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A B S T R A C T

Traditional tourism demand forecasting models may face challenges when massive amounts of
search intensity indices are adopted as tourism demand indicators. Using a deep learning ap-
proach, this research studied the framework in forecasting monthly Macau tourist arrival vo-
lumes. The empirical results demonstrated that the deep learning approach significantly out-
performs support vector regression and artificial neural network models. Moreover, the
construction and identification of highly relevant features from the proposed deep network ar-
chitecture provide practitioners with a means of understanding the relationships between various
tourist demand forecasting factors and tourist arrival volumes.

This article also launches the Annals of Tourism Research Curated Collection on Tourism
Demand Forecasting, a special selection of research in this field

Introduction

Unoccupied hotel rooms, unsold event tickets and unconsumed food items represent unnecessary costs as well as unrealized revenue, a
combination that poses a potential threat to financial sustainability. In short, many tourism and hospitality products cannot be stockpiled for
future use, making the need for accurate tourism demand forecasting crucial (Frechtling & Frechtling, 2001). As such, accurate tourism demand
forecasts provide valuable aid for strategic, tactical and operational decision making (Lim, 1997; Song & Li, 2008). For example, governments
need accurate tourism demand forecasts for informed decision making on issues such as infrastructure development, and accommodation site
planning (Chan, Hui, & Yuen, 1999); organizations need the forecasts to make tactical decisions related to tourism promotion brochures, and
tourism and hospitality practitioners need accurate forecasts for operational decisions such as staffing and scheduling. Accordingly, accurate
tourism demand forecasting is an essential element that provides crucial information for tourism-related decision making.

The majority of tourism demand forecasting studies fall under the well-established category of quantitative approach, which
constructs the model from training data on past tourist arrival volumes and various tourism demand forecasting factors (Song & Li,
2008; Wu, Song, & Shen, 2017). With the advances in Web technology, search engines have become essential for tourists in planning
their trips by obtaining destination information on hotels, attractions, and weather. SII data have been acknowledged as a potential
indicator of tourism demand in the destination market (Dergiades, Mavragani, & Pan, 2018; Fesenmaier, Xiang, Pan, & Law, 2011;
Yang, Pan, & Song, 2014), and researchers have examined Search Intensity Indices (SII) data for tourism demand forecasting
(Volchek, Liu, Song, & Buhalis, 2018; Xiang & Pan, 2011).

Although incorporating SII data is promising for accurate tourism demand forecasting, some practical challenges have arisen for
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practitioners attempting to use them with traditional forecasting models. More specifically, the following two practical barriers exist.
The first barrier is related to feature engineering. As mentioned by Song and Li (2008), a large number of factors have been

considered as potential tourism demand forecasting determinants or indicators, examples include exchange rate, tourism prices,
travel costs and various SII data. As the number of potentially influential factors increases, available training data in the feature space
become increasingly sparse. In tourism demand forecasting, this means insufficient data for the construction of a reliable model.
Many forecasting models have difficulties in learning from the training data with too many explanatory factors (Guyon & Elisseeff,
2003). Therefore, feature engineering has been an important step in forecasting model construction because it focuses on extracting
the best set of relevant features from a large variety of potential factors (Zhang, Zhang, & Yang, 2003).

Even though the meaning of factors, such as search engine keywords, are largely known, in the real world scenario, thousands of
potential keywords may be related to a destination tourism market. Currently, feature engineering for tourism demand forecasting
depends largely on domain knowledge on the destination tourism market and requires significant human efforts in selecting effective
features (Xiang & Pan, 2011; Yang, Pan, Evans, & Lv, 2015).

Lag order selection is the second barrier. Despite an increasing number of tourism demand forecasting methods adopting the SII
data, only a small number of studies detect the lead or lag relationships between time series data. Most existing works examined the
hypothesis of no predictability through Pearson correlation coefficients or the Granger causality test (Dergiades et al., 2018; Li, Pan,
Law, & Huang, 2017), in which the null hypothesis is investigated by testing whether the lagged values of a factor are strongly related
or contributing significantly to tourist arrival volume. However, neither Pearson correlation coefficients or Granger causality test
works reliably when the underlying relationship is nonlinear (Reshef et al., 2011). Hence, the capability of selecting all potentially
interesting relationships in a dataset will allow tremendous versatility in the construction of more accurate forecasting models.

Time series, econometric and artificial intelligence models provide excellent forecasting performance, and they break the barrier
of feature engineering based on the domain knowledge of the destination market. However, adopting existing forecasting methods for
every destination market is inconvenient because of the effect from complicated real-world situations. This is especially true when
massive amounts of SII data are adopted as tourism demand indicators during which they may require significant domain expertise to
confine the uncertainty. Moreover, for each SII feature, the number of effective lags may be different as well. The difficulty increases
when combined with other issues, such as the language bias and platform bias (Dergiades et al., 2018).

Recent advances in artificial intelligence, especially the deep learning techniques, have provided methods of breaking the above
barriers and enabling more accurate tourism demand forecasting (Pouyanfar et al., 2018). Deep network architectures extend the
artificial neural network models with more than two nonlinear processing layers, and have been proven effective for various ap-
plications. Their success is attributed usually to their built-in feature engineering capability, which motivates us to break those two
barriers simultaneously within the machine learning process. With regard to the contextual information for time series analysis, deep
network architectures also have certain advantages in flexible yet discriminative non-linear relationships. Specifically, Recurrent
Neural Network (RNN), Long-Short-Term-Memory (LSTM) and Attention Mechanism are capable of handling and learning long-term
dependencies. These properties make deep learning an alternative solution to tourism demand forecasting. In this paper, we aim to
fill the void by proposing a deep learning approach to tourism demand forecasting and address the previously mentioned two
practical barriers simultaneously.

The rest of this paper is organized as follows. The Literature review section reviews the related literature on tourism demand
forecasting, and introduces the deep learning technique. The Methodology section describes the conceptual framework of tourism
demand forecasting with deep learning. The Empirical study section provides a case study on Macau tourist arrivals, and analyzes the
comparison results with baseline methods. Finally, conclusions and implications for future works are summarized in the Conclusions
section.

Literature review

Tourism is an important source of economic growth as well as foreign exchange earnings and jobs creation. Accurate tourism
demand forecasts are paramount because they provide vital information to tourism practitioners and researchers for making decisions
on activities such as earmarking resources, as well as identifying priorities and potential risks. This section provides a brief literature
review on tourism demand forecasting studies and the deep learning technique that motivates this work.

Tourism demand forecasting

Tourism demand forecasting studies can be categorized broadly into qualitative and quantitative approaches. Among them, the
qualitative approach, such as the symposium Delphi and consensus methods, is usually dependent on the qualitative intuition,
experience and insight on a specific tourism market. However, these methods are often considered as “artistic in nature”, and with
poor generalization capability (Moutinho & Witt, 1995; Witt & Witt, 1995). Accordingly, researchers have been working on the
quantitative approach that estimates quantitative relationships among different observations in tourism data. Based on the past data
of factors and tourism volume, the constructed model can then be used to predict future tourist arrival volumes. Generally speaking,
two strategies have been adopted in the quantitative approach to improve the performance. The first strategy attempts to incorporate
more relevant factors that potentially affect tourists' travel motivations, while the second strategy is to adopt more sophisticated
models with better generalization capability on future trends.

In terms of model construction, tourism demand forecasting studies rely heavily on input factors, which are expected to be highly
related to tourism demand, without missing or incorrect values. Using different criteria, tourism demand forecasting factors can be
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categorized into different ways. Based on whether they reflect directly or indirectly tourism demand, they can be categorized into
determinants and indicators.

Determinants are the primary factors for forecasting. Conventional economic theories, such as consumption behavior theory and
utility theory, suggest that both quantitative and qualitative economic factors, such as price, income, and advertising influence
tourism demand (Goh & Law, 2003). However, qualitative economic factors are rarely incorporated into forecasting models because
their quantification is usually arduous. In contrast, quantitative economic factors are commonly used because they are measurable
and can be used easily as features for most forecasting models. Given the nature of tourism demand, the inclusion of only economic
factors is insufficient. Prior studies have focused on how non-economic determinants could reflect travel motivations, and how travel
motivation could further affect the choices of destinations. For example, Goh, Law, and Mok (2008) introduced qualitative non-
economic determinants including special events, climate index, and leisure time index.

Based on the connection with the source market, those determinants can also be divided into push, pull, and resistance factors
(Frechtling & Frechtling, 2001). Among them, the pull factors are attributes of the destination tourism market, such as the quality of
the natural resources and Foreign Direct Investments for social ties (Meleddu & Pulina, 2016). Push factors are attributes related to
the source market, such as leisure time, per capita income, consumers sentiment, and mood (Martins, Gan, & Ferreira-Lopes, 2017). In
contrast, resistance factors include those that constrain travel from the source market to the destination. Examples of these factors
include perceived corruption and relative prices (Poprawe, 2015; Saha & Yap, 2015).

Tourism demand is determined by the determinants from the economic theory. To further improve forecasting accuracy, some
leading indicators which are considered as the secondary factors can also be included into the model (Volchek et al., 2018). With the
advances in Web technology, most tourists resort to search engines for information on all aspects of a trip, ranging from selecting
destinations, booking flights, to reserving accommodations, and planning activities. SII data reflect the attention of tourists, so they
are considered effective indicators for tourism demand and have been introduced into various tourism demand forecasting models.
Xiang and Pan (2011) analyzed the relationship between tourists' search queries of US cities and the attractiveness of the city. The
researchers concluded that SII data represent important indicators on the scale of tourism in the destination market. Choi and Varian
(2012) used Google Trends index to forecast tourist demand of Hong Kong from nine source countries, and confirmed the usefulness
of SII data. According to Yang et al. (2014), SII data reveal the preferences of tourists, provide more prompt data, and depict the
timely changes in tourists' preferences. Pan and Yang (2017) also showed the effectiveness of SII data in the hotel occupancy
forecasting. Those characteristics make them rich information to traditional univariate time-series models because they can help
address the inherent specification problem when encountering sudden changes in econometric patterns (Bangwayo-Skeete & Skeete,
2015).

The selection of search engines depends largely on their popularity in the source tourism markets. Two commonly used SII data in
the existing literature are provided by Google (Önder & Gunter, 2016a, 2016b; Rivera, 2016) and Baidu (Yang et al., 2015). Among
them, Google Trends are weekly or monthly normalized intensity index, while Baidu Index are daily search volume.

In terms of forecasting models, a wide range of methods have been introduced into tourism demand forecasting. According to
Song and Li (2008), these methods can be categorized into time-series models, econometric models and AI models.

Time-series and econometric models are well-adopted in tourism demand forecasting (Andrew, Cranage, & Lee, 1990; Frechtling
& Frechtling, 2001). In particular, many popular methods are variants of autoregressive moving average model (Gunter & Onder,
2015), whereas sophisticated models, such as Markov-switching model, Bayesian model, generalized dynamic factor model, and
time-varying parameter models have been proposed as improvements (Akin, 2015; Athanasopoulos & Hyndman, 2008; Guizzardi &
Stacchini, 2015). From the perspective of methodology, methods in this category utilize past time-series patterns and explore the
relationships between various tourism demand factors and tourist arrival volumes. The primary task of forecasting model con-
struction is to incorporate suitable factors to reduce forecasting errors as measured by some performance indicators such as root mean
squared errors (RMSE), mean absolute errors (MAE), or mean absolute percentage error (MAPE).

Artificial Intelligence models are related to machine learning and soft computing methods that have been adopted to tourism
demand forecasting. For example, based on multivariate regression analyses, Law and Au (1999) have developed methods to capture
the nonlinear relationship using the neural networks that mimic the process of human brain. Goh et al. (2008) further adopted the
rough set approach to improve comprehensibility of the constructed tourism demand forecasting model. Alvarez-Diaz, Mateu-Sbert,
and Rossello-Nadal (2009) indicated that an evolutionary computing method, Genetic Programming, is robust and can easily in-
terpret forecasting of monthly tourist arrivals to the Balearic Islands of Spain. Machine learning techniques such as support vector
regression (SVR) model has also been found effective in modeling the nonlinear data series (Pai, Hong, Chang, & Chen, 2006; Zhang,
Huang, Li, & Law, 2017). Some recent studies have also shown that ensemble methods which integrate results from different models
generate better results (Chan, Witt, Lee, & Song, 2010; Coshall & Charlesworth, 2011; Shen, Li, & Song, 2011; Zhou, 2012).

Because of the “No Free Lunch” theorem (Wolpert, 1996; Wolpert & Macready, 1997), it is well recognized that no single method
outperforms others on all scenarios in terms of accuracy, and all methods have their own limitations. Typically, time-series and
econometrics models rely on the stability of historical patterns and economic structure, while artificial intelligence models are
dependent on the quality and size of available training data.

Deep learning

Artificial intelligence models such as neural network and SVR have found successful applications in tourism demand forecasting.
Hinton, Osindero, and Teh (2006) made a breakthrough in efficient training of deep network architectures via greedy layer-wise pre-
training, which enables a wide range of practical implementations of deep learning. Compared with traditional artificial intelligence
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models, deep learning technique provides a mechanism of feature engineering that extracts discriminative features with minimal
domain knowledge and human effort (Pouyanfar et al., 2018).

After decades of development, deep learning has experienced phenomenal success in a wide range of challenging artificial in-
telligence applications that range from pattern recognition tasks such as image captioning (Le Cun, Bengio, & Hinton, 2015) and
natural language processing (Socher, Bengio, & Manning, 2012), to forecasting problems for sequential data such as finance pre-
diction and forecasting of changing directions in trades (Bao, Yue, & Rao, 2017).

In this section, two popular deep network architectures are discussed. These architectures have been shown with great success on
time series forecasting These architectures are RNN and LSTM with attention mechanism.

RNN is a widely used deep network architecture that utilizes the sequential information (Cho et al., 2014). RNN works by
selectively passing information across the time steps while processing data elements. This property is essential for applications
including tourism demand forecasting where the embedded structure in the sequential time-series data conveys useful context in-
formation. As illustrated in Fig. 1b, both input x and output y of an RNN are time-series data, though either can be a single data point.
RNN preserves its memory in the fixed sized hidden layer neuron, which captures all previously processed information. The output of
the neuron is then generated based on the current input and the previous hidden layer neuron state through the feedback loop in the
network. RNN can model the dependency relationship between sequences of elements through loops, and has found successful
applications on non-time series data, including genetic data (Baldi & Pollastri, 2003).

LSTM is an extension of RNN which has not only the recurrent learning unit inside the network but also several gates to capture
the longer states from the beginning unit and the shorter states from the last unit. By having this feature, LSTM has been broadly used
to solve time series forecasting problems.

Attention mechanism is a feature engineering method which works along with various deep network architectures. By assigning
different weight percentages to different inputs, the model could learn the importance of the input without having to do it before
fitting into the model. Attention mechanism on LSTM could perfectly fit into tourism demand forecasting and provides an end-to-end
solution to both feature selection and prediction.

Rationale of this work

Significant advances have been made in tourism demand forecasting. However, this development has not been matched by
parallel improvement in feature engineering for tourism demand forecasting, despite the fact that the performance of a demand
forecasting model is driven mainly by the superiority of features in the training data. More specifically, there are two practical
limitations related to tourism demand forecasting.

The first limitation is related to feature engineering. For secondary tourism demand forecasting factors, the purpose of feature
engineering is mainly query selection that aims to collect tourism related search engine keywords. However, the presence of long tail
in SII data implies that a large number of search queries with small search intensities exist, which reflect unique and heterogeneous
travelling experiences (Yang et al., 2014). While some redundant and irrelevant queries can be eliminated by using common senses or
domain knowledge, determining the optimal subset of relevant queries requires significant efforts from human experts.

Lag order selection is the second limitation. The relationship between time series data is dependent critically on the lag order. An
important preliminary step in tourism demand forecasting is to select the lag-order of time series variables using methods such as
Granger causality test (Li et al., 2017). However, most tests do not account for the latent confounding effects or capture non-linear

Fig. 1. RNN architecture.
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relationships (Dergiades et al., 2018). Inaccurate lag order selection will render the subsequent forecasting model construction less
effective.

With the heightened development in artificial intelligence, deep learning technique is regarded as a promising alternative to
tourism demand forecasting models. This is due to two unique properties compared with traditional neural network models. First, the
essence of forecasting models is to construct the model that approximate a non-linear relationship between the input and outputs.
Through learning the non-linear combinations of features in deeper layers of the network, a deep network architecture can naturally
learn the highly non-linear correlations. Second, one of the most exciting properties of deep learning is that it can automatically
construct suitable features at different network layers, and then comes with a built-in mechanism of feature engineering. Moreover,
the temporally local correlation between various factors and tourism demand can be exploited to reduce lag selection because it can
carefully craft related features from all raw input data. With these properties, deep learning provides the potential to alleviate the
dependency on domain expertise. In view of this trend, this study aims to establish a deep learning approach to tourism demand
forecasting by adopting a deep network architecture to extract automatically the influential features from various potential factors
with suitable lag orders.

Methodology

This study proposes a conceptual framework of tourism demand forecasting with deep learning, and then describes the deep
network architecture that addresses the above mentioned challenges.

Conceptual framework for tourism demand forecasting

For tourism demand forecasting, we propose the conceptual framework to construct the tourism demand forecasting model with
the following four main steps.

The first step is for search engine platforms identification. During the travel planning process, tourists usually utilize search
engines for information on various facets of the destination, such as selection of attractions, choices of clothing, and planning of
transportation. Different source markets may have different search engine platforms, and thus, in this step, the set of search engine
platforms needs to be identified. For example, Google is a dominant search engine in most English-speaking countries, while Baidu
and Yandex are more popular in other source markets, such as China and Russia (Dergiades et al., 2018; Yang et al., 2015).

Data collection is the second step. The tourist arrival volume, typically noted as monthly data, needs to be obtained from reliable
data providers. Various tourism demand forecasting factors could be collected from different resources depending on the availability
of data. For secondary factors such as SII data, the data collection involves the following stages:

(1) We identify the seed search keywords for the destination market and maximize the possible set of search keywords to represent all
aspects of tourists' interests on the destination through Google Trends related queries.

(2) For the set of potentially tourism related keywords, we use Google Translate to convert them into languages for other search
engine platforms, such as Chinese for Baidu.

(3) For each specified search engine, we extract the monthly SII data corresponding to the keywords from the last stage. Google
Trends provides monthly popularity data, while other search engines such as Baidu Index may only provide daily data, which
need to be converted into monthly data. SII data of some keywords may not be available on all search engine platforms.

The collected training data usually contain hundreds of factors. Although the deep network architecture applied in the next step
does not require feature selection, several obviously irrelevant factors that have low association with tourist arrival volume can be
automatically removed. With regard to the linear limitation of Pearson correlation coefficients, the maximal information coefficient
(MIC) can be utilized to pre-filter factors with minor associations. MIC focuses on the idea that if two features are related, then a grid
that partitions the data can be drawn on their scatter plot to encapsulate the relationship between the two features. Given that MIC is
general, MIC− ρ2, where ρ is the Person correlation coefficient, can be adopted as a natural measure of nonlinearity. For a high MIC
value, a large MIC− ρ2 denotes a nonlinear relationship, and a small MIC− ρ2 denotes a linear relationship (Reshef et al., 2011).

The third step is for deep learning model training. Considering that deep learning technique has the built-in mechanism of feature
engineering, we propose a deep network architecture that can automatically select a set of influential factors and determine the lag
order of time-series sequences.

The last step is for model interpretation. The trained deep learning model comprehensively represents the temporal relationship
between various tourism demand forecasting factors and tourist arrival volume. The weights of the neuron links and the attention
scores can be applied to determine which original factors have the most influential lag orders. Notably, no manual feature selection or
extraction is required in this framework, and all feature engineering tasks are automatically performed by the deep learning model.

Deep network architecture

In this section, we articulate the task and introduce the deep network architecture with historical time-series tourism demand
data. We then demonstrate the integration of the attention mechanism, which provides attention scores for various factors, into the
LSTM recurrent neural network.

The objective of tourism demand forecasting is to predict tourist arrival volume according to multivariate factors from the past.
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Formally, the input is represented as the fully observed feature vector set {xt}t=1
T= x1, x2,… , x3 and the corresponding tourist

arrival volume {yt}t=1
T={y1,y2, … ,yT}. T is the length of total time steps, such as the number of months in the collected dataset. At

time step t, yt is the tourist arrival volume and xt is typically the vector of multivariate factors, such as determinants, and SII data
correspond to related keywords.

The tourism demand forecasting problem uses the time series of multivariate factors {xt}t=1
T and the real tourist arrival volume

{yt}t=1
T as inputs and constructs a model F to forecast y at future time steps.

== +
+

= =y x y{ } ({ } , { } )t t T
T

t t
T

t t
T

1 1 1

This formulation is different from that in autoregressive models, which usually assume that {xt}t=T+1
T+Δ is available when

predicting = +
+y{ }t t T

T
1 because they are designed to model the mapping between conditions and consequences (Qin et al., 2017).

Theoretically, RNN can handle long-term dependencies. However, in training, RNN is sensitive to vanishing and exploding
gradients. The LSTM recurrent neural network can handle this issue by providing memory blocks in its recurrent connections. Each
block contains a memory cell that stores the network temporal states and three gates, namely, remember, forget, and output. These
gates control the information flow so that weak signals can be blocked. The architecture of LSTM is shown in Fig. 2.

With time series {xt}t=1
T as an input, LSTM encodes it into a sequence of hidden states {ht}t=1

T. The main idea behind LSTM is
that at each time step, a few gates are implemented to regulate the information passing along the sequences, thereby capturing any
long-range dependencies accurately. To capture long-range dependencies, at each time step t in LSTM, hidden state ht is updated by
existing data at the same time step xt, the hidden state at the previous time step ht−1, input gate it, forget gate ft, output gate ot, and
memory cell ct (Zhao, Yan, Wang, & Mao, 2017). The following equations are used (Hochreiter & Schmidhuber, 1997):
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where σ and tanh are recurrent activation functions,×denotes element-wise multiplication,W and b are the LSTM parameters learned
during model training. The output in the final step is used to predict the output of a linear regression layer =y W hi r i

T , whereWr is the
weight of the linear regression layer.

The attention mechanism has become an integral part of sequence modeling, and it allows the modeling of dependencies without
regard to their distance in sequences (Vaswani et al., 2017). When the sequence proceeds to the output, it generates an attention
range to highlight the part of the sequence that should receive much attention from LSTM. Thus, it selects a subset from a sequence of
inputs by generating attention scores for each element of the sequence (Kim, Denton, Hoang, & Rush, 2017). Having an attention
mechanism makes the model highly interpretable and allows the model to ignore irrelevant information. This feature is highly
effective in tourism demand forecasting, in which the model learns to attend to factors that are related to tourism demand.

The proposed deep network architecture for tourism demand forecasting is shown in Fig. 3. The model is based on LSTM aug-
mented with the attention mechanism. Identifying the lead or lag relationships between time series data is crucial in tourism demand
forecasting because the influence of a feature differs with different lags. LSTM is utilized to model long-term dependencies in time-
series data, and the attention mechanism is used to learn which subsets of the sequential units in the model are influential. This
architecture allows us to capture two critical pieces of information in tourism demand forecasting, namely, (1) the temporal re-
lationship between various factors and demand and (2) the importance of factors according to their impacts on tourism demand.
Thus, the long-term temporal dependencies between various factors and tourist arrival volumes can be automatically detected by

Fig. 2. LSTM architecture.
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using LSTM with the attention mechanism.
The input is of size m× d× n, where m× d is the size of collected training data and n is the maximum lag order specified by the

user. For each attention, a fully connected layer (dense) is constructed in accordance with the attention mechanism, which then
selects the most relevant information in the driving series. The perception accepts the concatenation of ht−1 (hidden state in the last
time step) and st−1 (cell state in the last time step).

= +e W W h s W xtanh [ ; ] ,t e e t t e t
1 2

1 1
3

where We
1, We

2, and We
3 are the weights to be learned by the model. et is the vector of weights that measures the importance of

features in the driving series at time t(xt), and at is the normalized et. Afterward, driving series xt is multiplied by attention weight at:
= ×x x at t t. The LSTM component uses xt and ht−1 as its input and updates the hidden state at time ht. Context vector ct is introduced

by summing up the multiplication =
=

c h wt
i

T
i i

1
. Then, the linear layer is formed to generate the final result

= + +y w W c b b( ) .t y y t
1 2

1 2

LSTM and the perceptron can be trained simultaneously, and the model automatically focuses its attention on certain important
features in the time series.

Model training

MAE is used as the loss function for model construction, and it is calculated based on the predicted results and actual targets. The
deep learning parameters are updated by back propagation.

Given that the deep network architecture is highly complex, the scale of training data should be large to guarantee robust model
performance. The Internet restricts the collection of large-scale training data. For example, we only have less than 100 monthly
observations for the case study reported in the next section. Hence, the regularization technique is applied to the proposed model.
Dropout is presented in the stage of model training. The process of dropout randomly masks several parts of the hidden outputs so
that these neurons would not affect the forward propagation in the training process (Zhao et al., 2017). As soon as the dropout arrives
in the testing phases, it is turned off, and the outputs of all hidden neurons exert their effects on the model testing. In other words,
dropout helps considerably enlarge the size of the training data. The use of random masking in each training phase generates new
variations in the data samples. In the current model, we adopt one dropout layer between LSTM and the first fully connected layer
and another dropout layer between the first and second fully connected layers (Zhao et al., 2017). The masking probabilities are set to

Fig. 3. A deep network architecture for tourism demand forecasting.
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0.8.

Empirical study

To empirically investigate the prediction performance of the proposed conceptual framework, we conduct an empirical study on
the forecasting of monthly tourist arrival volume in Macau. Macau is an autonomous region of China, and it is across the Pearl River
Delta from Hong Kong. Gaming and tourism make up the pillar industry of Macau, and they contribute remarkably to the economic
growth of the city. Thus, maintaining a timely and accurate forecasting of tourist arrival volumes is essential to the prosperity of the
economy. In this empirical study, due to the lack of expertise and reliable sources of determinants, Macau tourist arrival volumes are
predicted based on the secondary indicators, namely, SII data, by using the proposed conceptual framework with the deep learning
model.

Specification of search engines

According to Statistics and Census Services (DSEC) of the Macau government, the major source market of Macau's tourism
industry is Mainland China, which contributes to more than 60% of tourist arrival volumes. The most popular search engine platform
in China is Baidu, which accounts for 69% of the total market share (Yang et al., 2015). For the rest of the world, Google is the largest
search engine, with more than 90% market share since 2010 (Kim et al., 2017). Both search engine platforms provide historical SII
data. Specifically, Google Trends (https://trends.google.com) provides information on how frequently a certain keyword has been
searched compared with the overall intensity over a certain period on a weekly or monthly basis. Baidu Index (https://zhishu.baidu.
com) provides search intensity data on the keyword in the absolute number of volumes on a daily basis.

Data collection

Monthly Macau tourist arrival volumes are available from DSEC of the Macau government. In order to indicate the generalization
of our algorithm, two types of tourist arrival volumes, corresponding to the global market and mainland China, are collected from
DSEC website.1 Given that the Baidu Index only has become available after January 2011, the range of our data is from January 2011
to August 2018 (92 observations). Figs. 4 and 5 show the Macau tourism arrival volumes from the global market and mainland China,
respectively. It is clear that those volumes present similar cyclic fluctuations.

To capture SII data that are potentially related to Macau tourism, we start with several seed keywords in seven major categories,
namely, dining, lodging, transportation, tour, clothing, shopping, and recreation. Table 1 lists the seed keywords used in this study.

Then, a set of potentially tourism-related keywords is obtained by using Google Trends' related queries section. After removing
duplicates, a list of 211 related Google search keywords obtained, which are then translated into Chinese for Baidu via Google
Translate service. Baidu does not provide search intensity data for a certain keyword if the keyword's volume is too low. After
eliminating keywords without Baidu search intensity data, 45 Baidu keywords are obtained. A Python program is developed to collect
monthly SII data from Google, “crawl” the daily intensity from Baidu, and summarize the data on a monthly basis. Finally, 92
monthly data (representing monthly SII data on both search engine platforms starting from January 2011 to August 2018) for those
256 keywords were obtained. For tourism demand forecasting, the training data are in the form of (xt,yt)t=1

T, where T=92 and xt is
a vector with 256 dimensions. The data set has been publicly released as "Macau2018" at: http://github.com/tulip-lab/open-data.

Performance evaluations

To investigate the performance of the proposed deep learning model (DLM) in tourism demand forecasting, we use a naive
method, a support vector regression (SVR) model (Zhang et al., 2017), an artificial neural network (ANN) (Law, 2000), an ARIMAX
model (Box, Jenkins, Reinsel, & Ljung, 2015) and an ARIMA model (Goh & Law, 2002) as baseline models. The naive method uses the
tourist arrival volume dated 12months back as the estimate of yk+1, namely, =+y yk k1 11. The SVR and ANN models use the past
12months' data (xt,yt)t=k−11

k as the input and to predict +yk 1. The ANN model has one hidden layer with the sigmoid activation
function and is trained with the back-propagation algorithm. Both ARIMA and ARIMAX are using AR order of (p, d) times of
difference to get stationary series, and the MA order of q to train the past 12-month tourist data and do the prediction series for the
next 12-month tourist arrival volumes which is incrementally increased during the walk through validation. The difference between
them is that ARIMA only uses the tourist arrival volume for prediction while ARIMAX also includes exogenous variables xt=1

T.MIC is
adopted to filter out features with low association with tourist arrival volumes because SVR and ANN are ineffective in handling data
with large numbers of features.

To mimic the real-world scenario where new tourist arrival observations become available each month and are used in forecasting
of the following month, walk-forward model validation is used. In each step, the training data “walk” by one month, and the fore-
casting model is trained and makes a forecast for the next month. Then, the actual demand value for the next month is obtained from
the test set and made available to the forecasting model for the next month.

In this study, three measures of forecasting accuracy are calculated using the acquired predicted values. They are RMSE, MAE, and

1 https://www.dsec.gov.mo/Statistic.aspx?NodeGuid=251baebb-6e5b-4452-8ad1-7768eafc99ed.
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Fig. 4. Monthly Macau Tourist Arrival Volumes (Global Market).

Fig. 5. Monthly Macau Tourist Arrival Volumes (Mainland China).

Table 1
Seed Search Keywords for Macau Tourism.

Category Seed keywords

Dining Macau food, Macau restaurant
Lodging Macau hotel, Macau accommodation
Transporatation Macau ferry, Macau flights
Tour Macau travel, Macau map, Macau travel agency, Macau tourism
Clothing Macau weather
Shopping Macau shopping, Macau shopping mall
Recreation Macau bar, Macau show, Macau night life, Macau casino
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The model with the lowest values in these measures is considered the best forecasting model. To ensure the robustness of the
proposed deep learning tourism demand forecasting model, we repeat the walk-forward validation for all compared algorithms by five
times to forecast 12 monthly tourist arrivals from 2013 to 2017 (five-year period).

Notably, the compared baseline models, SVR and ANN, do not have features crafted by domain experts, and their input features
are simply automated from MIC filtering. In the experiment, we further implemented both models using the feature engineering
results identified by deep learning model, and these two models are labelled as SVR+F.E. and ANN+F.E., respectively.

For the forecasting of the global tourism arrival volumes, MAPE, MAE and RMSE of all compared algorithms in these five years are
summarized in Tables 2, 3, and 4. As indicated by the results, the deep learning model achieves minimal errors on all these mea-
surements for the five consecutive years compared with the benchmark models. The forecast accuracy of MAPE decreases from
5.156% to 1.467%, which is a significant reduction.

Table 5 presents the results of one-tailed t-test results for MAPE, MAE and RMSE of DLM compared with the baseline models. The
t-test results are presented with α=0.05. The null hypothesis, which states that the mean of DLM equals the mean of the compared
model, is rejected. Thus, DLM achieves a considerably lower MAPE, MAE and RMSE than the baseline models.

Notably, the results from SVR and ANN without human effort in identifying the influential factors did not outperform the naïve
method. On the contrary, the proposed DLM does not require any hand-crafted features but still produces significantly better forecasts
than the other models. Moreover, using those features identified by DLM, both SVR and ANN have improved in their performance,
with the MAPE reduced from 6.482% to 5.086%, and from 14.307% to 5.923%, respectively. This further confirms the capability of
the proposed approach in feature engineering.

When comparing DLM with ARIMA and ARIMAX, though all methods do not require any hand-crafted features. The DLM can
generate the effective relevant factors automatically from the raw SII data, which outperform the ARIMA/ARIMAX.

Similarly, we completed the comparison using only the Baidu keywords and Macau tourist arrival from mainland China. MAPE,
MAE and RMSE for all compared algorithms in these five years are summarized in Tables 6, 7 and 8 respectively. We can see the same
significant performance boosting in all three tables, for example, MAPE decreases from 7%–11% down to 1.95%.

Table 9 presents the t-test results for DLM compared with the baseline models. From those results, it further confirms the good
performance of the deep learning algorithm.

Model interpretation

The attention mechanism in deep learning can automatically identify the factors that contribute considerably to tourism demand

Table 2
MAPE comparison for 5 years forecast (Global).

Year DLM SVR+F.E. ANN+F.E. ANN SVR ARIMA ARIMAX Naive

2013 1.186 3.996 6.027 15.516 5.164 7.31 8.10 5.278
2014 0.922 7.342 5.578 7.663 8.716 5.30 6.19 7.187
2015 1.132 4.994 7.301 5.092 5.725 6.30 7.35 4.388
2016 2.425 4.463 4.882 31.050 4.392 6.92 6.89 2.966
2017 1.671 4.638 5.827 12.219 8.433 6.51 7.12 5.964
Mean 1.467 5.086 5.923 14.307 6.482 6.468 7.13 5.156

Table 3
MAE comparison for 5 years forecast (Global).

Year DLM SVR+F.E. ANN+F.E. ANN SVR ARIMA ARIMAX Naive

2013 27,911 105,379 154,665 323,342 120,669 172,118 183,911 128,430
2014 22,351 201,483 154,195 222,612 210,313 118,140 131,011 191,194
2015 29,572 123,687 178,772 128,181 148,684 141,281 167,811 108,088
2016 64,596 115,744 122,547 607,327 113,710 181,659 197,721 77,968
2017 42,556 128,305 163,969 295,976 217,232 193,382 217,991 165,889
Mean 37,397 134,919 154,829 315,487 162,121 161,316 179,689 134,313
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forecasting. We train the proposed deep network architecture by using all 92 monthly Macau observations from January 2011 to
August 2018, and then identify the raw features assigned with high attention scores in the trained model.

In order to interpret the attention score, the attention scores from 92months are utilized by sum and then mean calculation. After
the calculation, 10 search keywords for Google and nine search keywords for Baidu are identified, and the attention scores for their

Table 4
RMSE comparison for 5 years forecast (Global).

Year DLM SVR+F.E. ANN+F.E. ANN SVR ARIMA ARIMAX Naive

2013 35,976 179,665 211,317 370,106 184,262 199,316 210,219 148,386
2014 27,100 268,097 210,417 278,145 277,135 163,254 178,677 208,607
2015 40,020 158,771 219,881 168,442 210,727 187,814 221,197 144,823
2016 88,802 154,336 134,568 633,004 135,049 234,938 239,899 96,595
2017 50,604 166,033 190,933 351,529 251,394 214,742 252,189 201,699
Mean 48,500 185,380 193,423 360,245 211,713 200,187 220,436 160,022

Table 5
One-tailed t-test results (Global).

Comparison MAPE MAE RMSE

p-Value t-Interval p-Value t-Interval p-Value t-Interval

DLM vs SVR+F.E. 0.0044 [−5.22,∞] 0.0053 [−144,257,∞] 0.0045 [−195,007,∞]
DLM vs ANN+F.E. 0.0005 [−5.58, ∞] 0.0008 [−145,111,∞] 0.0025 [−189,283,∞]
DLM vs ANN 0.0102 [−25.47, ∞] 0.0099 [−500,806,∞] 0.005 [−524,011,∞]
DLM vs SVR 0.0021 [−7.42, ∞] 0.0042 [−184,529,∞] 0.0042 [−231,497,∞]
DLM vs ARIMA 0.00002 [−6.00, ∞] 0.0001 [−162,190,∞] 0.0002 [−153,647,∞]
DLM vs ARIMAX 0.00002 [−6.61, ∞] 0.0001 [−182,772, ∞] 0.0002 [−173,870,∞]
DLM vs Naive 0.0041 [−5.63, ∞] 0.0098 [−151,932, ∞] 0.0095 [−168,317,∞]

Table 6
MAPE comparison for 5 years forecast (Mainland China).

Year DLM ANN+F.E. SVR+F.E. ANN SVR ARIMA ARIMAX Naive

2013 3.194 11.42 8.12 23.6 10.43 7.34 9.182 9.58
2014 1.844 9.35 6.85 12.64 14.2 8.49 11.173 12.08
2015 1.532 7.88 7.14 9.78 8.24 12.68 10.912 6.37
2016 1.657 5.17 4.58 6.38 6.43 8.24 9.972 3.13
2017 1.549 6.32 4.55 5.87 8.49 8.99 8.151 8.82
Mean 1.9552 8.02 6.248 11.654 9.538 9.14 9.878 7.996

Table 7
MAE comparison for 5 years forecast (Mainland China).

Year DLM ANN+F.E. SVR+F.E. ANN SVR ARIMA ARIMAX Naive

2013 49,927 212,808 159,343 369,842 168,702 130,664 157,221 150,283
2014 32,174 175,702 120,589 233,452 263,028 165,568 198,820 218,350
2015 27,319 136,844 118,494 160,917 136,979 203,604 170,102 103,770
2016 31,561 95,834 77,343 109,241 110,641 136,979 163,312 54,773
2017 28,958 109,842 75,581 109,874 165,568 157,298 156,982 167,558
Mean 33,987 146,206 110,270 196,665 168,983 158,822 169,287 138,946

Table 8
RMSE comparison for 5 years forecast (Mainland China).

Year DLM ANN+F.E. SVR+F.E. ANN SVR ARIMA ARIMAX Naive

2013 64,029 260,368 206,153 391,121 202,332 162,523 172,218 174,360
2014 41,161 231,644 140,911 282,370 301,997 205,286 220,010 242,180
2015 29,877 168,888 151,186 183,486 171,182 230,795 189,910 143,599
2016 35,702 117,528 127,488 129,448 132,807 171,182 190,205 69,854
2017 31,465 134,955 113,514 134,216 205,286 190,461 220,103 192,676
Mean 40,446 182,676 147,850 224,128 202,720 192,049 209,429 164,533
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12 lags are provided in Table 10. It should be noted that we do not include any seed keyword in Chinese, but the proposed approach
successfully identify those influential Chinese keywords.

We obtain the following observations from the table. First, all identified influential keywords have 1–7months of lags, and none
of them is useful for the prediction of travel demand in 8–12months. Second, all identified influential keywords with one-month lag
are highly useful for the incoming month's travel demand. This result may indicate that many visitors to Macau plan their trips within
a short time period, and this applies to both Google and Baidu users. Third, many keywords with 4–7months of lag are identified as
influential, and this result implies that another group of visitors to Macau would plan their trip around six months in advance.

The time lags findings of influential keywords actually match the results of a large scale visitor profile survey conducted in Macau
which is an ongoing and systematical collection of comprehensive data on the characteristics of visitors since 2011 (Fong, 2017). The
survey finds that 47.8% of the visitors planned to visit Macau on the same day of arrival, 28.7% of the visitors planned to visit Macau
within one month and 23.5% of the visitors took more than one month to plan for their trips in 2017.

By examining the keywords with attention scores larger than 1.0, we find that the Google keywords “ferry to Macau” and “Macau
ferry terminal” and the Baidu keyword “香港到澳门” (Hong Kong to Macau) are related to transportation. This observation may
indicate that many visitors go to Macau from Hong Kong, and many Chinese visitors directly fly to Macau from Mainland China. In
the same study, 12% of the tourists visited Hong Kong before they visited Macau and 9.6% of the tourists visited Hong Kong after they
had visited Macau in 2017 (Fong, 2017).

Focusing on other keywords with attention scores larger than 0.90, we find that the identified keywords “restaurant in Macau,”
and “澳门美食” (Macau food) are related to food and dining. This result indicates that Macau is a fine-dining destination, and it
confirms the uniqueness of Macau's cuisine, which combines Western and Chinese cuisines (Song & Witt, 2006). Actually, Macao was
designated as a new member city of UNESCO Creative Cities Network (UCCN, https://www.gov.mo/en/news/88728/) in the field of
Gastronomy on 31 October 2017, making it the third city in China to join UCCN.

The next group of keywords with high attention scores pertains to weather: “weather in Macau” on Google and “澳门天气”
(Macau weather) on Baidu. Notably, gaming-related keywords, such as “casino in Macau” and “澳门赌场” (Macau casinos), are
influential but not as influential as the cuisine-related keywords. On one hand, this result might reflect that most of the revisit tourists
are loyal to the casinos which they perceived to bring them good luck. On the other hand, some websites with the word of “casino”
are blocked in mainland China so that it may not reflect the attention scores relatively.

Table 9
One-tailed t-test results (Mainland China).

Comparison MAPE MAE RMSE

p-Value t-Interval p-Value t-Interval p-Value t-Interval

DLM vs SVR+F.E. 0.0007 [−6.25,∞] 0.0019 [−119,024, ∞] 0.0003 [−150,780,∞]
DLM vs ANN+F.E. 0.0015 [−9.09, ∞] 0.0018 [−171,428,∞] 0.0016 [−217,787, ∞]
DLM vs ANN 0.0148 [−18.6, ∞] 0.0114 [−298,144, ∞] 0.0072 [−321,905, ∞]
DLM vs SVR 0.0019 [−11.23, ∞] 0.0031 [−206,099,∞] 0.0021 [−239,335,∞]
DLM vs ARIMA 0.0015 [−9.71, ∞] 0.0007 [−160,046,∞] 0.0004 [−185,228, ∞]
DLM vs ARIMAX 0.0002 [−9.47, ∞] 0.00007 [−156,715,∞] 0.0002 [−184,707,∞]
DLM vs Naive 0.0068 [−10.21, ∞] 0.0095 [−182,011,∞] 0.0057 [−202,564,∞]

Table 10
Attention scores.

Services Keywords 1 2 3 4 5 6 7 8 9 10 11 12

Google Restaurant in Macau 0.91 0.58 0.71
Macau Tauranga 0.95 0.25 0.64 0.78
Macau airlines 0.75 0.42 0.31 0.29
travel to Macau 0.76 0.60 0.56
best hotel Macau 0.48 0.34 0.21
Macau ferry terminal 1.07 0.68 0.85
weather in Macau 0.84 0.51 0.64
casino in Macau 0.54 0.29 0.35
ferry to Macau 1.17 0.52 0.75
shopping in Macau 0.50 0.30 0.34

Baidu 澳门住宿攻略 0.78 0.65 0.54
澳门美食 0.95 0.55 0.70
澳门旅游景点大全 0.80 0.53 0.42
澳门航空 1.09 0.74 0.91
澳门酒店 0.77 0.63 0.52
澳门地图 0.41 0.31 0.26
澳门天气 0.89 0.59 0.73
香港到澳门 0.68 0.61 0.51
澳门赌场 0.15 0.06 0.08
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In addition, the accommodation-related keywords have low attention scores for Google or Baidu users. This result might reflect
the fact that many visitors to Macau are not overnight visitors. As reflected by the identified attention scores, tourists search for
relevant travel-related information and make different travel decisions at different phases of the travel planning process. This result
validates the model interpretation property of the proposed conceptual framework.

Conclusions

In the tourism industry, precise and timely demand forecasts are critical for informed decision making by most, if not all,
providers of products and services. Time-series, econometrics and AI models have been extensively examined in the past decades.
Traditionally, the accuracy of tourism demand forecasting models rely on the goodness of the set of features. Poor selection of
determinants or indicators often leads to lower accuracy compared with that of good selection. The selection of influential factors and
the determination of their lag order are domain specific and require extensive human effort. At present, only marginal improvements
can be attained despite the considerable effort in advancing traditional approaches (Coshall & Charlesworth, 2011). Therefore,
alternative strategies are required to further improve the capability of tourism demand forecasting models.

By addressing two practical barriers in most tourism demand forecasting models, this work transfers the task of feature en-
gineering from researchers to the model itself. The proposed conceptual framework utilizes the deep learning technique to identify
and extract discriminative features with minimal human effort. The comparison with baseline models shows that the deep network
architecture performs much better in all three accuracy measures. The success of the deep learning approach may be partially
attributed to two reasons. First, the deep network architecture mimics how the human brain operates. The successive layers of the
network extract low-level features from the initial input layer and further abstract high-level features that represent the semantic
relationships between features in subsequent layers. Second, the attention mechanism integrated into LSTM automatically identifies a
set of influential features at each time step.

Compared with previous studies on tourism demand forecasting, our research makes two contributions. The first contribution is
that we propose a systemic conceptual framework of tourism demand forecasting and validate the deep learning's capability in
tourism demand forecasting. The proposed framework fully utilizes all available tourism demand forecasting factors and reduces the
human effort required in feature engineering. Another contribution is that we utilize the attention score to interpret the trained deep
network architecture. This usage provides tourism industry practitioners a novel method to update their tourism demand forecasts
promptly on the basis of a set of influential indicators at different time steps. For example, a surge in the SII data of a particular
keyword may imply an increase in tourist arrivals several months later.

Moreover, the results of this work confirm the capability of deep learning in selecting a set of influential factors and determining
their suitable lag orders. This confirmation encourages two future extensions of this work. First, various types of indicators other than
SII data, such as Tweets and Blogs, can be comfortably incorporated into forecast tourist demand. Large-scale social media data could
potentially alleviate the challenges in training data availability, and the deep learning technique allows these media data to be
utilized automatically. Moreover, sets of features with suitable lag orders can be used as an input to other tourism demand forecasting
models. The combined power of deep learning and existing forecasting models could facilitate further theory development.

This study has its limitations. The primary one is that because of data availability, we only utilize SII data, the secondary factors,
as input features, and other superior but untapped determinants are not included in the empirical study. Furthermore, the gen-
eralization of the identified search keywords with lag orders is limited, and different source markets may have different sets of
features. Additional studies on the deep learning with data from other destinations and empirical studies with different search engine
platforms are required to overcome these limitations.
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