques. Additionally, TD is a dynamic process, as tourists decide on the choice of des-
tination country beforehand. Behavioral patterns such as habit formation, the expectation of tourists, and the effect of “word of
mouth” are captured by lagged dependent variables. Meanwhile, the dynamic effects of numerous factors that affect TD are in-
corporated by including lags of explanatory variables (Lim, 1997). Moreover, the inclusion of the lagged dependent variable of
tourism demand has been found to be one of the critical factors that affect TD (Song & Witt, 2006). Hence, we consider the lag of
dependent and explanatory variables in the proposed model. The steps adopted in this study are shown in Fig. 5.

Fig. 4. Bayesian optimization procedure.
(Reproduced from Shahriari, Swersky, Wang, Adams, & De Freitas, 2016).
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Performance indices

We use four widely used performance measures to evaluate the proposed model. The measures are root mean square error
(RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and the ratio of RMSE (RRMSE). RRMSE has been
employed as a predictive performance evaluation metric in TD forecasting (Silva et al., 2019).

∑
N

x xRMSE = 1 −( ^)
t

N

t t
=1

2

∑
N

x xMAE = 1 −| ^|
t

N
t t=1

∑
N

x x
x

MAPE = 1 − ^

t

N
t t

t=1

Fig. 5. Flowchart of the proposed BBiLSTM model.

Table 1
Descriptive statistics for tourist arrivals to Singapore.

Variable Mean Median Std dev. IQR SW (p)

Lntourist arrivals
Australia 12.0400 12.0800 0.4158 0.7474 <0.01
France 10.1640 10.0520 0.3943 0.7320 <0.01
Germany 10.8120 10.7210 0.3054 0.4216 <0.01
Netherlands 9.8130 9.8140 0.1449 0.1806 <0.01
New Zealand 10.1410 10.2120 0.2361 0.2988 <0.01

Lnincome
Australia 10.470 10.523 0.2718 0.4653 <0.01
France 10.36 10.41 0.2352 0.3501 <0.01
Germany 10.47 10.49 0.2598 0.4417 <0.01
Netherlands 10.57 10.66 0.2602 0.3824 <0.01
New Zealand 10.211 10.240 0.2646 0.4540 <0.01

Lnprice
Australia −0.0326 −0.0073 0.1103 0.1836 <0.01
France 0.0296 0.0196 0.0196 0.0766 <0.01
Germany 0.0173 0.0160 0.0581 0.0769 >0.01
Netherlands 0.0352 0.0196 0.0902 0.0997 <0.01
New Zealand 0.0732 0.0695 0.0957 0.1265 >0.01

Note: SW denotes Shapiro-Wilk Test. Cut-off p-value is 0.05. IQR – Interquartile range.
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RMSE BBiLSTM
RMSE Model

RRMSE = _
_

i

i
i

where N is the number of samples, xt^is the forecasted tourism value and xt is the actual tourism value. The five source countries are
represented by i, and Model represents the four benchmark models. As an example, when the RRMSE ratio of BBiLSTM to LSTM
is< 1, then BBiLSTM forecast performs better than LSTM forecast by 1- BBiLSTM

LSTM
percent and vice versa.

Table 2
ADF and KPSS test p-values for the dataset.

Variables I(0) I(1)

ADF KPSS ADF KPSS

Lntourist arrivals
Australia 0.3726 <0.01 < 0.01 > 0.1
France 0.7538 <0.01 < 0.01 > 0.1
Germany 0.8015 <0.01 < 0.01 > 0.1
Netherlands 0.2639 <0.01 < 0.01 > 0.1
New Zealand 0.0817 <0.01 < 0.01 > 0.1

lnincome
Australia 0.9639 <0.01 < 0.01 > 0.1
France 0.5072 <0.01 0.0360 >0.1
Germany 0.0140 <0.01 < 0.01 > 0.1
Netherlands 0.5073 <0.01 0.0242 0.0933
New Zealand 0.5089 <0.01 < 0.01 > 0.1

lnprice
Australia 0.5387 <0.01 < 0.01 > 0.1
France 0.01822 <0.01 0.0254 >0.1
Germany 0.1298 <0.01 0.0263 >0.1
Netherlands 0.03495 <0.01 0.0587 >0.1
New Zealand 0.2714 0.0386 0.01 > 0.1

Note: In ADF Test, p-value<0.05 indicates that data is stationary. In KPSS Test, p-value> 0.05 indicates that data is stationary.

Table 3
Forecasting performance of BBiLSTM and benchmark models.

Source country
Hyperparameter

Model RMSE MAE MAPE RRMSE
BBiLSTM

LSTM

RRMSE
BBiLSTM

SVR

RRMSE
BBiLSTM
RBFNN

RRMSE
BBiLSTM

ADLM

Australia BBiLSTM 0.0025 0.0022 0.0002 0.0671 0.0595 0.0056 0.0585
NN – 172 LSTM 0.0372 0.0326 0.0026
L2 – 0.0021 SVR 0.0420 0.0363 0.0029
DP – 0.0163 RBFNN 0.4497 0.3946 0.0316
LR - 0.0020 ADLM 0.0428 0.0340 0.0027

France BBiLSTM 0.0206 0.0068 0.0006 0.4993 0.5334 0.1361 0.4218
NN – 42 LSTM 0.0413 0.0284 0.0027
L2 – 0.0003 SVR 0.0386 0.0254 0.0024
DP – 0.0202 RBFNN 0.1514 0.1023 0.0096
LR – 0.0196 ADLM 0.0488 0.0343 0.0032

Germany BBiLSTM 0.0204 0.0090 0.0008 0.2607 0.1923 0.1524 0.2338
NN – 90 LSTM 0.0783 0.0635 0.0056
L2 – 0.0110 SVR 0.1061 0.0861 0.0076
DP – 0.0889 RBFNN 0.1339 0.1158 0.0102
LR – 0.0108 ADLM 0.0873 0.0655 0.0058

Netherlands BBiLSTM 0.0275 0.0086 0.0009 0.4636 0.6274 0.4326 0.3178
NN – 138 LSTM 0.0593 0.0541 0.0054
L2 – 0.0940 SVR 0.0438 0.0352 0.0035
DP – 0.0111 RBFNN 0.0636 0.0519 0.0052
LR – 0.0056 ADLM 0.0865 0.0596 0.0060

New Zealand BBiLSTM 0.0094 0.0078 0.0007 0.1072 0.1364 0.1024 0.1033
NN – 65 LSTM 0.0877 0.0764 0.0074
L2 – 0.0091 SVR 0.0689 0.0564 0.0054
DP – 0.1134 RBFNN 0.0918 0.0793 0.0077
LR – 0.0415 ADLM 0.0910 0.0777 0.0075

Note: NN is the number of neurons in the BiLSTM layer, L2 denotes L2 regularization, DP depicts the probability of dropout layer, and LR represents
learning rate. Values in bold indicate best performance among models.
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Data

In this section, we describe the data source and the stationarity test applied to the tourism variables. As indicated earlier,
Singapore tourism dataset has been studied with numerous approaches, including Copula-ECM, ARIMA, NN, static regression, and
ARFIMA (Zhu et al., 2018)

Data source and description

Singapore was chosen as the location of this empirical study. Singapore is ranked 17th in global travel and tourism (WEF, 2019).
Approximately 18.5 million visitors arrived in Singapore, contributing $26.9 billion as tourism receipts in 2018. In this study, we
estimate tourist arrivals to Singapore from five major source countries, namely Australia, France, Germany, Netherlands, and New
Zealand over 24 years (1995Q1 – 2018Q4). Other countries were not selected due to data availability issues. The definitions of
variables that are utilized in this study are largely drawn from Song, Witt, and Li (2009) and Gunter and Onder (2015).

The variable International TDmeasuring the number of tourist arrivals to Singapore is defined as the natural logarithm of quarterly
tourist arrivals to Singapore from five major source countries (France, Germany, Australia, Netherlands, and New Zealand). It is
represented by qi, t = ln (Qi, t) where i∈ (FR, DE, AU, NL, NZ) at time t= 1995Q1,…,2018Q4, thereby resulting in 96 observations per
source market. The tourist arrivals dataset used in the study is obtained from Singapore the Tourism Board (STB, 2019).

The relative price variable measures the living cost in Singapore compared to the price level in the respective market, adjusted by
the corresponding exchange rates against the US dollar. The relative price variable is denoted by PRi, t where

PR = ln
CPI ER

CPI ER
( / )

( / )i t
Des t Des t

i t i t
,

, ,

, ,

where CPIDes, t and CPIi, t are the quarterly consumer price index, ERDes, t and ERi, t are the consumer price index and exchange rates
for destination and origin respectively against the US dollar. The CPI and exchange rate data are obtained from the International
Monetary Fund (IMF, 2019).

Lastly, the tourist income variable is measured as real GDP per capita of the source market and is depicted by yi, t = ln (Yi, t). The
data was obtained from OECD (2019). All the datasets employed in the study were log-transformed before estimation.

In this study, transportation cost, despite being an explanatory variable for TD, has been precluded. There is no accepted defi-
nition, and lack of reliable data for various countries, and multicollinearity may also be introduced when transportation cost is
included with the tourism price variable (Song et al., 2009).

Table 1 shows descriptive statistics for the dataset. Most of the variables related to each source country did not follow a normal
distribution, as suggested by Shapiro-Wilk (SW) test (p-value<0.01). Thereby indicating that non-parametric methods are more
suitable for such a dataset (Hansen et al., 1999). Hence, the median should be regarded as a measure of central tendency and
Interquartile range (IQR) as a measure of variation in the data. From Table 1, we can see that Australia shows the highest variation
and mean in the dataset. Fig. 6 shows the progression of TD to Singapore from five source countries. The entire dataset consisted of 96
data points from 1995Q1 to 2018Q4.

Stationarity

The tourism variables were tested for stationarity. ADF (Dickey & Fuller, 1979) and KPSS (Kwiatkowski, Phillips, Schmidt, & Shin,
1992) tests were carried out to find out if the time series is stationary or not. The null hypothesis of the ADF test is: “unit root is
present in time series.” The null hypothesis of the KPSS test is “the time series is stationary.” Based on both KPSS and ADF test results
in Table 2, the time series is deemed non-stationary. In order to attain a stationary time series, the first difference of the series was
taken (Lim, Chang, & McAleer, 2009).

Results

The empirical results from the proposed forecasting methodology are described in Table 3. The results shown in the tables depict
the performance of the models on the test dataset at lag1. The optimal number of lags was selected based on the Bayesian information

Table 4
Optimal lag corresponding to information criteria.

Source country AIC BIC HIC

Australia 3 1 1
France 1 1 1
Germany 1 1 1
Netherlands 1 1 1
New Zealand 1 1 1

Note: AIC - Akaike information criterion; BIC- Bayesian Information Criterion; HIC - Hannan–Quinn in-
formation criterion. The optimal lag was chosen based on BIC value.

A. Kulshrestha, et al. Annals of Tourism Research 83 (2020) 102925
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criterion (BIC). From Table 4, we can see that lag1 is the optimal lag for most countries. In order to assess the prediction performance
genuinely, we used the out-of-sample data (Sagheer & Kotb, 2019).

First, based on the RMSE criterion, we can observe from Fig. 7 that the BBiLSTM outperforms all other forecasting models, namely
LSTM, SVR, RBFNN, and ADLM. The MAPE and MAE criterion also strengthens the suggestion as MAPE and MAE values of the
BBiLSTM model are comparatively lesser than the other four benchmark models.

Next, we examine the forecasting results at the level of source country from Table 3 and Fig. 8. In the case of Australian tourist
arrivals, BBiLSTM predictions outperform the LSTM, SVR, RBFNN and ADLM forecasts based on RMSE, MAPE, and MAE criteria. As
evident from the RRMSE values, the BBiLSTM forecasts are found to be 93.3%, 94.1%, 99.4%, and 94.2% better than LSTM, SVR,
RBFNN, and ADLM forecasts, respectively.

For France tourist arrivals, we observe that the BBiLSTM forecasts perform better than the LSTM, SVR, RBFNN, and ADLM
forecasts. As evident from the RRMSE values, the BBiLSTM forecasts are found to be 50.1%, 46.7%, 86.4%, and 57.8% better than
LSTM, SVR, RBFNN, and ADLM forecasts, respectively.

In the case of German tourist arrivals, the BBiLSTM forecasts outperform the LSTM, SVR, RBFNN, and ADLM forecasts. Also, the
BBiLSTM forecasts are found to be 74.0%, 80.8%, 84.8%, and 76.6% better than the LSTM, SVR, RBFNN, and ADLM forecasts,
respectively.

BBiLSTM performs better than the LSTM, SVR, RBFNN, and ADLM in forecasting tourist arrivals from the Netherlands also.
BBiLSTM forecasts are found to be 53.6%, 37.3%, 56.7% and 68.2% better than the LSTM, SVR, RBFNN and ADLM forecasts,
respectively.

In the case of New Zealand tourist arrivals, the BBiLSTM forecasts outperform the LSTM, SVR, RBFNN and ADLM forecasts.
BBiLSTM forecasts are found to be 89.3%, 86.4%, 89.8% and 89.7% better than the LSTM, SVR, RBFNN and ADLM forecasts,

Table 5
Effect of increasing lags on BBiLSTM model performance.

Source country Lag1 Lag2 Lag3 Lag4

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Australia 0.0025 0.0002 0.0133 0.0005 0.0093 0.0006 0.0144 0.0007
France 0.0206 0.0006 0.0122 0.0008 0.0199 0.0012 0.0075 0.0005
Germany 0.0204 0.0008 0.0164 0.0005 0.0163 0.0006 0.0190 0.0010
Netherlands 0.0275 0.0009 0.0222 0.0015 0.0206 0.0012 0.0073 0.0005
New Zealand 0.0094 0.0007 0.0113 0.0007 0.0064 0.0005 0.0153 0.0009

Table 6
Impact of number of neurons on the model performance.

Source market Constant parameters NN RMSE MAE MAPE

Australia L2 – 0.0021 25 0.0492 0.0453 0.0036
LR – 0.0020 75 0.0079 0.0074 0.0006
DP – 0.0163 125 0.0048 0.0043 0.0003

200 0.0040 0.0038 0.0003
172 0.0025 0.0022 0.0002

France L2 – 0.0003 25 0.0210 0.0073 0.0007
LR – 0.0196 75 0.0204* 0.0093 0.0009
DP – 0.0202 125 0.0211 0.0098 0.0009

200 0.0216 0.0067 0.0006
42 0.0206 0.0068 0.0006

Germany L2 – 0.0110 25 0.0233 0.0178 0.0016
LR – 0.0108 75 0.0209 0.0148 0.0012
DP – 0.0889 125 0.0218 0.0150 0.0009

200 0.0224 0.0153 0.0014
90 0.0204 0.0090 0.0008

Netherlands L2 – 0.0940 25 0.0372 0.0182 0.0018
LR – 0.0056 75 0.0272* 0.0101 0.0010
DP – 0.0111 125 0.0277 0.0165 0.0015

200 0.0267* 0.0119 0.0012
138 0.0275 0.0086 0.0009

New Zealand L2 – 0.0091 25 0.0189 0.0162 0.0016
LR – 0.0415 75 0.0103 0.0089 0.0009
DP – 0.1134 125 0.0317 0.0221 0.0018

200 0.0616 0.0539 0.0052
65 0.0094 0.0078 0.0007

Note: In Tables 6–9, NN is the number of neurons in the BiLSTM layer, L2 denotes L2 regularization, Dropout depicts the probability of dropout
layer, and LR represents learning rate. Values in bold show the optimal NN as selected by BO and corresponding performance. In three cases
(indicated by *), the performance is superior to BO based hyperparameter.
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respectively.
From the above results, we may conclude that the BBiLSTM, with its two-way learning process, has better generalization cap-

abilities than other competing models. All other competing models learn in a unidirectional way, thereby somewhat limiting their
learning capability.

Table 7
Impact of L2 regularization on the performance of the model.

Source market Constant parameters L2 RMSE MAE MAPE

Australia NN – 172 0.01 0.0083 0.0075 0.0006
LR – 0.0020 0.0001 0.0073 0.0068 0.0005
DP – 0.0163 0.1 0.0619 0.0537 0.0043

0.005 0.0026 0.0023 0.0002
0.0021 0.0025 0.0022 0.0002

France NN – 42 0.01 0.0192* 0.0110 0.0010
LR – 0.0196 0.0001 0.0221 0.0096 0.0009
DP – 0.0202 0.1 0.0179* 0.0102 0.0010

0.005 0.0203* 0.0095 0.0009
0.0003 0.0206 0.0068 0.0006

Germany NN – 90 0.01 0.0251 0.0184 0.0016
LR – 0.0108 0.0001 0.0220 0.0131 0.0012
DP – 0.0889 0.1 0.0892 0.0722 0.0064

0.005 0.0207 0.0109 0.0098
0.0110 0.0204 0.0090 0.0008

Netherlands NN – 138 0.01 0.0312 0.0096 0.0010
LR – 0.0056 0.0001 0.0262* 0.0089 0.0009
DP – 0.0111 0.1 0.0442 0.0365 0.0037

0.005 0.0300 0.0092 0.0009
0.0940 0.0275 0.0086 0.0009

New Zealand NN – 65 0.01 0.0101 0.0095 0.0009
LR – 0.0415 0.0001 0.0106 0.0097 0.0009
DP – 0.1134 0.1 0.0674 0.0554 0.0053

0.005 0.0167 0.0151 0.0015
0.0091 0.0094 0.0078 0.0007

Note: Values in bold show the optimal L2 as selected by BO and corresponding performance. In four cases (indicated by *), the performance is
superior to BO based hyperparameter.

Table 8
Impact of dropout on the model performance.

Source market Constant parameters DP RMSE MAE MAPE

Australia NN – 172 0.001 0.0048 0.0035 0.0003
L2 – 0.0021 0.1 0.0088 0.0081 0.0007
LR – 0.0020 0.05 0.0056 0.0048 0.0004

0.5 0.0064 0.0048 0.0004
0.0163 0.0025 0.0022 0.0002

France NN – 42 0.001 0.0208 0.0083 0.0008
L2 – 0.0003 0.1 0.0195* 0.0077 0.0007
LR – 0.0196 0.05 0.0213 0.0090 0.0008

0.5 0.0160* 0.0103 0.0010
0.0202 0.0206 0.0068 0.0006

Germany NN – 90 0.001 0.0228 0.0083 0.0007
L2 – 0.0110 0.1 0.0233 0.0138 0.0012
LR – 0.0108 0.05 0.0205 0.0105 0.0009

0.5 0.0159* 0.0112 0.0010
0.0889 0.0204 0.0090 0.0008

Netherlands NN – 138 0.001 0.0286 0.0146 0.0015
L2 – 0.0940 0.1 0.0263* 0.0101 0.0010
LR – 0.0056 0.05 0.0261* 0.0104 0.0010

0.5 0.0244* 0.0162 0.0016
0.0111 0.0275 0.0086 0.0009

New Zealand NN – 65 0.001 0.0107 0.0099 0.0009
L2 – 0.0091 0.1 0.0126 0.0118 0.0010
LR – 0.0415 0.05 0.0169 0.0164 0.0016

0.5 0.0274 0.0235 0.0023
0.1134 0.0094 0.0078 0.0007

Note: Values in bold show the optimal dropout as selected by BO and corresponding performance. In six cases (indicated by *), the performance is
superior to BO based hyperparameter.
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Robustness analysis

The forecasting performance of the BBiLSTM model under different conditions is studied in this section. Case study 1 examines the
effect of increasing lags on forecasting performance. Case study 2 examines the effect of (a) number of neurons (b) L2 regularization,
(c) probability of dropout layer, and (d) learning rate on the performance of the BBiLSTM model. Case study 3 utilizes multi-step
ahead forecasting. Case study 4 validates the performance of the proposed BBiLSTM model in deseasonalized data. Case study 5
compares the performance of the BBiLSTM model using Diebold Mariano test.

Case study experiment 1 - effect of increasing lags

In this case study, we analyze the effect of increasing lags on model performance. Forecasts are generated for lag2 to lag4. We can
see from Table 5, that upon increasing the number of lags, the BBiLSTM model performance differs according to the source country.
Albeit, the effect of increasing the lag is negligible in terms of MAPE. In the case of France, Germany, and the Netherlands, the RMSE
value at lag1 is greater than RMSE values at lag2, lag3, and lag4. This is in contrast to the case of Australia, where RMSE at lag1 is the
lowest. In the case of New Zealand, the RMSE at lag1 is lower than lag2 and lag4, but not lag3. The findings also suggest that tourists
start searching about the choice of destination, at least three months (lag1) before the actual travel by searching for information
about prices, exchange rates, and new destinations that might fit within their budget. The planning period may be higher for tourists
from European countries, as indicated by the lower RMSE values corresponding to higher lags.

Case study experiment 2 - impact of hyperparameters

In this case study, we analyze the impact of various parameter values on the performance of the BBiLSTM model. The optimal set
of hyperparameters for each source country, as found by BO and their performance in terms of RMSE, MAE, and MAPE, are shown in
Table 3. The parameters studied are the number of neurons (NN) (Table 6), L2 regularization (L2) (Table 7), dropout probability
(Table 8), and learning rate (LR) (Table 9).

From Tables 6–9, we can see that different hyperparameters have a considerable effect on forecasting performance. Further, we
compare the performance of the hyperparameters as identified by BO against various randomly selected hyperparameters in terms of
RMSE, MAE, and MAPE. From Tables 6–9, we observe that the BO identified hyperparameters (shown in bold) show better per-
formance than randomly selected hyperparameters in 67 (84%) out of the 80 cases (4 randomly selected hyperparameters × 4
hyperparameters × 5 countries) in terms of RMSE. The thirteen cases (16%) where the randomly selected hyperparameters fared
better is restricted to mostly two source countries, France and the Netherlands, and in one case, Germany (indicated by a * mark in
Tables 6–9). Considering those thirteen cases, none of the randomly selected parameters had MAE and MAPE values below BO
identified parameters. Thus, we may conclude that BO identified hyperparameters are robust and show superior performance in

Table 9
Impact of learning rate on the model performance.

Source market Constant parameters LR RMSE MAE MAPE

Australia NN – 172 0.001 0.0393 0.0383 0.0031
L2 – 0.0021 0.5 3.6911 3.6211 0.2899
DP – 0.0163 0.06 0.0429 0.0410 0.0033

0.15 0.2237 0.1607 0.0129
0.0020 0.0025 0.0022 0.0002

France NN – 42 0.001 0.0449 0.0402 0.0038
L2 – 0.0003 0.5 0.1453 0.1369 0.0128
DP – 0.0202 0.06 0.0353 0.0309 0.0029

0.15 0.0250 0.0174 0.0016
0.0196 0.0206 0.0068 0.0006

Germany NN – 90 0.001 0.0962 0.0785 0.0069
L2 – 0.0110 0.5 2.4059 2.3455 0.2083
DP – 0.0889 0.06 0.0620 0.0509 0.0045

0.15 0.0607 0.0505 0.0045
0.0108 0.0204 0.0090 0.0008

Netherlands NN – 138 0.001 0.0307 0.0282 0.0028
L2 – 0.0940 0.5 7.1045 6.9523 0.6985
DP – 0.0111 0.06 0.0423 0.0376 0.0038

0.15 0.9360 0.9189 0.0921
0.0056 0.0275 0.0086 0.0009

New Zealand NN – 65 0.001 0.0726 0.0622 0.0060
L2 – 0.0091 0.5 0.1064 0.0911 0.0088
DP – 0.1134 0.06 0.0136 0.0113 0.0011

0.15 0.0462 0.0369 0.0036
0.0415 0.0094 0.0078 0.0007

Note: Values in bold show the optimal LR as selected by BO and the corresponding performance.
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general. The implication is that a practitioner may confidently deploy BO for hyperparameter identification.

Case study experiment 3 - multi-step ahead forecasting

To further ascertain the robustness of our proposed model, multi-step ahead forecasting was performed with h = 2,3 and 4 steps.
From Table 10, we can see that based on RMSE, MAE, and MAPE criteria, BBiLSTM outperforms all the other benchmark models at
h = 2,3 and 4 steps ahead. Thus, implying that our model is robust upon increasing the forecasting horizon.

Case study experiment 4 – impact of data pre-processing

As described earlier, the dataset contains quarterly tourist arrivals. In our context, the seasonal difference is the difference
between the quarterly natural logarithm of tourist arrivals in a given quarter and the corresponding quarter of the preceding year. We
employ a seasonal differencing filter D4 = 1 − L4 where D4 and L4 are the seasonal difference and backshift operators, respectively
(Dickey & Zhang, 2010). Upon seasonal differencing, the variables were transformed into year-on-year growth. The seasonally dif-
ferenced dataset was found to be stationary, based on both ADF and KPSS tests. After seasonal differencing, 92 observations per
variable and per source country were available for modeling and was split in 60:20:20 ratio for model building, validation, and
benchmarking. Based on BIC values, lag1 was selected as the optimal lag. From Table 11, we observe that BBiLSTM outperforms
LSTM, SVR, RBFNN and ADLM models in terms of RMSE, MAPE, and MAE. The performance of BBiLSTM on deseasonalized data is
consistent with results in Table 3.

Case study experiment 5 - comparison of forecasting accuracy with Diebold Mariano test

To confirm the forecasting performance of the BBiLSTM model, Diebold and Mariano (DM) (1995) test is utilized. The null

Table 10
Multi step ahead forecasting with BBiLSTM and benchmark models.

Source market
Model

h = 2 h = 3 h = 4

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

Australia
BBiLSTM 0.0129 0.0114 0.0009 0.0188 0.0164 0.0013 0.0206 0.0178 0.0014
LSTM 0.0728 0.0621 0.0058 0.0913 0.0847 0.0082 0.1026 0.0986 0.0091
SVR 0.0935 0.0876 0.0082 0.1127 0.1035 0.0098 0.1862 0.1631 0.0158
RBFNN 0.9567 0.9131 0.0894 1.2758 0.9968 0.0932 1.9536 1.6725 0.9994
ADLM 0.0921 0.0852 0.0083 0.1011 0.0981 0.0089 0.1793 0.1624 0.0153

France
BBiLSTM 0.0569 0.0326 0.0038 0.0815 0.0656 0.0063 0.0935 0.0890 0.0084
LSTM 0.0719 0.0624 0.0060 0.0962 0.0767 0.0071 0.0989 0.0904 0.0089
SVR 0.0783 0.0721 0.0071 0.1038 0.0957 0.0082 0.1257 0.1011 0.0126
RBFNN 0.3589 0.3183 0.0298 0.6423 0.6108 0.0596 0.8582 0.7381 0.0729
ADLM 0.0876 0.0794 0.0073 0.1488 0.1246 0.0110 0.1765 0.1532 0.0131

Germany
BBiLSTM 0.0683 0.0551 0.0005 0.0728 0.0456 0.0041 0.0824 0.0607 0.0055
LSTM 0.0953 0.0914 0.0089 0.1183 0.1019 0.0098 0.2136 0.1954 0.0176
SVR 0.1331 0.1153 0.0142 0.2280 0.1987 0.0188 0.2741 0.2593 0.0238
RBFNN 0.1989 0.1826 0.0179 0.2672 0.2231 0.0252 0.3114 0.2979 0.0283
ADLM 0.1029 0.0987 0.0092 0.1821 0.1747 0.0169 0.2530 0.2249 0.0216

Netherlands
BBiLSTM 0.0833 0.0690 0.0067 0.1112 0.0937 0.0095 0.1355 0.1214 0.0133
LSTM 0.0989 0.0861 0.0082 0.1386 0.1156 0.0106 0.1924 0.1858 0.0179
0.0SVR 0.0922 0.0899 0.0084 0.1297 0.1034 0.0968 0.1835 0.1611 0.0143
RBFNN 0.1053 0.0963 0.0093 0.1681 0.1539 0.0144 0.2684 0.2431 0.0216
ADLM 0.1242 0.1117 0.0108 0.1694 0.1597 0.0150 0.2790 0.2528 0.0250

New Zealand
BBiLSTM 0.0320 0.0217 0.0022 0.0384 0.0273 0.0026 0.0967 0.0734 0.0071
LSTM 0.1057 0.0979 0.0090 0.1267 0.1125 0.0131 0.2163 0.2014 0.0283
SVR 0.0941 0.0899 0.0083 0.1183 0.1024 0.0115 0.1616 0.1539 0.0148
RBFNN 0.1697 0.1385 0.0125 0.2134 0.1922 0.0183 0.2998 0.2712 0.0237
ADLM 0.1644 0.1288 0.0116 0.2582 0.2416 0.0234 0.3412 0.3187 0.0365

Note: Values in bold indicate best performance among models.
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hypothesis of the DM test is “equal predictive accuracy of both the models.” The negative sign of the DM stat in Table 12 indicates
that the competing model has higher prediction errors. From Table 12, it is also evident that BBiLSTM model outperforms the LSTM,
SVR, RBFNN, and ADLM models consistently. For most of the observations, the DM statistic values were statistically significant.

Conclusion

This study contributes to the hospitality literature by applying a deep learning approach to forecast tourism demand. The
BBiLSTM model utilized income and relative price variables to predict tourism demand to Singapore from five visitor countries and
was benchmarked against LSTM, SVR, and RBFNN models. The experimental findings suggest that the BBiLSTM model outperforms

Table 11
Comparison of performance of models upon seasonal differencing.

Source market Model RMSE MAPE MAE

Hyperparameter

Australia BBiLSTM 0.0495 0.0033 0.0412
NN – 20 LSTM 0.0928 0.0061 0.0758
L2 – 3.2983E−06 SVR 0.1477 0.0096 0.1198
DP – 0.0121 RBFNN 0.2022 0.0132 0.1649
LR – 0.1724 ADLM 0.1602 0.0105 0.1313

France BBiLSTM 0.0304 0.0024 0.0256
NN – 199 LSTM 0.1653 0.0118 0.1258
L2 – 6.8216E−06 SVR 0.1281 0.0093 0.0990
DP – 0.0104 RBFNN 0.2197 0.0166 0.1768
LR – 0.0130 ADLM 0.5859 0.0407 0.4335

Germany BBiLSTM 0.1074 0.0071 0.0801
NN – 24 LSTM 0.6367 0.0463 0.5223
L2 – 9.6043E−06 SVR 0.2505 0.0177 0.1994
DP – 0.0815 RBFNN 0.8256 0.0398 0.4513
LR – 0.0320 ADLM 0.6939 0.0563 0.6359

Netherlands BBiLSTM 0.0596 0.0022 0.0221
NN – 200 LSTM 0.1223 0.0099 0.0988
L2 – 8.1997E−04 SVR 0.1419 0.0109 0.1088
DP – 0.0205 RBFNN 0.2385 0.0200 0.1989
LR – 0.0161 ADLM 0.2642 0.0227 0.2262

New Zealand BBiLSTM 0.0382 0.0028 0.0295
NN – 61 LSTM 0.1390 0.0110 0.1144
L2 – 0.0024 SVR 0.3834 0.0299s 0.3101
DP – 0.0103 RBFNN 0.4524 0.0364 0.3768
LR – 0.0411 ADLM 0.4295 0.0344 0.3562

Note: Values in bold indicate best performance among models.

Table 12
DM stat for comparison of predictive accuracy of BBiLSTM model.

Source Benchmark model DM stat

Australia LSTM −4.4391*
SVR −4.0798*
RBFNN −5.4975*
ADLM −3.7511*

France LSTM −1.4306
SVR −1.2406
RBFNN −2.0813
ADLM −1.5109

Germany LSTM −2.3723*
SVR −2.9058*
RBFNN −4.562*
ADLM −2.1824*

Netherlands LSTM −2.5808*
SVR −1.2756
RBFNN −2.0832
ADLM −1.9194

New Zealand LSTM −3.8222*
SVR −2.9014*
RBFNN −3.8883*
ADLM −2.6500*

Note: * indicates the p-value is< 0.05.
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all four benchmark models. The findings were validated statistically through the DM test, thus implying that it may be worthwhile to
consider BBiLSTM as a tourism demand forecasting model. The findings also showed that the hyperparameters of the model sig-
nificantly impact the model's performance. Experiments also establish the superiority of Bayesian Optimization in identifying the
hyperparameters in an informed manner, leading to superior model performance. We also found that the BBiLSTM approach takes
only a few seconds to make predictions on the test data set. Hence, practitioners need not be concerned about the time taken to
execute deep learning methods on data sets comparable to the one used in this article. While the model has its advantages, BBiLSTM,
like any other AI model, is a black-box model and would be preferable where precision is more important than explanation.

Our work implies that practitioners may identify hyperparameters using the BO approach instead of manual, random, or grid
search methods. BBiLSTM is especially suitable for data that might exhibit long-term dependencies such as in tourism demand.
Practitioners may follow the steps in Fig. 5 in implementing a BBiLSTM model. The initial steps would entail data collection, pre-
processing activities such as data transformation, seasonality, and stationarity checks, and splitting the data into training, validation,
and testing. The next step is to construct the BBiLSTM model with suitable predictors using the training data. The hyperparameters of
the model are then identified by BO using validation data. Finally, the performance is assessed using the testing data.

Precise tourism demand forecasting can help practitioners effectively allocate and utilize resources and frame policies. Accuracy
improvements in tourism demand forecasting translate to superior operational planning for the business involved in the tourism
industry, for example, hotels and tour operators. The city administration, transport-hub, and transportation managers can use the
BBiLSTM model to prepare for peak demand seasons more effectively and efficiently. Imprecise demand prediction may result in
wastage of resources in the case of overestimation of demand and unpreparedness and loss of opportunity in the case of under-
estimation of tourist demand.

Our results show that the BBiLSTM model has consistently performed better across different source countries and different
forecasting horizons. We also found that for these five source countries, tourist decides regarding the choice of destination county, at
least three months before the actual travel. This, in turn, will aid the minimization of cost by businesses and the planning of foreign
exchange currency as per the forecasted demand. This study utilized Singapore as a single test case, and quarterly data with only two
explanatory variables were used for explaining tourism demand. For better generalization capability and robustness, more desti-
nation countries, yearly or monthly data, and more explanatory variables like marketing expenditure, and the number of hotels in the
destination country can be tested in future work.
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