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BCI: from sensation and perception to cognition
A BCI is a direct communication channel between the central nervous system (CNS) and a
computer without assistance from the peripheral nervous system [1]. In this sense, any system
with direct interaction between a brain and an external device could be considered a BCI system
[hereinafter referred to as generalized BCI (see Glossary)]. Whereas early BCI technologies
provided tools for the motion disabled to communicate with their environments, BCI use has
been extended to numerous medical and non-medical applications, including brain state
monitoring, neuro-rehabilitation, and human cognitive augmentation. With rapid advances in
neurotechnology and AI, the brain signals used for communication between brain and computer
have advanced from sensation [e.g., evoked potentials (EP)] and perception [e.g., event-
related potentials (ERP)] levels to higher-level cognition (e.g., goal-directed intentions), bringing
BCIs into a new era of hybrid intelligence.

Although many articles have reviewed the history, current status, and future challenges of BCIs
[2–9], most focus on specific methodologies, paradigms, or applications. The common principles
and core technologies behind seemingly unrelated BCI paradigms have never been summarized
from an evolutionary point of view. Here, we describe how BCI technology has evolved since its
birth and present an evolutionary model for generalized BCIs, which comprises three progressive
stages: I3. We refer to this as the I3 model. In the following sections, we describe the intrinsic
nature of evolving technologies according to the I3 model, review various BCI paradigms across
the three stages, and discuss the challenges and opportunities in the future development of the
BCI technology.

An evolutionary model for generalized BCI technology: I3
The development and evolution of BCI technology can be divided into three progressive stages.
In the first stage, interface between brain and computer provides a direct communication channel
for disabled patients. In the second stage, more advanced closed-loop BCI systems are
developed. The interaction between brain and computer in closed-loop BCIs promotes the
restoration of human functions in addition to effective device control [4]. In the third stage,
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Glossary
Augmented BCI: extend BCI
applications from the current laboratory
or clinical environment to real daily life by
which is enabled by rapidly developing AI technology, more general platforms for integrating
biological intelligence and AI are proposed and developed [10]. To summarize generalized BCI
technology from an evolutionary point of view and identify future trends in BCI development,
we present a model of I3 (Figure 1). Later, we introduce the components of the I3 model by
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Figure 1. An evolutionary model for generalized BCI technology. (A) Brain–computer interface (BCI): This classical BC
could be thought as a one-way feedforward pathway. Communication and control are its major applications. (B) Brain–compute
interaction: the interaction is based on a closed-loop feedback control systemwith brain-in-the-loop. The system integrates both
decoding and encoding components in a loop forming a bidirectional BCI system. Through the mutual actions, the system wi
change the brain function as well as the status of devices. (C) Brain–computer intelligence: the system converges human
intelligence (HI) and artificial intelligence (AI) components in a unified platform. The collaborative intelligence takes ful
advantage of the complementary nature of HI and AI systems. The performance of a resultant hybrid intelligence system wi
be superior to a single-modal HI or AI system. Abbreviations: AR, augmented reality; VR, virtual reality.
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enabling them to function when
individuals interact with the environment.
Closed-loop BCI systems: real-time
BCI systems in which the brain and
external devices bidirectionally interact
with each other.
Cognitive BCI: directly decodes
higher-order, goal-oriented cognitive
signals to send intuitive BCI commands
without goal-irrelevant and indirect
thinking.
Electrocorticography (ECoG): uses
flexible, closely spaced subdural grid or
strip electrodes that are placed directly
on surgically exposed brain surface to
measure cortical electrical activity. This
technique is characterized by high
spatio-temporal resolution, broader
bandwidth, and excellent signal-to-noise
ratios (SNRs).
Electroencephalography (EEG):
utilizes electrodes that are placed on the
scalp surface to non-invasively measure
electrical potentials that arise from
activity in the brain. EEGprimarily reflects
the sum of post-synaptic potentials from
cortical neurons.
Event-related potential (ERP): an
electrophysiological brain signal that is
time-locked to the occurrence of an event.
Typically, the latency and amplitude of
ERP can be obtained by averaging
multiple trials in the time domain.
Evoked potential (EP): an electrical
potential that is caused by the nervous
system in response to a sensory
stimulus. Various stimuli may generate
evoked potentials, but visual, auditory,
and somatosensory are the most
frequently used stimulus types.
Functional magnetic resonance
imaging (fMRI): utilizes magnetic
resonance imaging to noninvasively
measure changes in the blood
oxygenation level dependent (BOLD)
signal as indication for local brain activity.
Functional near-infrared
spectroscopy (fNIRS): calculates the
concentration changes of oxygenated
hemoglobin (HbO) and deoxygenated
hemoglobin (HbR) in a brain tissue
based on the changes of the exiting-
photon intensity and the incident-photon
intensity, and then characterizes the
local neural activity.
Generalized BCI: any system that has
direct interaction between the brain and
external devices.
I
r

ll

l
ll



Trends in Cognitive Sciences

Hybrid BCI: combines a BCI with
another system(s) that utilize other
physiological or technical signals. The
purpose is to integrate diverse input
signals to achieve better BCI
performance.
Magnetoencephalography (MEG): a
noninvasive imaging technique that
utilizes a superconducting quantum
interference device (SQUID) to measure
extremely weak magnetic fields outside
the head. MEG can directly reflect the
magnetic field changes caused by
cortical neural activity on a millisecond
timescale.
Passive BCI: an interface that derives
its output from naturally occurring brain
activity during task execution to act as a
complementary input providing
information about ongoing user mental
states (e.g., workload, emotional state,
or attention levels).
P300 event-related potential (ERP)-
based BCI: a BCI system based on
P300 event-related potential that is a
positive deflection at approximately 300
ms after a rare and relevant stimulus.
P300 signals can be increased in
amplitude when the particular stimulus is
given greater attention.
Sensorimotor rhythms (SMRs)-
based BCI: a BCI system based onmu
(8–12 Hz) and beta (18–26 Hz)
oscillations in EEG signals recorded over
sensorimotor cortex. The amplitudes of
SMRs can be modulated using mental
strategy of motor imagery.
Slow cortical potential (SCP)-based
BCI: a BCI system based on very slow
variation of the cortical activity. Positive
SCPs correlate with mental inhibition
and relaxation, whereas negative SCPs
coincide with mental preparation.
Steady-state visual evoked
potentials (SSVEPs)-based BCI: a
BCI system based on periodic brain
responses induced by repeated visual
stimulation. SSVEPs appear as an
increase in brain activity at the
stimulation frequency and its harmonics.
describing the core technologies and major applications of generalized BCIs across the three
stages.

Classical brain–computer interface
The early BCI systems used for communication and control are called classical BCIs (Figure 1A). For
example, BCI spellers have been developed to help patients with motor disabilities communicate
with other people [1]. In BCI-based communication and control, most systems will feed back the
results (e.g., spelled characters or cursor movements) on a computer screen (see ‘Sensory
feedback’ in Figure 1A) so that users obtain the consequences of their controls in real time. However,
if users consciously use feedback information to change their neural or behavioral activities
(e.g., BCI-based neurorehabilitation training), the system will form a closed-loop BCI. We discuss
these in the next section. The core technologies used in classic BCI systems enable the generation,
acquisition, and decoding of brain signals.

In classic BCIs, the methods used to generate brain signals can be either active or passive [7]. To
actively generate brain signals, a user can either consciously control mental activities such as
motor imagery [11] or intentionally react to stimuli from the external world (e.g., visual, auditory,
somatosensory, or oddball stimuli) [12]. For example, BCI paradigms based on actively generated
brain signals can allow a user to spell a word, move a cursor, and control a wheelchair or a robotic
arm [1,9]. In contrast, the passive generation of brain signals does not require the user to actively
participate. Passive BCIs have been used to monitor users’ cognitive state including drowsiness,
intentions, situational interpretations, and emotional states [13–17].

Different techniques, which have different temporal and spatial resolutions, can be used for the
acquisition of brain signals related to electrophysiology or metabolism information. Signals related
to electrophysiology include electroencephalography (EEG), magnetoencephalography
(MEG) [18], electrocorticography (ECoG) [19,20], local field potentials (LFP), and spike signals
collected by implanted microelectrodes. The advantage of these signals is high temporal resolution.
Metabolic signals can be collected by functional near-infrared spectroscopy (fNIRS) [21],
functional magnetic resonance imaging (fMRI) [22], and positron emission tomography
(PET). Among them, fMRI can provide good spatial resolution and is more sensitive to subcortical
brain regions than electrophysiological signals [5], and therefore plays an important role in cognitive
research [23]. Importantly, electrophysiological and metabolic signals represent distinct but coupled
aspects of neuronal activity.

By analyzing brain signals, the computer can decode the user's intention. A decoder usually
consists of three procedures: signal preprocessing, feature extraction, and pattern classification.
The main purpose of signal preprocessing is to remove the noise in the recorded signals to
highlight the useful components. Feature extraction involves finding the feature components
most related to the subject's intention. Pattern classification involves distinguishing the different
intentions of users according to the extracted features. Among these procedures, pattern classi-
fication is the core algorithm in brain signal decoding [24]. In recent years, AI andmachine learning
methods have been widely used in brain signal decoding [2,25].

Brain–computer interaction
Unlike classical BCIs, a brain–computer interaction system is a closed-loop feedback control
system with a brain-in-the-loop (Figure 1B) [26]. This is also called a bidirectional BCI [27]. Taking
the control of a neuroprosthesis as an example, a brain–computer interaction system not only
translates neural activities from the primary motor cortex (M1) to control commands, but also
transfers the external sensory information from the neuroprosthesis back as somatosensory
Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 3
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feedback to the primary somatosensory cortex (S1) by electrical stimulation. By receiving motor
outputs and sending sensory inputs, a closed-loop neuroprosthesis bidirectionally interacts
with the brain. Consequently, as shown in Figure 1B, there are two outputs in the brain–computer
interaction system. One path is the controlled external actuator (in purple), and the other is the
modulated brain state (in blue). The purpose of the former is similar to that of a classical BCI system.
The purpose of the latter is to change the state of the brain to augment human performance.
For example, direct modulations of brain activities have been used to treat neurological diseases
or improve the capability of healthy people. The core technologies in brain–computer interaction
systems include neuromodulation, closed-loop construction, and co-adaption.

The modulation of neural activities is primarily performed in two ways [28]. The first involves
applying some physical energy directly to the brain, which is called brain stimulation. Transcranial
magnetic stimulus (TMS) [29], transcranial electrical stimulus (TES) [30], transcranial focused
ultrasound (tFUS) [31,32], deep brain stimulus (DBS) [33], and cortical stimulus [34] all belong
to this category. The second involves neurofeedback training without direct brain stimulation.
With instantaneous feedback of neural activities provided by neurofeedback, users can learn to
self-regulate brain activities through operant conditioning or volitional control [35]. Different from
the communication and control purpose of the classic BCI, neurofeedback has been used as
generalized treatment of mental disorders.

The key in implementing interaction is closed-loop construction, in which a major difficulty is how
to send the feedback information directly to the brain [36–38]. For example, an upper-limb
neuroprosthesis needs to integrate both the motor and sensory modalities to fully restore arm
and hand functions during grasping or manipulation of objects. Current electrical stimulation
methods such as cortical surface stimulus and intracortical microstimulation can provide sensory
feedback to close the sensory-motor loop. However, there are still some limitations of these
methods. When applying electrical stimulation, additional problems such as the lifetime of
implanted electrodes, artifacts produced by electrical stimulation, and electrochemical safety of
electrode–tissue interface arise and remain to be solved [27].

A robust implementation of a closed-loop BCI system depends on the co-adaptation between
the brain and the decoder [39–41]. On the one hand, the brain should adapt to the changes in
the external environment, and constantly optimize the execution of tasks; on the other hand,
the decoder and the external actuators should also learn to adapt to the changes in neural activities
and correctly identify the user’s intention. Core methods, including auto-calibrated classifier,
automatic detection of non-control state, and optimization of speed-accuracy trade-off have been
developed to improve BCI performance through co-adaptation. The continuous co-adaptation
process is indispensable for a BCI system to maintain good operation [42].

Brain–computer intelligence
With the rapid development of AI in recent years, increasing integration between brain and computer
has made it possible to augment human intelligence (HI) using BCI technology. A generalized
BCI platform includes components of both HI and AI (Figure 1C). The performance of a resultant
hybrid intelligence system will be superior to a single-modal HI or AI system. The increasingly
close relationship between HI and AI has allowed BCI applications to expand. In medical
applications, BCIs play a role in the rehabilitation treatment of cognitive impairment [43]. In non-
medical applications, the collaboration of HI and AI can improve human perceptive abilities or
information processing and decision-making abilities [44–47]. The core technologies in brain–
computer intelligence systems include cognitive signal generation, coupling human cognitive
information to AI computing, and human-AI co-adaptive learning.
4 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx
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The study of brain–computer intelligence systems focuses on higher-order cognitive brain
signals, which come from brain regions related to cognitive activities. These signals may arise
from diverse areas ranging from rather specific parietal and frontal areas to complex prefrontal
networks. The usage of these signals, which usually encode goal-directed intentions, may enable
us to accomplish complex tasks intuitively and efficiently [48]. Cognitive brain signals already
applied in BCIs include signals related to anticipation and movement preparation, error-related
potentials, and correlates of goal-directed movements [43,49].

To realize the collaborative intelligence of HI and AI, it is necessary to extract human cognitive
information and couple it into the AI computing system, so as to improve the performance of AI
computing. In such a hybrid intelligence system, the capabilities of HI and AI complement each
other. Human cognitive ability and the capabilities of computers in fast operations and large
storage can be integrated to accomplish the same task collaboratively. For example, the cortically
coupled computing (3C) system, which integrates an ERP-based BCI with computer vision,
couples cognitive EEG signals into AI computing to improve the speed and accuracy of target
image detection [44,46].

Co-adaptation between brain and computer is a fundamental issue in generalized BCIs. In
a brain–computer intelligence system, HI and AI are combined together and adapt their
behavior based on the information they have received from each other. The study of
co-adaptive learning between the two learning systems (i.e., human and AI) has become
a major issue from both theoretical and practical points of view [50,51]. Human-AI
co-adaptive learning requires humans and machines to collaborate in an adaptive, dynamic,
and personalized fashion. The goal is to enable human and AI to learn and work together
adaptively and effectively [39,42,52].

History of BCI: an evolutionary point of view
According to the three stages in the proposed I3 model, here we review various system para-
digms of BCIs. Figure 2 shows the history of the development of BCI over the past 50 years.
Since Vidal proposed and developed the first BCI based on visual evoked potential (VEP) in
1970s [53], several prototype BCI systems came out one after another by adopting different
types of EEG signals. The well-known early systems include the slow cortical potentials
(SCPs)-based BCI [54,55], the P300 event-related potential (ERP)-based BCI [56], the
sensorimotor rhythms (SMRs)-based BCI [57], and the steady-state VEPs (SSVEPs)-
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Figure 2. BCI paradigms illustrated in chronological order. The term ‘brain–computer interface (BCI)’ was first proposed by Vidal in 1970s as an ultimate goal in
man-machine communication [53]. In the early years before 2000s, the study of BCI paradigms focused on applying different types of electroencephalogram (EEG)
signals, which included slow cortical potentials (SCP) [54], P300 event-related potentials (ERPs) [56], sensorimotor rhythms (SMRs) [57], and steady-state visual
evoked potentials (SSVEPs) [58], to realize brain–computer communication. In the past two decades, BCI paradigms have been extended in two major directions. In
terms of system implementation, new system paradigms such as hybrid BCI [62], collaborative BCI [63], and co-adaptive BCI [64] have emerged. In terms of
applications, new paradigms including speech BCI [79], affective BCI [71], passive BCI [17], augmented BCI [69], emotional BCI [74], cognitive BCI [43], and mood BCI
[75] have been proposed and developed. Abbreviation: mVEP, motion-onset VEP.
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basedBCI [58,59]. These paradigms, which have been referred to as classical BCIs or traditional
BCIs, demonstrate the possibility of direct communication between brain and machine.

In the following years, in order to improve the overall performance of classical BCIs, many new
paradigms have emerged [3]. The motion-onset VEP (mVEP)-based BCI was introduced to
enhance user experience of VEP-based BCIs by avoiding the discomfort caused by the flickering
stimulus [60,61]. Hybrid BCIs were introduced to achieve higher communication capability by
integrating multiple BCI paradigms (e.g., P300 and SSVEP) or fusing other physiological signals
such as electromyogram (EMG) into classical BCIs [62]. In another approach, a collaborative
BCI that fused ERPs from a group of subjects for collective decision making was demonstrated
[63]. After long-term research on relatively independent user training and algorithm development,
researchers have obtained the consensus that BCI system runs on the base of real-time interac-
tion between two adaptive controllers (i.e., the brain and the computer [1]). The co-adaptive BCI
paradigm that emphasizes mutual learning from both controllers has been introduced to improve
BCI performance progressively during long-term operations [64,65]. Such closed-loop systems
have also been widely used in the study of neurobiological mechanisms of brain functions such
as perception, attention, and memory [66–68]. In recent years, a unified brain–computer intelli-
gence platform has been introduced to integrate HI and AI. New paradigms such as cognitive
BCIs [43] and augmented BCIs [69,70] have been developed to study the cognitive state of
people, and even to achieve collaborative intelligence to improve human performance. Other
paradigms such as affective BCIs [71–73], emotional BCIs [74], and mood BCIs [75,76]
recognize and regulate emotion by understanding the effects of emotional states on brain activities.
Here, we have seen BCIs evolve from interface to interaction, and then to intelligence. In the following
text, we further explore how two major applications of BCIs have evolved.

BCIs for communication and control mainly address issues related to the generation and
translation of brain signals in the interface stage. Thus, major visual, auditory, and sensorimotor
BCI paradigms encode and decode brain signals to allow users to directly control output devices.
In the interaction stage, co-adaptation has been used not only to facilitate system calibration but
also to improve the communication rate. The adaptive classifiers significantly improve the
accuracy and robustness of decoding. In addition, the modulation and demodulation techniques
in telecommunication significantly facilitate the interaction of brain and computer in visual and
auditory BCIs [77,78]. In the intelligence stage, AI techniques have been integrated to implement
neural coding and decoding in BCIs. As a result, speech BCIs that decode and convert speech
related neural activities to natural language have made unprecedented progress [79–81]. With
a neural network-based encoder–decoder framework, the BCI system achieved high decoding
accuracy at natural-speech rates with ECoG signals [82,83].

Sensorimotor BCIs have been successfully applied to the field of neuro-rehabilitation,
especially for stroke rehabilitation. In the interface stage, the key technology involves
generating robust brain signals to effectively control the rehabilitation devices. In the inter-
action stage, more attention has been paid to the active training modality that directly
exercises the brain. Co-adaptive learning of the brain and algorithms enhances the perfor-
mance of the sensorimotor BCI system, leading to a larger control dimension, higher
accuracy, and greater speed [84]. In addition, neuromodulation methods such as TMS
and TES have been applied to modulate cortical excitability and plasticity to promote
recovery [29]. In the intelligence stage, the combination of intelligent rehabilitation systems
with BCIs can further improve the efficiency of BCI-based rehabilitation. For example, the
integration of BCIs and intelligent exoskeletons shows great potential in restoring motor
functions of patients [85].
6 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx
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Challenges and opportunities
By looking at the development of the BCI technology through the stages of I3, we can draw three
conclusions. First, efficient and effective brain computer communication lies at the core of
research and development of BCI technology. Second, augmentation of human performance
and well-being is the main goal of BCI research. Third, the progress of modern science and
technology is the power source to boost the development and application of BCIs. We discuss
each of these in the following sections.

Channel capacity
Channel capacity is defined as the maximum information rate that a communication channel can
reliably transmit. BCI channel capacity can be measured by the information transfer rate (ITR), the
amount of information transferred per unit time, in bits per second (bps). For existing BCI
systems, insufficient channel capacity has become a major obstacle to the application of the
BCI technology [86]. How to improve ITR has become a hot issue in BCI research.

Like communication systems in the physical world, a BCI communication system also consists of
encoding and decoding components (Figure 3). The only difference is that the encoding process
of signals is completed in the brain, whichmeans that the encoding process is constrained by the
physiological mechanism of the brain.

In commonBCI systems, users encode discrete commands, generally called targets (e.g., the choices
of characters in a BCI speller), into characteristic EEG signals. For such systems, a well-known
calculation method of ITR based on Shannon information theory has been proposed [87]. Although
some unreasonable assumptions added in the derivation process may lead to deviations from the
estimate [88], this calculation method clearly identifies the main factors affecting ITR and the main
ways to improve ITR at the macro level, and therefore has been widely used in the BCI field [89].
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Figure 3. BCI as a communication system. In a BCI system, the user's intention can be converted into commands to control the external devices after the process of
encoding, transmitting, and decoding. Brain signals can be encoded by exogenous stimuli or endogenous activities. After encoding, the information the user wants to
express is transformed into specific brain activities through cognitive activities such as perception, attention, and imagination. The encoded brain signals can be
transmitted to the decoder of the receiver locally or remotely. After analyzing and classifying the signals, the decoder can obtain the intention of the user for
communication and control.
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According to the definition of ITR [87], for BCI systems with discrete targets, the main ways to
improve ITR include increasing the number of targets, improving the detection accuracy, and
shortening the detection time. These three factors always influence each other. Firstly, as the
number of targets increases, so too does the amount of information that must be transmitted
each time. However, it is more difficult to identify each target correctly with more targets. The
small number of targets (e.g., 2–40) in the existing BCI systems directly limits ITR. The study of
VEP decoding in [90] indicates that there is still a lot of room to improve ITR by increasing the
number of targets. Secondly, the detection accuracy can be improved by enhancing the quality
of encoded brain signals [i.e., the signal-to-noise ratio (SNR)]. The neural activities recorded
with implanted electrodes (i.e., spikes, LFP, and ECoG) generally show higher SNRs than the
noninvasive approaches such as EEG. Meanwhile, other physiological information related to
CNS activities may be integrated to improve the decoding of neural signals. For example, the
variation of cardiac interbeat interval (IBI) induced by brain–heart interaction [91] and the blood
oxygenation level dependent (BOLD) signals in fMRI [92,93] can be used to construct hybrid
BCIs [62]. In addition, signal processing and machine learning algorithms can improve the
accuracy and robustness in decoding. Finally, detection timesmight be shortened by considering
both the encoding and decoding processes used. In the encoding process, there will be an
inevitable delay from the beginning of target selection to the generation of corresponding brain
signals (e.g., visual latency in visual BCIs). Therefore, choosing a paradigm with fast brain
responses can be helpful. It is also important to shorten the data length required in target
detection, which is closely related to the encoding efficiency and decoding performance.

In recent years, great progress has been made in improving ITR. In the research of BCI
communication, the ITR has been upgraded from <1 bits/s [1] to ~5 bits/s [94]. In the research of
brain signal decoding, the highest decoding rate of individual brain signals can reach ~20 bits/s
[90]. However, there are still great challenges to further improve ITR in the future. One potential
solution is to abandon the discrete targets-based encoding method and directly decode the brain
signals produced in sensory perception and cognitive activities. For example, neural decoders can
explicitly leverage kinematic and sound representations encoded in human cortical activities to
synthesize audible speech [82,95]. This method not only greatly improves the channel capacity in
BCI, but also makes the BCI-based communication and control more intuitive and natural.

BCI and human augmentation
Human augmentation usually refers to enhancing sense, action, and cognitive capabilities of a
human (Figure 4) [96]. This enhancement may include either restoration or expansion [i.e., the
ability to recover or compensate for lost functions (e.g., the loss of motor function caused by
trauma) or the ability to enhance existing functions (e.g., enhancing the weight-bearing capacity
of people through exoskeletons)].

The study of BCIs has always regarded human augmentation as an important direction and has
made significant progress in the field of neural rehabilitation [97]. Currently, neurological and mental
disorders cause many patients to lose their motor and language functions and may greatly affect
their other cognitive abilities. Because the effects of medicine and surgery are often not satisfactory,
BCIs provide a new solution to address the problem. The applications of brain-controlled prostheses
to restore limb motor function [85,98] and brain-controlled typing to restore language function [78]
are all successful examples. Additionally, BCI-based active training in neurorehabilitation plays an
important role in the recovery of motor function of stroke patients with paralysis [4,99].

It is particularly noteworthy that BCI plays an important role in cognitive augmentation. Cognitive
augmentation includes the improvement of attention, memory, judgment, reasoning, decision-
8 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx
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making, knowledge formation, and problem-solving abilities [100,101]. The basic technology in
BCI-based cognitive augmentation involves neural information analysis and the corresponding
intervention approaches such as neurofeedback training. BCI plays a unique role in cogni-
tive enhancement because it supports direct communication and interaction between brain
and machine. To treat cognitive decline due to disease or aging, BCI provides a variety of
solutions to improve cognitive ability [4,75,102]. BCI also shows a wide range of potential
applications to improve the cognitive abilities of healthy people [100]. For example, collab-
orative intelligence systems that integrate HI and AI provide a new solution to decision
making problems, which not only makes the decision faster but also makes the decision
more reasonable [10,103]. Furthermore, collaborative BCI systems that combine brain
activities from multiple users have shown improved accuracy in various decision-making
tasks [63,104,105].

At present, the implementation of BCI-based human augmentation still faces many difficulties.
The first is to improve the function and performance of existing equipment, so that it can be easily
used in daily life [106–108]. Secondly, it remains a significant challenge to establish a closed-loop
system for real-time interaction between the CNS and the external devices [26].

BCI and AI
The two fields of BCI and AI originally developed relatively independently. However, with
recent advances in both fields, a new situation of mutual promotion seems to have
emerged [109]. With the rapid development of AI and machine learning technology, AI
has been successfully applied to BCI systems (Figure 5A). On the one hand, AI is widely
used to interpret massive multimodal neural signals in BCI systems [110,111]. On the
other hand, AI-based intelligent devices can also encode and provide feedback of the
collected environmental information to users, which improves the stability of operation in
BCI systems [109].
Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 9
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Although AI outperforms humans in some task-specific applications, it encounters difficulties in
performing some complex tasks involving decision making, planning, and creativity. Because
humans can quickly learn and apply conceptual information, the possibility of BCI-based hybrid
intelligent system provides new opportunities to solve the problems encountered in the practical
applications of AI [10,112]. By taking advantage of the synergy and complementarity of AI and HI,
the hybrid system has achieved better results than any single working mode [45,113,114].
The combination of BCI and AI creates a human-in-the-loop system, in which human and AI
work together to mutually improve performance [114]. With the help of the interaction and
cooperation between the brain and themachine, it is possible to further realize human intelligence
augmentation (IA) [115,116], which is also an important direction for the future development of
BCI (Figure 5B).

With the development of science and technology, especially the development of AI, internet of
things (IoT), big data, cloud computing, virtual reality (VR), augmented reality (AR), and other
information technologies, the environment around us has become more and more intelligent
[114,117,118]. The new technologies will inevitably impact our work and lives. In fact, people
10 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx
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Outstanding questions
How can we develop brain imaging/
monitoring systems with both high
temporal and spatial resolutions?

Can we develop high-performance
BCI systems under the very limited
knowledge of brain science? Also,
can we develop brain inspired artificial
intelligence systems as smart as
humans?

How can we develop noninvasive or
non-surgical methods for transducer
implant? How can we solve the prob-
lem of biocompatibility of implanted
transducers in brain tissues?

What is the maximum of ITR for inva-
sive or noninvasive BCI systems? Is it
possible to display your mind directly
on the monitor in front of you?

Does BCI illiteracy really exist? Is the
occurrence of users with poor perfor-
mance because the BCI system itself
is not perfect, or is the mechanism
of nervous system different across
individuals?

What is the neural mechanism
of cognitive augmentation? Can
neurofeedback or BCI training be
applied to a wide range of people?
Can the training effect continue to
augment human function?

How should we deal with ethical issues
related to BCI? Should the invasive
methods be used in healthy people?
Can mind reading technology gain
access to private information?
have begun to use BCIs to communicate with and control the physical world and VR, including
connecting the IoT to control objects in an infinite space [119,120]. Remote brain-to-brain
communication has even been realized [38,121]. As shown in Figure 5C, the extensive
connection and control function not only enables the disabled to improve their quality of life,
but also enables healthy people to enhance and expand their abilities [100,122,123]. It is believed
that, based on the platform of BCI technology, the model that integrates HI, AI, and smart world
technologies, will influence society and greatly benefit humans [114,124].

Concluding remarks
With the development and integration of cognitive neuroscience, information science, and
engineering technology, BCIs have entered a new stage of rapid development [125–127]. This
paper briefly reviews the development of BCIs and summarizes the existing BCI technology by
an evolutionary model of I3. The model shows that with the advancement of technology and
the deepening of research, the connection between the brain and the computer has become
increasingly close, and the information exchange between them has developed from sensation
and perception to cognition, leading to seamless connection and cognitive collaboration [128].
The deep integration of HI and AI shows the new trend in the future development of BCIs.

As an interdisciplinary research field, BCI’s future development depends on the progress of
neuroscience and engineering technology. From the perspective of neuroscience, more fully
understanding the function and working mechanism of the brain is the basis for future success
of BCIs [129]. From the engineering perspective, the applications of multimodal and large-scale
neuronal recording, ultra-high-speed broadband wireless signal transmission (5G and beyond),
and super data processing capability of cloud platform are the directions of future develop-
ment [108].

Overall, BCI technology is still in its infancy, although great progress has been made in recent
years. Most of the existing BCI systems have only been demonstrated in the laboratories and
are still far away from practical usages. The reliability and accessibility must be improved so
that BCIs can become an indispensable tool in daily life of the disabled and healthy people (see
Outstanding questions).

Acknowledgments
This study is supported in part by the Key Research and Development Program of Guangdong Province

(No. 2018B030339001), the National Key Research and Development Program of China (No. 2017YFB1002505), the

Strategic Priority Research Program of Chinese Academy of Science (No. XDB32040200), and the National Natural Science

Foundation of China (No. 61671424).

Declaration of interests
No interests are declared.

References

1. Wolpaw, J.R. et al. (2002) Brain-computer interfaces for

communication and control. Clin. Neurophysiol. 113, 767–791
2. Lotte, F. et al. (2018) A review of classification algorithms for

EEG-based brain-computer interfaces: a 10 year update.
J. Neural Eng. 15, 031005

3. Abiri, R. et al. (2019) A comprehensive review of EEG-based
brain-computer interface paradigms. J. Neural Eng. 16,
011001

4. Chaudhary, U. et al. (2016) Brain-computer interfaces for com-
munication and rehabilitation. Nat. Rev. Neurol. 12, 513–525

5. Martini, M.L. et al. (2020) Sensor modalities for brain-computer
interface technology: a comprehensive literature review.
Neurosurgery 86, E108–E117

6. Roy, Y. et al. (2019) Deep learning-based electroencepha-
lography analysis: a systematic review. J. Neural Eng. 16,
051001

7. Ramadan, R.A. et al. (2017) Brain–computer interface: control
signals review. Neurocomputing 223, 26–44

8. Gu, X. et al. (2020) EEG-based brain-computer interfaces
(BCIs): a survey of recent studies on signal sensing technologies
and computational intelligence approaches and their applications.
arXiv Published online Jan 19, 2021. https://doi.org/10.1109/
TCBB.2021.3052811

9. Rashid, M. et al. (2020) Current status, challenges, and
possible solutions of EEG-based brain-computer interface: a
comprehensive review. Front. Neurorobot. 14, 25
Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 11

http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0005
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0005
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0010
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0010
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0010
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0015
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0015
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0015
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0020
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0020
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0025
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0025
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0025
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0030
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0030
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0030
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0035
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0035
https://doi.org/10.1109/TCBB.2021.3052811
https://doi.org/10.1109/TCBB.2021.3052811
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0045
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0045
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0045


Trends in Cognitive Sciences
10. Jarrahi, M.H. (2018) Artificial intelligence and the future of work:
human-AI symbiosis in organizational decision making. Bus.
Horiz. 61, 577–586

11. Yuan, H. and He, B. (2014) Brain-computer interfaces using
sensorimotor rhythms: current state and future perspectives.
IEEE Trans. Biomed. Eng. 61, 1425–1435

12. Wang, Y. et al. (2006) A practical VEP-based brain-computer
interface. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 234–239

13. Mora-Sánchez, A. et al. (2020) A brain-computer interface for
the continuous, real-time monitoring of working memory load
in real-world environments. Cogn. Neurodyn. 14, 301–321

14. Gaume, A. et al. (2019) A cognitive brain-computer interface
monitoring sustained attentional variations during a continuous
task. Cogn. Neurodyn. 13, 257–269

15. Aricò, P. et al. (2017) Passive BCI in operational environments:
insights, recent advances, and future trends. IEEE Trans.
Biomed. Eng. 64, 1431–1436

16. Aricò, P. et al. (2018) Passive BCI beyond the lab: current
trends and future directions. Physiol. Meas. 39, 08TR02

17. Zander, T.O. and Kothe, C. (2011) Towards passive brain-
computer interfaces: applying brain-computer interface tech-
nology to human-machine systems in general. J. Neural Eng.
8, 025005

18. Min, B.K. et al. (2010) Neuroimaging-based approaches in the
brain-computer interface. Trends Biotechnol. 28, 552–560

19. Schalk, G. and Leuthardt, E.C. (2011) Brain-computer inter-
faces using electrocorticographic signals. IEEE Rev. Biomed.
Eng. 4, 140–154

20. Buzsáki, G. et al. (2012) The origin of extracellular fields and
currents–EEG, ECoG, LFP, and spikes. Nat. Rev. Neurosci.
13, 407–420

21. Naseer, N. and Hong, K.S. (2015) fNIRS-based brain-
computer interfaces: a review. Front. Hum. Neurosci. 9, 3

22. Ruiz, S. et al. (2014) Real-time fMRI brain computer interfaces:
self-regulation of single brain regions to networks. Biol.
Psychol. 95, 4–20

23. Lee, J.H. et al. (2012) Real-time fMRI-based neurofeedback re-
inforces causality of attention networks. Neurosci. Res. 72,
347–354

24. Lotte, F. et al. (2007) A review of classification algorithms for
EEG-based brain-computer interfaces. J. Neural Eng. 4,
R1–R13

25. Zheng, N. et al. (2017) Hybrid-augmented intelligence: collabo-
ration and cognition. Front. Inf. Technol. Electron. Eng. 18,
153–179

26. Rao, R.P. (2019) Towards neural co-processors for the brain:
combining decoding and encoding in brain-computer interface.
Curr. Opin. Neurobiol. 55, 142–151

27. Hughes, C. et al. (2020) Bidirectional brain-computer interfaces.
Handb. Clin. Neurol. 168, 163–181

28. Lewis, P.M. et al. (2016) Brain neuromodulation techniques: a
review. Neuroscientist 22, 406–421

29. Valero-Cabré, A. et al. (2017) Transcranial magnetic stimulation
in basic and clinical neuroscience: a comprehensive review of
fundamental principles and novel insights. Neurosci. Biobehav.
Rev. 83, 381–404

30. Paulus, W. et al. (2016) Application of transcranial electric
stimulation (tDCS, tACS, tRNS): from motor-evoked potentials
towards modulation of behaviour. Eur. Psychol. 21, 4–14

31. Munoz, F. et al. (2018) Modulation of brain function and
behavior by focused ultrasound. Curr. Behav. Neurosci. Rep.
5, 153–164

32. Legon, W. et al. (2014) Transcranial focused ultrasound modu-
lates the activity of primary somatosensory cortex in humans.
Nat. Neurosci. 17, 322–329

33. Nguyen, J.P. et al. (2011) Invasive brain stimulation for the
treatment of neuropathic pain. Nat. Rev. Neurol. 7, 699–709

34. Amon, A. and Alesch, F. (2017) Systems for deep brain stimulation:
review of technical features. J. Neural Transm. 124, 1083–1091

35. Marzbani, H. et al. (2016) Neurofeedback: a comprehensive
review on system design, methodology, and clinical applications.
Basic Clin. Neurosci. 7, 143–158

36. Zhou, A. et al. (2018) Toward true closed-loop neuromodulation:
artifact-free recording during stimulation. Curr. Opin. Neurobiol.
50, 119–127

37. Orsborn, A.L. et al. (2012) Closed-loop decoder adaptation on
intermediate time-scales facilitates rapid BMI performance im-
provements independent of decoder initialization conditions.
IEEE Trans. Neural Syst. Rehabil. Eng. 20, 468–477

38. Jiang, L. et al. (2019) BrainNet: a multi-person brain-to-brain
interface for direct collaboration between brains. Sci. Rep. 9,
6115

39. Shenoy, K.V. and Carmena, J.M. (2014) Combining decoder
design and neural adaptation in brain-machine interfaces.
Neuron 84, 665–680

40. Schwarz, A. et al. (2019) Direct comparison of supervised and
seme-supervised retraining approaches for co-adaptive BCIs.
Med. Biol. Eng. Comput. 57, 2347–2357

41. Ma, Z. et al. (2020) Online learning using projections onto
shrinkage closed balls for adaptive brain-computer interface.
Pattern Recogn. 97, 107017

42. Müller, J.S. et al. (2017) A mathematical model for the two-
learners problem. J. Neural Eng. 14, 036005

43. Min, B.K. et al. (2017) Harnessing prefrontal cognitive signals
for brain-machine interfaces. Trends Biotechnol. 35, 585–597

44. Gerson, A.D. et al. (2006) Cortically coupled computer vision
for rapid image search. IEEE Trans. Neural Syst. Rehabil.
Eng. 14, 174–179

45. Netzer, E. and Geva, A.B. (2020) Human-in-the-loop active
learning via brain computer interface. Ann. Math. Artif. Intell.
88, 1191–1205

46. Saproo, S. et al. (2016) Cortically coupled computing: a new
paradigm for synergistic human-machine interaction. Computer
49, 60–68

47. Lees, S. et al. (2018) A review of rapid serial visual
presentation-based brain-computer interface. J. Neural Eng.
15, 021001

48. Royer, A.S. and He, B. (2009) Goal selection versus process
control in a brain-computer interface based on sensorimotor
rhythms. J. Neural Eng. 6, 016005

49. Ehrlich, S.K. and Cheng, G. (2018) Human-agent co-
adaptation using error-related potentials. J. Neural Eng. 15,
066014

50. Zhang, S. et al. (2020) Pain control by co-adaptive learning in a
brain-machine interface. Curr. Biol. 30, 3935–3944

51. Perdikis, S. and Millan, J.R. (2020) Brain-machine interfaces: a
tale of two learners. IEEE Syst. Man Cybern. Mag. 6, 12–19

52. van den Bosch, K. et al. (2019) Six challenges for human-AI
co-learning. In International Conference on Human-
Computer Interaction, pp. 572–589, Springer

53. Vidal, J.J. (1973) Towards direct brain-computer communication.
Annu. Rev. Biophys. Bioeng. 2, 157–180

54. Elbert, T. et al. (1980) Biofeedback of slow cortical potentials. I.
Electroencephalogr. Clin. Neurophysiol. 48, 293–301

55. Birbaumer, N. et al. (1990) Slow potentials of the cerebral
cortex and behavior. Physiol. Rev. 70, 1–41

56. Farwell, L.A. and Donchin, E. (1988) Talking off the top of
your head: toward a mental prosthesis utilizing event-related
brain potentials. Electroencephalogr. Clin. Neurophysiol. 70,
510–523

57. Wolpaw, J.R. et al. (1991) An EEG-based brain-computer
interface for cursor control. Electroencephalogr. Clin.
Neurophysiol. 78, 252–259

58. McMillan, G.R. et al. (1995) Direct brain interface utilizing self-
regulation of steady-state visual evoked response (SSVER). In
Proceedings of RESNA, pp. 693–695, Resna

59. Cheng, M. et al. (2002) Design and implementation of a brain-
computer interface with high transfer rates. IEEE Trans.
Biomed. Eng. 49, 1181–1186

60. Guo, F. et al. (2008) A brain-computer interface using motion-
onset evoked potential. J. Neural Eng. 5, 477–485

61. Li, W. et al. (2015) Control of humanoid robot via motion-onset
visual evoked potentials. Front. Syst. Neurosci. 8, 247

62. Pfurtscheller, G. et al. (2010) The hybrid BCI. Front. Neurosci.
4, 30

63. Wang, Y. and Jung, T.P. (2011) A collaborative brain-computer
interface for improving human performance. PLoS One 6,
e20422

64. Vidaurre, C. et al. (2011) Co-adaptive calibration to improve
BCI efficiency. J. Neural Eng. 8, 025009
12 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx

http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0050
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0050
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0050
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0055
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0055
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0055
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0060
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0060
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0065
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0065
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0065
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0070
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0070
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0070
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0075
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0075
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0075
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0080
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0080
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0085
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0085
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0085
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0085
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0090
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0090
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0095
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0095
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0095
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0100
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0100
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0100
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0105
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0105
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0110
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0110
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0110
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0115
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0115
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0115
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0120
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0120
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0120
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0125
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0125
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0125
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0130
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0130
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0130
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0135
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0135
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0140
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0140
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0145
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0145
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0145
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0145
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0150
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0150
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0150
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0155
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0155
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0155
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0160
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0160
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0160
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0165
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0165
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0170
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0170
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0175
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0175
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0175
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0180
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0180
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0180
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0185
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0185
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0185
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0185
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0190
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0190
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0190
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0195
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0195
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0195
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0200
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0200
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0200
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0205
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0205
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0205
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0210
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0210
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0215
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0215
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0220
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0220
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0220
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0225
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0225
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0225
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0230
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0230
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0230
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0235
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0235
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0235
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0240
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0240
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0240
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0245
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0245
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0245
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0250
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0250
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0255
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0255
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0260
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0260
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0260
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0265
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0265
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0270
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0270
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0275
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0275
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0280
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0280
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0280
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0280
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0285
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0285
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0285
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0290
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0290
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0290
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0295
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0295
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0295
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0300
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0300
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0305
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0305
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0310
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0310
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0315
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0315
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0315
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0320
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0320


Trends in Cognitive Sciences
65. Singh, A. et al. (2017) Architectural review of co-adaptive brain
computer interface. In 2017 4th Asia-Pacific World Congress
on Computer Science and Engineering, pp. 200–207

66. Astrand, E. et al. (2014) Selective visual attention to drive
cognitive brain-machine interfaces: from concepts to neuro-
feedback and rehabilitation applications. Front. Syst. Neurosci.
8, 144

67. Bagherzadeh, Y. et al. (2020) Alpha synchrony and the
neurofeedback control of spatial attention. Neuron 105,
577–587

68. Sitaram, R. et al. (2017) Closed-loop brain training: the science
of neurofeedback. Nat. Rev. Neurosci. 18, 86–100

69. Liao, L.D. et al. (2012) Biosensor technologies for augmented
brain-computer interfaces in the next decades. Proc. IEEE
100, 1553–1566

70. Lance, B.J. et al. (2012) Brain-computer interface technologies
in the coming decades. Proc. IEEE 100, 1585–1599

71. Nijboer, F. et al. (2009) Affective brain-computer interfaces:
psychophysiological markers of emotion in healthy persons
and in persons with amyotrophic lateral sclerosis. In 2009 3rd
International Conference on Affective Computing and Intelligent
Interaction and Workshops, IEEE

72. Mühl, C. et al. (2014) A survey of affective brain computer inter-
faces principles state-of-the-art and challenges. Brain-Comput.
Interfaces 1, 66–84

73. Daly, I. et al. (2020) Personalised, multi-modal, affective state
detection for hybrid brain-computer music interfacing. IEEE
Trans. Affect. Comput. 11, 111–124

74. Garcia-Molina, G. et al. (2013) Emotional brain-computer
interfaces. Int. J. Auton. Adapt. Commun. Syst. 6, 9–25

75. Shanechi, M.M. (2019) Brain-machine interfaces from motor to
mood. Nat. Neurosci. 22, 1554–1564

76. Sani, O.G. et al. (2018) Mood variations decoded from multi-
site intracranial human brain activity. Nat. Biotechnol. 36,
954–961

77. Gao, S. et al. (2014) Visual and auditory brain-computer
interface. IEEE Trans. Biomed. Eng. 61, 1436–1447

78. Chen, X. et al. (2015) High-speed spelling with a noninvasive
brain-computer interface. Proc. Natl. Acad. Sci. U. S. A. 112,
E6058–E6067

79. Guenther, F.H. et al. (2009) A wireless brain-machine interface
for real-time speech synthesis. PLoS One 4, e8218

80. Cooney, C. et al. (2018) Neurolinguistics research advancing
development of a direct-speech brain-computer interface.
iScience 8, 103–125

81. Rabbani, Q. et al. (2019) The potential for a speech brain-
computer interface using chronic electrocorticography.
Neurotherapeutics 16, 144–165

82. Anumanchipalli, G.K. et al. (2019) Speech synthesis from
neural decoding of spoken sentences. Nature 568, 493–498

83. Makin, J.G. et al. (2020) Machine translation of cortical activity
to text with an encoder-decoder framework. Nat. Neurosci. 23,
575–582

84. Edelman, B.J. et al. (2019) Noninvasive neuroimaging en-
hances continuous neural tracking for robotic device control.
Sci. Robot. 4, eaaw6844

85. Benabid, A.L. et al. (2019) An exoskeleton controlled by an
epidural wireless brain-machine interface in a tetraplegic
patient: a proof-of-concept demonstration. Lancet Neurol.
18, 1112–1122

86. Bulhões da Silva Costa, T. et al. (2020) Channel capacity in
brain-computer interfaces. J. Neural Eng. 17, 016060

87. Wolpaw, J.R. et al. (1998) EEG-based communication:
improved accuracy by response verification. IEEE Trans.
Rehabil. Eng. 6, 326–333

88. Yuan, P. et al. (2013) A study of the existing problems of
estimating the information transfer rate in online brain-computer
interfaces. J. Neural Eng. 10, 026014

89. Sadeghi, S. and Maleki, A. (2019) Accurate estimation of infor-
mation transfer rate based on symbol occurrence probability in
brain-computer interfaces. Biomed. Signal Process. Control
54, 101607

90. Nagel, S. and Spüler, M. (2019) World’s fastest brain-
computer interface: combining EEG2Code with deep learning.
PLoS One 14, e0221909

91. Thayer, J.F. and Lane, R.D. (2009) Claude Bernard and the
heart-brain connection: further elaboration of a model of
neurovisceral integration. Neurosci. Biobehav. Rev. 33, 81–88

92. Mateo, C. et al. (2017) Entrainment of arteriole vasomotor fluc-
tuations by neural activity is a basis of blood-oxygenation-level-
dependent ‘resting-state’ connectivity. Neuron 96, 936–948

93. Pfurtscheller, G. et al. (2020) Verification of a central pace-
maker in brain stem by phase-coupling analysis between HR
interval- and BOLD-oscillations in the 0.10-0.15 Hz frequency
band. Front. Neurosci. 14, 922

94. Nakanishi, M. et al. (2018) Enhancing detection of SSVEPs for a
high-speed brain speller using task-related component analysis.
IEEE Trans. Biomed. Eng. 65, 104–112

95. Moses, D.A. et al. (2019) Real-time decoding of question-and-
answer speech dialogue using human cortical activity. Nat.
Commun. 10, 3096

96. Raisamo, R. et al. (2019) Human augmentation: past, present
and future. Int. J. Hum.-Comput. Stud. 131, 131–143

97. Valeriani, D. et al. (2019) Brain-computer interface for human
augmentation. Brain Sci. 9, 22

98. Ganzer, P.D. et al. (2020) Restoring the sense of touch using a
sensorimotor demultiplexing neural interface. Cell 181,
763–773

99. Zhuang, M. et al. (2020) State-of-the-art non-invasive brain-
computer interface for neural rehabilitation: a review.
J. Neurorestoratol. 8, 12–25

100. Cinel, C. et al. (2019) Neurotechnologies for human cognitive
augmentation: current state of the art and future prospects.
Front. Hum. Neurosci. 13, 13

101. Roelfsema, P.R. et al. (2018) Mind reading and writing: the
future of neurotechnology. Trends Cogn. Sci. 22, 598–610

102. Zheng, Y. et al. (2020) Multimodal treatment for spinal cord
injury: a sword of neuroregeneration upon neuromodulation.
Neural Regen. Res. 15, 1437–1450

103. Si, Y. et al. (2020) Predicting individual decision-making re-
sponses based on single-trial EEG. NeuroImage 206, 116333

104. Valeriani, D. et al. (2017) Group augmentation in realistic visual-
search decisions via a hybrid brain-computer interface. Sci.
Rep. 7, 7772

105. van den Bosch, K. and Bronkhorst, A. (2018) Human-AI coop-
eration to benefit military decision making. In Proceedings of
the NATO IST-160 Specialist' meeting on Big Data and Artificial
Intelligence for Military Decision Making, pp. S3-1/1–S3-1/12

106. Seo, D. et al. (2016) Wireless recording in the peripheral nervous
system with ultrasonic neural dust. Neuron 91, 529–539

107. Neely, R.M. et al. (2018) Recent advances in neural dust:
towards a neural interface platform. Curr. Opin. Neurobiol.
50, 64–71

108. Martins, N.R.B. et al. (2019) Human brain/cloud interface.
Front. Neurosci. 13, 112

109. Zhang, X. et al. (2020) The combination of brain-computer
interface and artificial intelligence: applications and challenges.
Ann. Transl. Med. 8, 712

110. Craik, A. et al. (2019) Deep learning for electroencephalogram
(EEG) classification tasks: a review. J. Neural Eng. 16, 031001

111. Zhang, X. et al. (2019) A survey on deep learning based brain-
computer interface: recent advances and new frontiers. arXiv
Published October 21, 2020. arxiv.org/1905.04149

112. Dellermann, D. et al. (2019) The future of human-AI collabora-
tion: a taxonomy of design knowledge for hybrid intelligence
systems. In Proceedings of the 52nd Hawaii International
Conference on System Sciences, pp. 274–283

113. Cavazza, M. (2018) A motivational model of BCI-controlled
heuristic search. Brain Sci. 8, 166

114. Rabaey, J.M. (2020) Human-centric computing. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 28, 3–11

115. Hassani, H. et al. (2020) Artificial intelligence (AI) or intelligence
augmentation (IA): what is the future? AI 1, 143–155

116. Batin, M. et al. (2017) Artificial intelligence in life extension: from
deep learning to superintelligence. Informatica 41, 401–417

117. Lacrama, D.L. et al. (2018) Brain-machine interfaces in the context
of artificial intelligence development. In 2018 14th Symposium on
Neural Networks and Applications, IEEE

118. Kennedy, P. (2014) Brain-machine interfaces as a challenge to
the ‘moment of singularity’. Front. Syst. Neurosci. 8, 213
Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx 13

http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0325
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0325
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0325
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0330
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0330
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0330
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0330
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0335
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0335
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0335
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0340
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0340
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0345
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0345
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0345
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0350
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0350
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0355
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0355
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0355
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0355
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0355
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0360
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0360
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0360
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0365
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0365
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0365
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0370
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0370
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0375
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0375
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0380
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0380
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0380
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0385
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0385
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0390
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0390
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0390
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0395
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0395
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0400
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0400
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0400
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0405
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0405
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0405
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0410
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0410
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0415
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0415
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0415
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0420
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0420
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0420
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0425
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0425
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0425
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0425
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0430
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0430
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0435
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0435
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0435
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0440
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0440
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0440
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0445
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0445
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0445
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0445
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0450
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0450
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0450
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0455
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0455
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0455
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0460
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0460
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0460
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0465
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0465
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0465
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0465
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0470
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0470
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0470
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0475
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0475
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0475
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0480
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0480
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0485
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0485
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0490
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0490
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0490
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0495
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0495
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0495
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0500
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0500
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0500
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0505
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0505
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0510
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0510
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0510
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0515
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0515
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0520
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0520
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0520
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0525
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0525
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0525
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0525
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0530
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0530
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0535
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0535
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0535
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0540
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0540
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0545
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0545
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0545
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0550
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0550
http://arxiv.org/1905.04149
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0560
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0560
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0560
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0560
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0565
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0565
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0570
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0570
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0575
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0575
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0580
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0580
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0585
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0585
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0585
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0590
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0590


Trends in Cognitive Sciences
119. Martínez-Cagigal, V. et al. (2019) Towards an accessible use of
smartphone-based social networks through brain-computer
interfaces. Expert Syst. Appl. 120, 155–166

120. de Oliveira Júnior, W.G. et al. (2020) A proposal for internet of
smart home things based on BCI system to aid patients with
amyotrophic lateral sclerosis. Neural Comput. Applic. 32,
11007–11017

121. Rao, R.P.N. et al. (2014) A direct brain-to-brain interface in
humans. PLoS One 9, e111332

122. Zhang, X. et al. (2019) Internet of things meets brain-computer
interface: a unified deep learning framework for enabling
human-thing cognitive interactivity. IEEE Internet Things J. 6,
2084–2092

123. Coogan, C.G. and He, B. (2018) Brain-computer interface
control in a virtual reality environment and applications for the
internet of things. IEEE Access 6, 10840–10849

124. Miller, A. (2019) The intrinsically Linked future for human and
artificial intelligence interaction. J. Big Data 6, 38

125. Musk, E. and Neuralink (2019) An integrated brain-machine
interface platform with thousands of channels. J. Med. Internet
Res. 21, e16194

126. Mahmood, M. et al. (2019) Fully portable and wireless universal
brain-machine interfaces enabled by flexible scalp electronics
and deep learning algorithm. Nat. Mach. Intell. 1, 412–422

127. Lin, S. et al. (2019) A flexible, robust, and gel-free electroenceph-
alogram electrode for noninvasive brain-computer interfaces.
Nano Lett. 19, 6853–6861

128. Shi, Z. and Huang, Z. (2019) Cognitive model of brain-machine
integration. In International Conference on Artificial General
Intelligence, pp. 168–177, Springer

129. Altimus, C.M. et al. (2020) The next 50 years of neuroscience.
J. Neurosci. 40, 101–106
14 Trends in Cognitive Sciences, Month 2021, Vol. xx, No. xx

http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0595
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0595
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0595
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0600
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0600
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0600
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0600
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0605
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0605
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0610
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0610
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0610
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0610
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0615
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0615
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0615
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0620
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0620
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0625
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0625
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0625
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0630
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0630
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0630
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0635
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0635
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0635
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0640
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0640
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0640
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0645
http://refhub.elsevier.com/S1364-6613(21)00096-6/rf0645

	Interface, interaction, and intelligence in generalized brain–computer interfaces
	BCI: from sensation and perception to cognition
	An evolutionary model for generalized BCI technology: I3
	Classical brain–computer interface
	Brain–computer interaction
	Brain–computer intelligence

	History of BCI: an evolutionary point of view
	Challenges and opportunities
	Channel capacity
	BCI and human augmentation
	BCI and AI

	Concluding remarks
	Acknowledgments
	Declaration of interests
	References




