
Journal of Network and Computer Applications 131 (2019) 89–108

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Review

The application of Software Defined Networking on securing computer
networks: A survey

Rishikesh Sahay, Weizhi Meng ∗, Christian D. Jensen
Dept. of Applied Mathematics & Computer Science, Technical University of Denmark, Lyngby, Denmark

A R T I C L E I N F O

Keywords:
Software Defined Networking
Attack detection and mitigation
Network security
Middlebox management
Traffic management
Policy management
Traffic engineering
Smart grid security

A B S T R A C T

Software Defined Networking (SDN) has emerged as a new networking paradigm for managing different kinds of
networks ranging from enterprise to home network through software enabled control. The logically centralized
control plane and programmability offers a great opportunity to improve network security, like implementing
new mechanisms to detect and mitigate various threats, as well as enables deploying security as a service on the
SDN controller. Due to the increasing and fast development of SDN, this paper provides an extensive survey on
the application of SDN on enhancing the security of computer networks. In particular, we survey recent research
studies that focus on applying SDN for network security including attack detection and mitigation, traffic mon-
itoring and engineering, configuration and policy management, service chaining, and middlebox deployment,
in addition to smart grid security. We further identify some challenges and promising future directions on SDN
security, compatibility and scalability issues that should be addressed in this field.

1. Introduction

Computer networks generally consist of a large number of network
devices such as switches, routers, and middleboxes (i.e. devices which
process traffic other than forwarding). A large number of servers and
hosts are interconnected through these network devices and middle-
boxes. These network devices and middleboxes are vendor specific and
they have proprietary solutions. Network operators are responsible for
configuring each device to handle network and security events. Con-
figuring these devices manually with low-level device specific syntax
is a tedious, complex, time consuming and error prone task, as net-
work operators are required to be present all the time to configure
these devices. This is a main reason for network downtime (Open Net-
working Foundation, 2008; Colville and Spafford, 2010), because auto-
mated configuration and modification are absent in the traditional IP
networks (Benson et al., 2009a). However, considering the current net-
work dynamics, it is very important that a network can adapt to the
current status automatically. But, in the traditional IP network it is dif-
ficult to configure the network dynamically according to the current
status.

To make it even more difficult, in the traditional network, control
and data plane are integrated inside the network devices, which may

∗ Corresponding author.
E-mail addresses: risa@dtu.dk (R. Sahay), weme@dtu.dk (W. Meng), cdje@dtu.dk (C.D. Jensen).

reduce flexibility and dynamicity. Moreover, the lack of programmabil-
ity and centralized control in the traditional network makes it difficult
to deploy new services without halting the ongoing services (Chen et
al., 2009). The scenario could be made even worse because of the enor-
mous size of a network (Kim et al., 2011). The expanding network size
and the heterogeneity can further increase the difficulty. These prob-
lems have demanded a new approach to support the deployment of
network devices and applications.

The recent emergence of Software Defined Networking (SDN)
addresses these issues by decoupling the network control from the data
plane of the network devices (Open Networking Foundation, 2012,
2013). In SDN, network intelligence is logically centralized in a soft-
ware based entity, called controller, and network devices like switches
and routers behave as a simple forwarding device. Forwarding devices
contain the flow rules to process the incoming packets based on match
fields mentioned in the flow tables (such as source IP, destination IP,
protocol, etc.). These forwarding devices can be programmed by the
controller using a standard interface (such as OpenFlow (McKeown et
al., 2008a), NETCONF (Enns et al., 2011), and ForCES (Halpern et al.,
2010)). Moreover, network operators can define the high-level network
policy at the controller, which can be enforced in the switches by the
applications running on the controller.

https://doi.org/10.1016/j.jnca.2019.01.019
Received 25 September 2018; Received in revised form 13 December 2018; Accepted 14 January 2019
Available online 21 January 2019
1084-8045/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2019.01.019
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2019.01.019&domain=pdf
mailto:risa@dtu.dk
mailto:weme@dtu.dk
mailto:cdje@dtu.dk
https://doi.org/10.1016/j.jnca.2019.01.019


R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

In addition, as SDN controller can collect the flow statistics from
the switches in the network, it can provide real-time global network
status by analyzing flow statistics i.e., via the applications deployed at
the controller (Tootoonchian et al., 2010; van Adrichem et al., 2014;
Mann et al., 2012; Zhong et al., 2017). This can dramatically sim-
plify the network architecture and provide effective network manage-
ment.

Motivations. The global visibility and programmability of the SDN
controller open up new avenues for network security. Recently, cyber-
security has received more attention from academia as well as from
industry (CISCO, 2018; Mahimkar et al., 2007; F5, 2014; Bawany et al.,
2017). According to the report of Symantec, cyber attacks continue to
grow rapidly (Symantec, 2018). Obviously, deployment of services in
the network without adequate security may cause a lot of risks and vul-
nerabilities, which can be exploited by attackers (Bisong and Rahman,
2011). Moreover, security is a major concern not only in enterprise and
ISP, but also in different types of networks (Wu et al., 2018a; Aydeger et
al., 2015). To tackle the challenges posed by the growing cyber attacks,
there is a need to dynamically configure and deploy the security poli-
cies on-demand. Currently, most network operators rely on statically
deployed devices to protect the network from cyber attacks (Arbor Net-
works, 2016; Fayaz et al., 2015). It is a time consuming process and
causes network operators to either over provision or under provision
the resources. In this paper, our interest is to investigate how SDN can
help handle these concerns.

Regarding SDN, Open Networking Foundation (ONF) that is an
industry driven organization has been created by many service
providers and different network vendors to help promote software-
defined standards (Open networking foundation). SDN now has gained
significant attraction from both academia and industry. Most of the ven-
dors like IBM and Hewlett-Packard have already launched switching
devices which support OpenFlow protocol (Anon. 1; Anon. 2). Google
has also deployed SDN to connect its data centers (Mandal, 2015). On
the other hand, academic researchers are also actively involved in the
development and deployment of SDN (Yap et al., 2009; Openflow net-
work research center).

Comparison with similar surveys. A few recent papers have sur-
veyed about protecting SDN networks like (Li et al., 2016; Alsmadi
and Xu, 2015; Scott-Hayward et al., 2013; Ali et al., 2015; François
et al., 2014; Kreutz et al., 2015). Surveys related to security of SDN
and OpenFlow can be found in Li et al. (2016), Alsmadi and Xu (2015)
and Scott-Hayward et al. (2013). In François et al. (2014), the authors
review the work related to firewall deployment in the SDN network
for security purpose. Kreutz et al. (2015) presented a comprehensive
survey on SDN. They mainly discussed main concepts of SDN, how
it differs from traditional networking. Moreover, it also presented a
short discussion on the applications developed using SDN to improve
the security. However, it lacks a clear categorization of the different
types of applications developed to improve the security using SDN. Ali
et al. (2015) go a step further by categorizing the SDN-based secu-
rity research. However, their surveys mainly focus on threat detec-
tion, mitigation and network verification applications developed using
SDN. Overall, existing surveys lack a thorough discussion on differ-
ent categories of applications in relation to attack detection using
machine learning and entropy based approach, traffic monitoring, vul-
nerability detection, traffic engineering, middlebox deployment, policy
based security management, and service chaining though SDN. More-
over, there is a need to summarize releted studies on smart grid secu-
rity through deploying SDN, as security of a smart grid infrastruc-
ture is a challenging task. As a result, there is a need to provide a
more complete overview of ongoing research efforts and related activi-
ties.

In this paper, we aim to provide a more extensive survey on how
to apply SDN for securing computer networks. In particular, we catego-
rize the application of SDN for achieving network security into differ-
ent categories. First, in Section 2, we present the architecture of SDN

and its unique characteristics. In Section 3, we survey attack detec-
tion using machine learning and entropy based mechanism, vulnerabil-
ity detection, attack mitigation, traffic monitoring, traffic engineering
and dynamic configuration applications that are designed using SDN.
Section 4 then presents security policy management, service chaining,
middlebox deployment applications that are developed using SDN. In
Section 5, we summarize the studies related to smart grid security
via SDN. In Section 6, we discuss the main challenges and provide
future directions regarding how to solve these challenges and enhance
network security by using SDN. Finally, we conclude the work in
Section 7.

2. Software-defined networking architecture

Computer networks are mainly comprised of three planes: forward-
ing, control and management plane. The forwarding plane consists of
networking devices such as routers and switches which are responsible
for forwarding traffic. The protocols used to deploy the rules in the for-
warding tables of the data plane devices reside at the control plane. The
management plane consists of the network and security policies to man-
age the network. Control plane enforces these policies in the forwarding
plane. In the traditional computer networks, the control and data plane
are tightly coupled with each other and integrated in the same network-
ing devices. It makes the network rigid and static in nature.

Because of strong coupling between control and data plane in tradi-
tional computer networks, it becomes a very tedious and complex task
to develop and deploy new network applications (Benson et al., 2009b).
It requires modification in the control plane of all network devices
through some hardware upgrades. Thus, new network and security fea-
tures are often deployed in the network through the introduction of
middleboxes such as Intrusion Detection Systems (IDS), firewalls, load
balancer, etc. Generally, these middleboxes are placed statically at some
key locations in the network, which makes it difficult to dynamically
reconfigure them at run-time depending on the network conditions.
Furthermore, to manage the network, administrators have to maintain
specialized team to configure vendor specific solutions.

Software-Defined Networking (SDN) is a new networking paradigm
which separates the control plane from the data plane. It is also com-
prised of the three planes: the data, control and management plane.
To represent the work on SDN (McKeown et al., 2008b), the term was
coined at Stanford University. Since then, it has attracted attention of
researchers from both academia and industry. Fig. 1 illustrates the SDN
architecture. The separation of control and data plane enables to deploy
network applications based on the current network requirements. Many
novel network and security applications based-on SDN have been pro-
posed (Shin et al., 2013; Fayaz et al., 2015; Li et al., 2014; Krishnan and
Durrani, 2014; Mehdi et al., 2011a). The main reason for researchers to
have interests in SDN is mainly because it provides centralized control,
where policies can be expressed for various network conditions and
these policies can be enforced in the data plane through southbound
API. Moreover, SDN offers global visibility and programmability which
allows to configure the networking devices automatically based on the
current network status.

As shown in Fig. 1, the SDN architecture consists of three distinct
layers:

• The data plane layer consists of the network devices such as
routers/switches, Intrusion Detection System (IDS), computers, fire-
wall devices that perform packet forwarding and filtering.

• The Southbound interface provides an interface for communication
between the data plane devices and the control plane elements. It
specifies the communication protocol between data plane devices
and the SDN controller.

• The control plane configures the network devices in the data
plane through southbound interface which offers the communica-
tion between the data and control plane. It is also called as a net-

90



R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Fig. 1. SDN Architecture.

work operating system (NOS) or brain of the network. All the logic
resides in the applications and the SDN controller, which together is
called as the control plane.

• The northbound interface offers an interface to developers for
designing applications. It hides the low-level implementation details
to program data plane devices.

Therefore, an SDN architecture is characterized by the following key
attributes:

• Logically Centralized Controller and Network-Wide Visibility: Data
plane devices are connected to a centralized controller. The SDN
controller can also send queries to data plane devices to get the flow
statistics to infer the network status. With a centralized controller
and the knowledge of global network status, decision making is facil-
itated, as opposed to legacy networks where nodes are unaware of
the overall state of the network.

• Programmability: In SDN networks, data plane devices are controlled
by the applications deployed at the controller. It offers an approach
to introduce new network and security functions. Several program-
ming languages have been proposed to enable this feature (Voellmy
and Hudak, 2011; Foster et al., 2010; Voellmy et al., 2012).

• Abstraction: The applications deployed at the controller are offered
an abstract view of the network. Applications can specify the desired
network behavior through high-level policy languages (Voellmy and
Hudak, 2011; Foster et al., 2010; Voellmy et al., 2012). These high-
level configurations can be mapped into data plane configuration by
the SDN controller. Moreover, the simplified data plane offers the
flexibility to add new features, like DevoFlow (Curtis et al., 2011),
NetFPGA (Naous et al., 2008; Al-Fares et al., 2010).

• Flow-based Management: Forwarding decisions in the SDN switches
are taken on per flow basis. The basic characteristics of SDN is to
forward the flow to the controller, when the network devices do
not have the rules to handle these flows. This feature enables the
network administrator to deploy the rules when it is required. More-
over, it enables to process the flow dynamically based on the various
conditions in the network (Al-Fares et al., 2010).

• Dynamicity: SDN provides flexibility to accommodate changes for
more dynamicity. Data plane devices can be reconfigured easily
depending on the changing conditions in the network. It enables

to deploy the network and security applications for on-demand ser-
vices in the data centers and service provider network.

3. SDN enabled security mechanisms

There are numerous research studies on how to enhance the network
security using SDN technology. In this section, we summarize research
on the following aspects of SDN applications: dynamic configuration,
attack detection, attack mitigation, traffic monitoring, and traffic engi-
neering.

3.1. Dynamic configuration using SDN

The centralized control plane and the connection between the con-
trol and data plane through southbound interface is well suited to
achieve the dynamic configuration in the network. The controller can
send control messages to data plane devices. With a centralized con-
troller and the knowledge of global network status, decision making is
facilitated, as opposed to legacy networks, where nodes are unaware of
the overall state of the network.

The FRESCO (Shin et al., 2013) framework proposed by Shin et al.,
offers a platform for rapid design of detection and mitigation modules.
Detection and mitigation components are programmed and linked as
modular libraries to provide a defense in the network. Upon detection
of an attack in a network by detection modules, the FRESCO mitiga-
tion module generates flow rules to mitigate the attack. The frame-
work consists of application layer (to build applications) and a secu-
rity enforcement kernel which implements the action from the applica-
tion. The FRESCO’s application layer modules are developed in Python
and run over the NOX OpenFlow controller. The Security Enforce-
ment Kernel (SEK) is integrated with the NOX OpenFlow controller and
offers features upon which FRESCO relies for the enforcement of the
rules.

Application of the framework is demonstrated with two examples.
In the first example, the authors have shown the working of honeynet
to detect the malicious scanner by composing two modules together.
Scan detection module detects a malicious scanner and then redirects
all the malicious flow towards a honeypot for processing. Then, hon-

91



R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

eypot responds to the scanner, which is unaware that all of its flows
are processed by the honeypot. In the second example, the authors
demonstrate that legacy security devices like BotHunter, DPI can be
integrated with the FRESCO. These security devices monitor the net-
work to identify malicious traffic. Upon detection of malicious traffic,
alerts generated from these security applications are forwarded to the
mitigation module, which generates the OpenFlow rules to mitigate the
attacks.

F.Graur (2017) presented a mechanism to dynamically reconfigure
the network in the Internet of Things. In this approach, an SDN con-
troller is developed using python language to perform the network con-
figuration. Controller dynamically computes the path when new flows
arrive at the controller. The controller has two modules: NetModel and
ModFloodlight. The NetModel contains the network details, and com-
municates with the Floodlight controller to install the rules for the new
flows. The ModFloodlight takes the list of switches, source and destina-
tion IP address pair to deploy the rule for the flow.

Casado et al. (2007) proposed a centralized network architecture
called as Ethane to configure the network. Network and security poli-
cies are expressed at the centralized controller. When the flows arrive in
the network, rules are provided according to the host or service it wants
to connect. Moreover, it introduced Ethane switches which consist of
forwarding hardware to track flows. Ethane switches can be deployed
along with the ethernet switches in the network.

3.2. Attack detection

Cyber attack detection is an important aspect that needs to be
considered by network administrator. It is an important element for
network security. With the help of effective attack detection mecha-
nism, network administrators can handle different services and deploy
network resources for mitigation in a more efficient way. The SDN
paradigm provides a global visibility in the network which is ideally
suited for attack detection applications. The SDN controller can peri-
odically collect flow statistics for real time flow analysis from the data
plane devices. It helps in analyzing the current network status for real
time mitigation of attack traffic. In this section, we review both entropy
based and machine learning based approaches for detecting attacks in
SDN environments.

3.2.1. Entropy and threshold based detection in SDN
Giotis et al. (2014a), introduced an anomaly based detection mech-

anism using OpenFlow and sFlow statistics collection technique. The
framework uses entropy based anomaly detection technique and makes
a comparison between OpenFlow and sFlow flow mechanism over SDN.
The authors implement the entropy based detection and the thresh-
old random walk with credit based connection rate limiting (TRW-
CB) algorithms. Experimental results show that the average number
of flows required under the sFlow collection mechanism with entropy
based method is 217 flows. However, with the OF based approach the
required number of flows is 5184 flows. The same is the case with TRW-
CB algorithm. Average number of flows required is 217 with sFlow
mechanism; however, with the OF based approach the number of flows
required is above 2000. Therefore, the authors illustrate that the sFlow
traffic collection mechanism is better than the native OF (OpenFlow)
traffic collection mechanism. The authors conclude that the lack of
sampling in the OF flow statistics collection mechanism increases the
number of flows required for analysis. However, it focused on layers
(L2-L3) without looking into the packet contents.

In YuHunag et al. (2010) a two-stage rate based detection mech-
anism is used to detect the DDoS attacks. Network administrator sets
a threshold, and once the traffic exceeds the threshold, then the sec-
ond stage detection would be activated. For instance, the authors in
their experimentation set 3000 packets for every 5 s as the first stage
detection. Once the traffic exceeds this threshold, then the second stage
threshold of 800 Packets Per Second (PPS) is activated. If the traffic

continues at the 800 PPS for 5 s, then DDoS defense application starts
filtering the traffic.

In Mehdi et al. (2011a, 2011b), multiple anomaly detection algo-
rithms are implemented in order to validate their usability in small
cases. The authors proposed that the anomaly detection algorithm can
run at the border router of the home network. Four anomaly detec-
tion algorithms were implemented over the NOX SDN controller. These
algorithms are Threshold Random Walk with Credit based Rate Limit-
ing (TRW-CB), Rate Limiting, Maximum Entropy Detector, and NETAD.
For the validation, authors used low network traffic rates ranging from
60 to 12, 000 packets per second. Experimental results indicate that the
algorithms perform well in the small enterprise network environment.
However, when being tested at the ISP level, the algorithms did not per-
form well. It shows that the detection is far more accurate and efficient
in the home network in comparison to the ISP network, because of the
high volume of traffic in the ISP network.

An SDN based anomaly detection and mitigation mechanism is
introduced in Giotis et al. (2014b). It relies on bidirectional sketch
count algorithm to detect the attacks. It identifies the destination
IP addresses with high asymmetric communication pattern depend-
ing on a threshold value to detect the asymmetry in communica-
tion. It uses a threshold value to detect the asymmetry in com-
munication. Once the controller identifies the malicious flows, it
instructs the switch to drop the malicious flows. Legitimate traffic
is still forwarded to victim as compared to Remote Triggered Black
Hole (RTBH) in which victim becomes unreachable for benign traf-
fic. The proposed mechanism provides a modular approach for data
collection, anomaly detection and victim identification and attack
mitigation. In this mechanism, detection and mitigation are per-
formed at the ingress location of the network. Once the malicious
flow is identified, it can be blocked at the entry point in the net-
work, which saves the network resources from collateral damage. The
framework relies on BGP protocol to embed the incidence report.
The dependence on BGP provides some implications. First, BGP is
very complex and any modifications will challenge the deployment.
Second, the exchange of incidence report between domains after
BGP needs time for update. Therefore, the latency will increase
with the number of hops between the victim and source of attack.
While the framework does not validate the authenticity of exchange
report.

Wang et al. (2015) introduced a distributed algorithm for entropy
based anomaly detection. The authors argue that previous studies rely
mainly on flow statistics collected from the flow tables of the switches
to perform anomaly detection in the controller. However, in the large
network, such collection mechanism may overload the communication
channel between the switches and the controller. To address this issue,
they introduced a flow statistics process in the switch, and proposed a
lightweight entropy based DDoS flooding attack detection in the edge
switch of the network, thereby reducing the flow collection overhead
on the controller. In the proposed mechanism a probability distribu-
tion based on destination IP address is used to calculate the entropy. In
comparison to earlier studies (Mehdi et al., 2011a, 2011b), it reduces
the communication overhead and performs the detection at small time
scale.

In NetFuse (Wang et al., 2013), a proxy device is deployed between
the switches and the controller, which monitors the network load, and
instructs switches to reroute flows which are causing congestion to Net-
Fuse devices. It performs multi-dimensional flow aggregation based on
threshold to identify group flows with suspicious behavior. Moreover,
it uses adaptive control to limit the impact of aggressive flows on legit-
imate traffic. However, attacks can still compromise configuration mes-
sages sent by the controller to the data plane by modifying their con-
tent.

StateSec (Boite et al., 2017) proposed an entropy based algorithm to
detect threat such as DDoS and port scans. It relies on in-switch process-
ing capabilities to detect DDoS attacks. Entropy evaluates the unpre-

92



R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Table 1
Entropy and Threshold based Detection Applications over SDN.

Detection Application Detection Method Drawbacks

Combining OpenFlow and sFlow
(Giotis et al., 2014a)

Compares the OF flow statistics collection
with sFlow based collection approach on
entropy based method

Focus on layers (L2-L3), does not look into the
packet contents

Two stage rate based detection
(YuHunag et al., 2010)

Two stage threshold based detection is used Only rely on packet rate threshold, set threshold is
very low;

Traffic Anomaly Detection in SDN
(Mehdi et al., 2011a, 2011b)

Threshold Random Walk, Rate limiting,
Maximum entropy detector and NETAD
algorithms were tested

Does not perform the detection at small time scale

Remote Triggered Black Hole (RTBH)
(Giotis et al., 2014b)

Uses bidirectional count sketch algorithm and
asymmetric communication pattern to detect
the attacks based on threshold

Reliance on BGP protocol impacts the exchange of
incidence report between domains

NetFuse (Wang et al., 2013) Uses multi dimensional flow aggregation to
detect and safeguard the network from traffic
overloading

Configuration of messages between the controller
and data plane is not considered

Radware (McGillicuddy, 2013) Makes a baseline profile of network traffic and
then monitors the network for anomalies

Does mention how security alerts are exchanged

StateSec (Boite et al., 2017) Uses entropy based algorithm for detecting
DDoS attacks and port scanning

Does not provide any implementation of port
scanning attack

dictability of distribution. Abrupt variations in the measured entropy
enable detecting anomalies based on the traffic features. The authors
claim that this mechanism can be used to detect port scanning attack;
however, they do not provide any implementation of that.

Industrial solutions have also been proposed to detect the attacks.
Radware (McGillicuddy, 2013) has developed DefenseFlow a solution to
detect the Distributed Denial of Service (DDoS) attacks. The application
maintains a baseline profile of the network traffic and then monitors
the real-time traffic for DDoS attacks. It relies on behavioral parame-
ters such as packet rate, connection rate, bandwidth, connection distri-
bution and average packet size, etc. Upon detecting an attack, it noti-
fies the controller to reroute the attack traffic to specialized devices
deployed in the network to process the traffic.

Table 1 shows the entropy and threshold based DDoS detection
applications deployed in SDN, including their methodology and draw-
backs. The detection method describes the mechanism used to detect
the attack. Drawbacks specifies the limitation of the mechanism.

3.2.2. Machine learning based detection
Peng et al. (2018) proposed a method for detecting anomalous flow

relying on SDN technology. In this mechanism, the flow collection mod-
ule of the SDN controller gathers the flow table information from the
switches and extracts different features of the flow. Then, anomaly
detection mechanism processes the flow features and performs the flow
classification by means of the DPTCM-KNN algorithm. However, in the
proposed mechanism, the controller collects flow statistics from the
switches in every 10 s, which can cause processing overhead on the
controller.

In Meng et al. (2018), the authors proposed a trust-based approach
based on Bayesian inference to identify malicious devices in a health-
care environment, by leveraging both packets’ status and device profile.

The lightweight DDoS detection using OpenFlow proposes to use
Self Organizing Maps (SOM) to detect attacks (Braga et al., 2010). The
authors used SOM, which is an unsupervised neural network method,
to classify the network traffic as normal or abnormal. In this mecha-
nism, an SDN controller periodically collects the traffic statistics from
the switches. It extracts the features (e.g, average of packet per flow,
average of bytes per flow, average duration per flow) from flow entries
of all switches, and then the extracted features are forwarded to the
classifier module for further processing. The classifier module analyzes
whether traffic is legitimate traffic or DDoS flooding traffic. However,
the framework depends on the flow statistics from all the OpenFlow
switches in the network, which may cause some processing overhead at
the controller.

Xie et al. (2018) surveyed how machine learning algorithms are

applied in SDN, from the perspective of security, resource optimiza-
tion, traffic classification and Quality of Service (QoS) prediction. The
authors argue that the machine learning techniques can bring intel-
ligence to the SDN controller as it enables the SDN controller to
autonomously learn to make optimal decisions to changing network
environments. Different types of machine learning algorithms and their
applications are presented in the paper.

In Ashraf and Latif (2014) the authors analyzed different machine
learning techniques which can be used to tackle the problems of intru-
sion and DDoS attacks to SDN. The paper provides the pros and cons
of surveyed mechanisms in tackling the intrusion detection problems in
an SDN environment.

Glick and Rastegarfar (2017) studied the traffic flow scheduling
problem in a hybrid data center network. Machine learning methods
are used to perform elephant flow traffic classification at the boundary
of the network. Classification at the edge of the network reduces the
burden on the SDN controller and achieves the scheduling with mini-
mum number of configurations. However, it does not provide network
wide large scale data extraction and management across distributed
data plane, with many switches and controller.

EUNOIA (Song et al., 2017) is a threat aware system to perform
detection and make response to attacks in SDN. The framework is com-
posed of data preprocessing, predictive data modeling, decision mak-
ing and response system. To select appropriate feature sets, a forward-
feature selection mechanism is used by the data preprocessing module.
Then, random forest and decision tree algorithms are used by predic-
tive data modeling module to detect suspicious and malicious activi-
ties. Depending on the alerts, the decision making and response mod-
ule compute the routing path and install the flow rules for different
flow types. The experimental results show that with the forward fea-
ture selection approach, the proposed framework is able to reduce the
data preprocessing time and maintain high detection accuracy. How-
ever, it reports that when seven hosts send 1 GB of traffic to a target,
it takes several thousand seconds to process and select the routing path
for the traffic. That is, scalability is a major concern for this framework.

ATLANTIC (da Silva et al., 2016) is a management framework to
perform the task of anomaly detection, classification and mitigation
in SDN environment. It performs the anomaly detection and classifica-
tion in two phases: (1) a lightweight phase, in which low computation
mechanisms are applied to spot suspicious and malicious flows, and
(2) a heavyweigth phase, where the support vector machine is used to
classify the abnormal flows. However, for this method, the controller
suffers the overhead of polling all the switches for the statistics.

In Niyaz et al. (2017), the authors proposed a deep learning based
DDoS detection system for SDN environment. Stack autoencoder based

93



R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Table 2
Machine Learning based Detection Applications over SDN.

Detection Application Detection Method Drawbacks

DPTCM-KNN (Peng et al., 2018) Flow classification is performed using
DPTCM-KNN algorithm

Collects the flow statistics every 10 s from all the
switches which can overload the controller

Lightweight DDoS Detection
(Braga et al., 2010)

Self-organizing map with traffic features is
used to detect the attack

Traffic statistics is collected from all the switches,
overload the controller

Survey on ML Technique in SDN
(Xie et al., 2018; Ashraf and Latif, 2014)

analyzes different machine learning
techniques applied for intrusion and DDoS
attacks to SDN

–

Flow Scheduling (Glick and Rastegarfar,
2017)

Neural network method is used to perform
flow classification for scheduling

Detailed algorithm and implementation is not
provided

EUNOIA (Song et al., 2017) Is a threat aware system for detection and
mitigation

Lack scalability with large number of hosts and
traffic

ATLANTIC (da Silva et al., 2016) management framework to perform the task
of anomaly detection, classification

Processing overhead on the controller because of
polling all the switches

Deep Neural Network Approach (Niyaz et
al., 2017; Tang et al., 2016)

Neural network algorithms are used to
perform detection and classification of flows

Processing overhead on the controller because of
polling all the switches

ATHENA (Lee et al., 2017a) Offers API for implementing different
anomaly detection mechanisms

Lack adaptive measurement for resource
optimization

deep learning approach and softmax classifier for unsupervised learn-
ing and classification has been developed, respectively. The experimen-
tal results show that the 5-class classification of the NSL-KDD dataset
produced an f-score of 75.76 percent and accuracy of 69 percent.
However, as every packet has to be collected for extracting features,
this approach may limit the performance of the controller in large
networks.

Tang et al. (2016) presented a deep neural network approach for
conducting intrusion detection in an SDN environment. The authors
designed a deep neural network with an input layer, three hidden layers
and an output layer. In the proposed system, the controller collects the
flow statistics from all the switches in the network and forwards it to the
detection module for analysis and detection. The experimental results
report an accuracy of 75.75 percent using the NSL-KDD dataset.

Lee et al. (2017a) proposed a framework called Athena for scal-
able anomaly detection using SDN. The authors argue that prior studies
mostly deploy the detection mechanism at the egress boundaries in the
network, but did not consider the network wide deployment with many
switches and instances of controller. In addition, they mainly focused
on applications designed for specific suspicious and malicious activ-
ities. To mitigate this challenge, Athena provides an API for imple-
menting a wide range of anomaly detection applications across phys-
ically distributed control and data plane. It abstracts a complex data
abstraction mechanism, reducing the programming effort needed to
implement anomaly detection mechanism. Moreover, it offers a wide
range of network features and detection mechanisms for deployment
in large-scale SDN networks. Furthermore, it avoids the need for spe-
cialized hardware for the deployment of detection mechanisms. How-
ever, Athena does not provide adaptive measurement for resource
optimization.

Table 2 shows the machine learning based DDoS detection appli-
cations deployed in SDN, including their methodology and draw-
backs. Detection methodology describes the approach used to detect
the attack. Drawbacks specifies the shortcomings or limitations in the
mechanism. As shown in Table 2, most mechanisms may cause process-
ing overhead on the controller and lack scalability in terms of network
wide deployment. ATHENA (Lee et al., 2017a) tries to overcome this
limitation but it lacks adaptive measurement for resource optimization.

3.3. Vulnerability detection

A thorough vulnerability assessment of SDN components is required
because of increasing interest in the deployment of SDN. It helps under-
stand the various attack surfaces in various components of SDN. In this
regard, STS (SDN Troubleshooting System) (Scott et al., 2014) intro-

duced a fuzzing technique which randomly injects events like link fail-
ures or packets into a network and finds seven new bugs in five different
types of SDN controllers. The main focus of STS is identifying the mini-
mal causal sequence associated with a bug.

Lee et al. (2017b) presented a framework called DELTA for vul-
nerability assessment in SDN environment. The framework offers an
automated vulnerability assessment in SDN for diverse attack scenar-
ios. The authors argue that prior studies provide limited coverage of
the SDN attack surface, as they generally depend on specific SDN
elements or network environments. To overcome this problem, the
authors used a blackbox fuzzing technique to detect unknown vulnera-
bilities in an SDN environment. Blackbox fuzzing technique randomizes
message-input values to detect vulnerabilities. However, such random
fuzzing neither considers the message structure nor protocol seman-
tics. Moreover, it mainly focuses on SDN controller’s northbound inter-
face without considering the vulnerabilities in the southbound inter-
face.

OFTest (Floodlight Project, 2016) and FLORENCE (Github -
snrism/florence-dev, 2016) test OpenFlow switches using manually
written tests to check the conformity to openflow specification. In par-
ticular, FLORENCE tests 18 different scenarios and OFTest covers a few
hundred. However, these tools do not consider the controller, that is,
they are unable to find bugs and attacks in the controller. Furthermore,
test cases are designed manually, hence it is difficult to evaluate the
coverage of test cases systematically.

Yao et al. (2014) introduced a formal model and blackbox test-
ing approach for SDN data plane. The authors proposed a model
of pipelined extended finite state machine (Pi-EFSM) to define
multiple-level pipeline of SDN data plane. The hierarchical test-
generation strategy could reduce state space explosion to some
extent. However, this tool does not consider the vulnerabilities in the
controller.

BEADS (Jero et al., 2017) is a framework which automatically gen-
erates test cases and find attacks in an SDN environment. The frame-
work decouples the attack strategy generation from the testing of a
strategy in the SDN environment. It automatically generates and tests
thousands of cases comprising of malicious switches which do not com-
ply with the OpenFlow protocol and malicious hosts which do not
obey the ARP protocol. The framework combines the technique such
as byzantine fault injection, semantically aware test case generation
and black box testing to evaluate the SDN environment. The frame-
work does not need the code of switches or controller as required by
most existing testing tools on SDN. Moreover, it can test controller
algorithms like routing, topology detection, and flow rule manage-
ment.

94



R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Table 3
Vulnerability detection application in SDN.

Vulnerability Detection Application Methodology Drawbacks

STS (Scott et al., 2014) Randomly injects events and packets into
network to find bugs

Mainly focuses on testing paths of SDN data plane

DELTA (Lee et al., 2017b) Uses a blackbox fuzzing technique to detect
unknown vulnerabilities in SDN

Mainly focuses on controller’s northbound
interface, does not consider the vulnerabilities in
southbound interface

OFTest (Floodlight Project, 2016) Manually written blackbox testing approach is
used

Does not consider the controller in the test cases

FLORENCE (Github - snrism/florence-dev, 2016) Manually design the test cases to check the
conformity to openflow specification

Does not consider the controller in the test cases

Pi-EFSM (Wang et al., 2013) Uses formal model to define multiple-level
pipeline of SDN data plane

Does not include controller in the scenario

BEADS (Jero et al., 2017) Uses byzantine fault generation and blackbox
testing approach to generate the test cases

The method is mainly designed to detect bugs in
the control plane

Table 3 shows the vulnerability detection mechanisms based on
SDN, including their methodology and drawbacks. We found that most
mechanisms could perform the vulnerability detection either in the con-
trol plane or in the data plane.

3.4. Attack mitigation

The programmability and logically centralized controller of the SDN
is well suited for mitigating attacks in the network. Flow rules in the
switches can be modified on fly for mitigation purpose. Moreover, secu-
rity alerts can be shared between different domains to mitigate the
attacks in a collaborative manner. Recently, there have been some ini-
tiatives to design mechanisms for effectively mitigating attacks using
SDN.

In Drawbridge (Li et al., 2014), the authors introduced a framework
for mitigating attack traffic in the ISP network. The authors argue that
the customers can subscribe to traffic engineering services provided by
ISPs. It relies on the assumption that the customer’s controller can share
the mitigation rules with the ISP’s controller for the deployment. The
main aim of the framework is to avoid the unwanted dropping of cus-
tomers’ traffic by their ISP because of congestion. In the framework,
detection is performed by the end-hosts to share the rules with the ISP
controller for mitigation. Upon receiving the rules, the ISP controller
checks the validity of the rules before deploying them in its switches.
The framework enables the customers to be adaptive in dealing with
the dynamic traffic.

The system introduced by SENSS (Yu et al., 2014) offers an interface
to request for attack mitigation. Upon detection of attack by the victim
network, it sends a message to the ISP with the details of the traffic and
its route. The victim can ask the ISP to filter or modify routes of the
attack traffic coming to its network. The important features of SENSS
are summarized as follows:

• The SENSS offers a system to allow the victim to directly request
for the security services such as mitigation from remote ISPs. Victim
requests the ISP for mitigating the traffic which belongs to the vic-
tim’s address space to avoid the conflict with different customers of
the ISP;

• In the framework, the ISP provides an interface for victims to request
for the mitigation services such as traffic filtering, rerouting from
ISPs, etc,

• Moreover, victims can request multiple ISPs to traceback the source
of the attack and perform the mitigation. However, this framework
requires multiple ISPs to collaborate with each others.

The Bohatei (Fayaz et al., 2015) architecture leverages SDN and
network function virtualization (NFV) capability for DDoS defense. In
this architecture, the authors leveraged the NFV approach to instan-
tiate the defense VM (Virtual Machine) at the required location in

the network. The architecture can dynamically steer traffic towards
instantiated VMs in the network. It offers an ISP centric deployment,
where an ISP provides DDoS-defense-as-a-service to its customers. In
this architecture, the ISP deploys some anomaly detection systems to
detect attacks. Upon detecting attacks, an estimation is performed for
the suspicious traffic. The resource manager module in the architec-
ture uses the estimates to decide the type, number and location of
VMs to be instantiated. It optimizes the network resources using two
algorithms: (1) data center selection algorithm; (2) and server selec-
tion algorithm in the data center. The data center selection is a greedy
algorithm that selects the data center for routing of suspicious traf-
fic. The server selection algorithm tries to assign the servers with
higher capacities to process the suspicious traffic in the selected data
center. Then, forwarding rules are deployed in the switches to for-
ward the traffic. The experimental results showed that the system is
able to handle attacks of hundreds of Gbps. It enables to mitigate
the DDoS traffic in less than 1 min. However, this framework can
cause processing overhead on the ISP side, since it requires the ISP to
perform the detection process on behalf of their customers. In prac-
tice, ISPs often have hundreds and thousands of customers to man-
age.

Sahay et al. (2015), proposed a framework for collaborative DDoS
mitigation. The proposed framework allows the customers to request
DDoS mitigation service from their ISP. Upon request of the customers,
the ISP can redirect the suspicious and malicious flows towards the
middleboxes for further processing. However, the framework assumes
that the SDN controller of the customer and the ISP can securely com-
municate with each other. In addition, the authors did not provide any
implementation of the framework.

The ArOMA (Sahay et al., 2017a) provides a framework for mit-
igating DDoS attacks in an automated way. It leverages the central-
ized manageability and programmability features of SDN to automati-
cally mitigate DDoS attacks in the ISP network. The framework bridges
the gap between different security functions ranging from monitor-
ing to detection and to mitigation. The framework enables the col-
laboration between ISPs and their customers on DDoS mitigation. The
authors argue that the attack targets on the customer as well as the
ISP by traversing the traffic through the ISP network. To mitigate this
issue, the proposed framework offers a security API at the ISP con-
troller, so that the customer can share the security alerts with the
ISP for mitigation. Moreover, the framework provides a controller-to-
controller communication for mitigating the attacks in a collaborative
way. Then, the authors present an implementation and evaluation of the
framework.

In Wichtlhuber et al. (2015), the authors presented an architecture
based on SDN for collaboration between the Internet Service Providers
(ISPs) and content distribution network (CDN) to manage high volume
flows such as video traffic. In the architecture, the ISP deploys an appli-

95



R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Table 4
DDoS mitigation applications over SDN.

Attack Mitigation applications Mitigation Method Mitigation Location Shortcomings

Drawbridge (Li et al., 2014) sharing of mitigation rules by customer
with their ISPs

ISP of customer or upstream ISP No Implementation

SENSS (Yu et al., 2014) Provides an interface on the SDN
controller which enables the victim to
request for mitigation and rerouting
service from the ISPs

Upstream ISP of victim network No details given how alerts are shared

Bohatei (Fayaz et al., 2015) Instantiate the VMs in the network to
steer the suspicious traffic for processing

ISP network Requires ISP to perform detection on
behalf of the customers, causes processing
overhead

Sahay et al. (2015) Collaborative framework for DDoS
mitigation between the ISP and the
customer

ISP network Does not provide any evaluation

ArOMA (Sahay et al., 2017a) Customer shares the alert with the ISP for
mitigating attack in the ISP network

ISP network considers a scenario of single customer
and its ISP

CDN-ISP Collaboration
(Sahay et al., 2017a)

ISP offers an application for information
with CDN to manage the long flows

ISP network Performance of the algorithm deciding on
the migration of connections were not
evaluated

DDoS Blocking Application (Lim
et al., 2014)

It provides redirected address to server
which is used to redirect the legitimate
connection upon detection of attacks

Protect the server from botnets by
redirecting traffic from ingress switch

Bots do not perform IP spoofing

Automated Malware Quarantine
(AMQ) (Open Networking
Foundation, 2012)

Upon malware detection isolates the
infected devices in the network

It is deployed at the edge of the network No detail given

cation at its controller, which can be used by the CDN, to access to the
hidden information such as topology and load information in the ISP’s
network for optimizing and selecting QoS for the end-users. The mech-
anism allows the ISP to manage the rising amount of traffic emanating
from CDNs to reduce the congestion in its network.

The DBA (Lim et al., 2014) architecture presented an SDN-based
DDoS blocking technique to mitigate botnet based attacks. In this mech-
anism, the authors aim to protect a server from botnets. The server
under protection builds a secure communication channel with the DDoS
Blocking Application (DBA) deployed at the controller. Upon detecting
an attack, server notifies the DBA about the attack. Then, the DBA pro-
vides a redirected address to server. The DBA maintains a pool of public
IP addresses which can be used for redirection. Upon receiving the noti-
fication from the server, the DBA application provides a new address to
the server. Then, the server notifies the legitimate clients to use the new
address to access the service. It is not mandatory that the new address
should be physically replicated, but can be in the same subnet. Redi-
rected address information provided to the clients requires clients to
perform some computation to protect these services from bots. In the
architecture, the authors used CAPTCHA (Ahn et al., 2003) to protect
the services running at the server. However, in their evaluation, bots
are poorly programmed in this mechanism as it may not be the case in
the practical scenario. Moreover, they assumed that in this architecture,
the bots cannot perform an IP spoofing.

Open Networking Foundation (ONF) (Open Networking Foundation,
2012) has discussed the advantages of SDN in providing security in the
data center. It leverages centralized intelligence and global network vis-
ibility of SDN for mitigation. It provides a use case where an Automated
Malware Quarantine (AMQ) system detects and isolates the infected
and insecure network devices before it can affect the network. Upon
detecting an attack, it dynamically configures the policies for mitiga-
tion. It allows the network devices to join the network after attack
is mitigated. However, in the traditional network, AMQ is deployed
in the vendor specific hardware devices, which requires an expert to
configure.

3.5. Some insights and lessons learned

The above related studies reveal that the SDN technology can
help ease the mitigation of cyber attacks. It enables the collabora-
tion between different network domains for mitigating attack traffic by

deployig security API at the SDN controller. Different domains can col-
laborate with each other for mitigating attacks without revealing their
topology. Dynamic configuration provided by the SDN, offers the miti-
gation application to configure the rules to either block or redirect the
traffic towards the middleboxes for processing. Moreover, automation
achieved by the DDoS mitigation application using SDN assists can pro-
vide a quick recovery from attacks. However, SDN controller also opens
several new avenues for attackers. To mitigate this issue, security alerts
should be shared between different domains in a secure way. Moreover,
there should be good authentication schemes in place to authenticate
the users who are sharing the alerts. Conflicts among rules should be
resolved before deploying the rules for mitigation. Table 4 shows the
DDoS mitigation applications, relevant mitigation method, mitigation
location and the corresponding drawbacks. As mitigation methods have
already been discussed earlier. Here we mainly describe the mitigation
location and the shortcomings of these applications. (Li et al., 2014),
Bohatei (Fayaz et al., 2015) and SENSS (Yu et al., 2014), Sahay (Sahay
et al., 2015), ArOMA (Sahay et al., 2017a),CDN-ISP (Wichtlhuber et
al., 2015) were deployed in the ISP network of the customers. Draw-
bridge (Li et al., 2014), SENSS (Yu et al., 2014) and Sahay (Sahay et
al., 2015) did not provide implementation details and how alerts are
shared. Bohatei (Fayaz et al., 2015) requires ISP to perform detection
on behalf of its customers which can cause processing overhead at the
SDN controller of the ISP. In ArOMA (Sahay et al., 2017a), mitigation
was performed at the ingress location of the ISP network. However, this
method only considers a scenario of single ISP and single customer net-
work. Automated Malware Quarantine (AMQ) (Open Networking Foun-
dation, 2012), and DDoS Blocking Application (Lim et al., 2014) pro-
vided the mitigation at the ingress point in the network without collabo-
rating with upstream networks. However, in DDoS Blocking Application
(Lim et al., 2014), bots are poorly programmed.

3.6. Traffic monitoring in SDN environment

Generally, in the traditional network, the traffic monitoring appli-
cations are deployed on a separate hardware or require special soft-
ware configuration making it tedious and complex to manage. Also,
precise measurement of traffic matrix in the traditional network is
difficult because of the high number of data plane devices. For this
challenge, it is found that the traffic matrix estimation problem can
be minimized using SDN. OpenTM (Tootoonchian et al., 2010) offers

96



R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Table 5
Traffic monitoring applications over SDN.

Traffic Monitoring Applications Methodology Deployment location Shortcomings

OpenTM (Tootoonchian et al., 2010) provides the traffic estimation for source
and destination pair in a network

Switches closer to destination is used
for querying the flow statistics

Generates traffic matrix for
offline use

OpenNetMon (van Adrichem et al., 2014) It provides monitoring to determine
whether end-to-end QoS parameters are
achieved and forward the input to TE to
compute the paths

Edge switches in the network are
used to collect the statistics

Per flow monitoring and
forwarding rules raise
scalability issue

OpenSAFE (Ballard et al., 2010) Forwards the first packet of flow to the
monitoring application to get the
information about the flow

Middleboxes are deployed in the path
to monitor the traffic

Requires expensive hardware
to perform monitoring

OpenSketch (Yu et al., 2013) Provides 3-stage pipeline (hashing,
filtering, counting) and measurement
library to configure resources for varied
measurement tasks

No details given New protocol in OpenSketch
requires upgrade in network
devices

PaFloMon (Argyropoulos et al., 2012) Provides a slice based monitoring in the
SDN network

No details given It only offers passive
monitoring

a traffic estimation mechanism by leveraging the global visibility of
SDN and flow based operations of the SDN switches. OpenTM pro-
vides a traffic estimation for origin-destination (OD) pairs in the net-
work. Moreover, it relies on the routing information of the SDN con-
troller to intelligently select the switches for querying flow statis-
tics, therefore reducing the load on the switches. It presents five
different strategies to query switches for flow statistics: a) polling
the last switch, b) querying switches in the path of flow uniformly
at random, c) querying switches closer to the destination with a
higher probability, d) round-robin querying, and e) querying the
least loaded switch. The authors found that the querying the last
switch close to the destination could provide most accurate traf-
fic matrix, but it may impose considerable workload on the edge
switches.

In van Adrichem et al. (2014), Adrichem et al. presented an SDN
based application to monitor per flow metrics such as throughput,
delay, and packet loss in SDN networks. OpenNetMon monitors the
end-to-end QoS parameters between pre-defined link to compute appro-
priate paths in the network. It polls edge switches at an adaptive rate
that reduces the network and switch CPU overhead, and minimizes the
number of queries between switches and the controller.

The OpenSAFE (Ballard et al., 2010) architecture introduced a
mechanism to route the traffic to monitoring applications. It leverages
the fact that every first packet of a flow needs to be forwarded to the
controller. Then SDN controller forwards the new flows to the traffic
monitoring applications with an IDS. Moreover, it presents a language
to enable the network administrators to easily manage and update
the monitoring infrastructure. However, OpenSAFE requires expensive
hardware to perform the monitoring.

OpenSketch (Yu et al., 2013) is an SDN-based monitoring mech-
anism, which separates the measurement data plane from the con-
trol plane. It offers a three stage pipeline (hashing, filtering, counting)
which can be implemented with the switches to support different mea-
surement tasks. The control plane provides the measurement library
which automatically configures the pipeline and assigned resources to
the varied measurement task. However, OpenSketch requires to update
relevant network devices, making ISP reluctant to deploy this mecha-
nism.

The Passive Flow Monitoring (PaFloMon) (Argyropoulos et al.,
2012) aims at providing the slice based monitoring in the SDN net-
works. In this mechanism, network is segmented into different slices. It
is motivated by the OFELIA (Openflow in Europe), which is an Open-
Flow testbed in the Europe. The PaFloMon aims to enrich the OFELIA
framework with slice aware monitoring.

Traffic monitoring applications are summarized in Table 5 in addi-
tion to a summary of methodology, deployment location and drawbacks
of these applications.

3.7. Traffic engineering (TE) using SDN

Traffic engineering is very important as it helps in reducing the
impact of congestion caused by attack traffic or overflooding traffic.
In traditional networks, it requires to manually modify the rules or
pre-deploy the rules in network devices for performing traffic engi-
neering. Generally, if the link fails or topology changes, then it takes
much time to converge. It is a very complex task for network oper-
ators. Furthermore, it makes the traffic engineering static in nature.
In summary, the tight-coupling between the control and data planes,
in addition to distributed control, makes the traffic management a
cumbersome task in the traditional networks. However, the decoupled
control and data plane in SDN can enable network administrators to
express traffic engineering policies at the centralized controller. More-
over, network operator can leverage the global visibility of SDN to
monitor the network status in the real time with the purpose of traffic
engineering.

Shu et al. (2016) introduced a framework for traffic engineering
using SDN. The framework comprised of two parts: (a) traffic mea-
surement and (b) traffic management. Traffic measurement mainly
includes monitoring and measuring the network status in real time
for managing and controlling the traffic. The network measurement
parameters include end-to-end network latency, topology connection
status, bandwidth utilization, throughput, packet loss rates, etc. Real-
time network status is depending on the QoS parameters. Based on
the traffic measurement information and different QoS parameters,
network traffic can be scheduled to meet the user’s requirements in
practice.

Cao et al. (2014) proposed a mechanism for offline traffic plan-
ing and online traffic routing in SDN networks. The SDN controller in
the mechanism performs the policy lookup, flow steering, and route
installation. The policy table at the controller determines the logical
sequence of middleboxes for the traffic. The controller maps the logical
sequence of middleboxes to the physical topology. Once the logical to
physical path is mapped, then the SDN controller deploys the rules in
the flow table of switches. The authors also proposed an algorithm for
optimizing the resources such as the middlebox capacity to handle the
estimated traffic. Furthermore, an online traffic steering mechanism is
introduced to steer the flows upon their arrival depending on the policy
requirements. For instance, a storage server in an enterprise network
may require incoming traffic from the outside network to traverse the
firewall, intrusion detection system (IDS) and a network address trans-
lator (NAT). Additionally, the amount of bandwidth needed is also con-
sidered for online traffic steering.

Agarwal et al. (2013) proposed a traffic engineering mechanism
based on SDN by leveraging its characteristics such as logically cen-
tralized controller and global network view. The aim of this mechanism

97



R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

is to dynamically manage the network traffic according to the require-
ments specified by the network administrators. The authors developed
a Fully Polynomial Time Approximation Scheme (FPTAS) to compute
the route for traffic steering depending on the optimization criteria to
improve the bandwidth utilization, as well as to reduce packet losses
and latencies. It considers the partial deployment of SDN switches in
the network to route the traffic.

4. SDN based network and security services

In this section, we investigate the SDN-based network and security
services including middlebox deployment, service chaining of different
middleboxes and security policy management in an SDN environment.

4.1. SDN based middlebox deployment

Middleboxes (e.g., firewalls, NATs, DPI, WAN optimizer, IDS) are
deployed in the network for critical services such as security and load
balancing. But, in the traditional network settings, it requires careful
design of network topology and intensive manual work from network
operators to set up the rules in the middleboxes and in the switches
to steer the traffic through a sequence of middleboxes. However, the
advent of SDN technology provides a promising alternative for steering
traffic through a sequence of middleboxes from a centralized control
point. In this regard, SIMPLE (Qazi et al., 2013) introduced a system
that allows network administrators to specify a policy to route the traf-
fic through a logical sequence of middleboxes. It can be automatically
translated into forwarding rules by considering both the physical topol-
ogy and the middlebox resource constraints. The SIMPLE architecture
has three key components:

1. The resource manager module takes as input a network traffic
matrix, the topology of the network and policy requirements, to pro-
vide a set of middleboxes for processing the traffic.

2. The dynamic handler component correlates the incoming and out-
going traffic from the middleboxes.

3. The rule generation component takes the output from the resource
manager and dynamic handler modules, and generates the rules to
steer the traffic through a sequence of middleboxes.

Dynamic traffic modification performed by middleboxes such as
NAT (Network Address Translator), IDS (Intrusion Detection System),
and DPI (Deep Packet Inspection) causes the policy conflict between
the controller and the data plane. Therefore, it becomes difficult to
integrate the middleboxes in the SDN network. For this issue, FlowTags
(Fayazbakhsh et al., 2014) architecture dynamically inserts a unique
tag in the flow before it is processed by the middleboxes. This dynamic
tag insertion in the flow by the middleboxes ensures: (i) the binding
between the packet and its source, (ii) and it makes sure that the packet
follows the path expressed by the central policy.

In Slick (Anwer et al., 2013), the authors pointed out that, in the
traditional network, security administrators need to plan in advance
the deployment of the middleboxes at some key locations in the topol-
ogy. Because of the static and distributed management, it is difficult
for the network operators to dynamically reconfigure the middleboxes
based on demands. Thus, the network operator needs to over provision
middlebox resources. To handle this problem, the authors proposed a
Slick middlebox architecture. The main objective is to provide a mecha-
nism by which network administrator can easily implement and deploy
policies in the network. In the architecture, single policy is split into
multiple executables that can run on multiple middleboxes. The Slick
framework achieved this objectives by three main modules: (i) a pro-
tocol for coordination between the controller and the middleboxes, (ii)
Single policy is split into multiple executables for deployment on mul-
tiple middleboxes, and (iii) an optimization algorithm at the controller
dynamically deploys the middlebox functions and route the traffic.

4.2. Service chaining

Service chaining is performed to forward the traffic through a set of
middleboxes in the network. It enables the network administrators to
define how to process traffic through a sequence of middleboxes before
reaching the destination. However, in the traditional network, it is dif-
ficult to steer the traffic dynamically for processing through these mid-
dleboxes due to the static configuration.

In StEERING (Zhang et al., 2013), the authors highlighted that
managing middleboxes (also known as inline service chaining), such
as NAT and firewalls, in data center or enterprise network is still a
daunting task. Because the network operators still rely on the man-
ual configurations at the low level to manage these devices, the
whole network is insecure, i.e., can be bypassed by forwarding all
the traffic through middleboxes or installing extra tunnels in the net-
work. For this issue, StEERING allows to steer traffic using poli-
cies that are defined at the SDN controller. The StEERING frame-
work consists of the data plane and control plane modules. The bor-
der switches classify the incoming traffic and forward it towards
the next service in the service chain. Then the core switches in the
network process the traffic depending on the L2 layer. The control
plane of the framework consists of two modules. The first module
is the SDN controller, which manages the switches in the network
and deploys the flow rules in the OF switches. The second mod-
ule is an optimization algorithm running at the controller, which
periodically determines the best locations for the services to be
deployed.

J.Blendin et al. (2014) proposed an SDN based service chaining
architecture. The authors argued that most existing pre-configured and
static service chains relied on fixed hardware and software configura-
tion. While changing existing service chains requires intensive man-
ual work that is time consuming for on-demand services. They pointed
out that dynamic service chaining based on the SDN technology can
improve the situation in two ways. First, service chains can be easily
created from existing service functions. Second, service functions can be
dynamically created in run-time. They then proposed a service chaining
architecture based-on SDN, which consists of three layers: data plane,
control plane, and application plane. The data plane layer contains the
actual OpenFlow switches. The control layer contains the Service Func-
tion Chaining Router (SFCR) which is responsible to deploy the flow
rules. The Service Function Chaining Controller (SFCC) resides at the
application layer and is responsible for controlling all the components
and service instance allocation, and offering high-level API. When a
new flow arrives, it is provided a default service instance by the SFCC.
The SFCC offers high-level API, which enables the network operators to
define, modify and remove the service chains dynamically. The SFCR is
instructed by the SFCC to update the service chain routing by updating
the OpenFlow flow rules at the ingress and egress location of the service
chain.

A dynamic service chaining architecture based on SDN is pro-
posed in Scheid et al. (2016). It enables network administrators to
express policies that govern the chaining of virtualized network func-
tions (VNFs). Depending on the set of available VNFs, the framework
creates a graph that represents the service chaining (SC). Moreover,
this architecture introduces a high-level language to define the policies;
thus, network operators do not need to be familiar with the low-level
programming language to express the policies.

SECaaS framework (Migault et al., 2018) offers security services
collaboration among different administrative domains. It leverages the
SDN and service function chaining to improve the collaboration among
different security service functions (SSF) to mitigate attacks. The frame-
work enables the SSFs from multiple domains to negotiate and dynam-
ically control the amount of resources allotted for the collaboration.
This collaborative framework provides the distributed mitigation for
handling large scale cyber attacks.

98



R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Table 6
Service chaining for security services.

Service Chaining Short description Shortcomings

StEERING (Zhang et al., 2013) allows to chain the middleboxes in the network and steer the
traffic at the granularity of the service provider and traffic
types based on the policies defined at the controller

Does not address the challenges posed by packet
header modification

SDN Service Chaining (Blendin et al., 2014) Offers dynamic service chain and provides the API to add,
remove and modify the service chain

Service instances are isolated in the network;
current network status is not considered for
service function deployment

Policy based Dynamic Service Chaining
(Scheid et al., 2016)

Uses service chaining graphs over policy based management
system to achieve the dynamic service chaining in the
network

Current network status has not been considered
for service chain deployment

SECaaS (Migault et al., 2018) Enables the SSF in different domains to collaborate for
mitigating attacks

Does not have consideration for security rules

Table 6 summarizes different service chaining applications with
their main purpose and shortcomings.

4.3. Security policy management

The centralized control plane in the SDN enables to specify the
high-level policies at the controller, which can be deployed in the
switches dynamically through a southbound API. Low-level implemen-
tation details are abstracted from the network administrator. In this
section, we examine policy based management system using SDN to
protect the network.

Lorenz et al. (2017) summarized how a traditional enterprise net-
work can be extended to integrate the concepts of SDN and NFV. By
taking an example of stateful firewalling, they showed three design pat-
terns for the implementation: controller centric, VNF centric and hybrid
approach. In addition, the authors also provided the pros and cons of
each approach, which can be used as a guideline for the deployment of
SDN and NFV appliances in the traditional enterprise networks.

The PolicyCop (Bari et al., 2013) leverages the programmability and
logically centralized controller features of SDN to achieve dynamic con-
figuration in their autonomic QoS policy enforcement framework. It
offers an interface for specifying QoS policies and leverages the south-
bound API of SDN controller to enforce policies. The advantages pro-
vided by the PolicyCop over the traditional autonomic QoS framework
are listed below:

1. It offers per flow control and dynamic flow aggregation in the net-
work contrary to aggregation based on Type of Service (TOS) field
in the traditional network.

2. It can specify new traffic classes at run-time without halting the
network services.

3. Traditional QoS mechanisms require a number of different proto-
cols for performing routing, MPLS label exchange etc. Differently,
PolicyCop can tackle this problem by using OpenFlow protocol for
communication between network services and data plane devices.

However, PolicyCop does not provide any grammar to express the high-
level policies. It mainly monitors the network and performs the dynamic
configuration if the network status changes.

The HACFlow (Rosendo et al., 2017) is an autonomic policy
based framework for access control management in SDN networks. It
addresses the challenges involving a large set of access control rules,
detecting conflicting policies, specifying priorities, delegating rights
and reacting to against network status changes. It aims to simplify
and automate the network management tasks, allowing network admin-
istrators to govern the network by specifying dynamic, fine-grained,
and high-level access control policies. In the framework, policies are
expressed using Organization Based Access Control model (OrBAC)
(Kalam et al., 2003).

The Hierarchical Flow Table (HFT) (Ferguson et al., 2012) frame-
work defines policies in hierarchical way to specify the context, in
which network resources can be used among multiple entities. In HFT,

policies are expressed in a tree-like structure, and each node in the tree
can decide how to perform on each packet. Policy nodes contain a set
of policy atoms, which is comprised of match and action pair. The main
idea of this work is to resolve the conflicts among the policies rather
than translating the high-level policies into low-level rules. To resolve
conflicts, it relies on a user defined conflict resolution operator.

The policy refinement toolkit (Machado et al., 2015) allows net-
work administrators to express Service Level Agreements (SLAs) with-
out delving into low-level configuration details of network devices. The
main focus is to translate the high-level objectives defined in the SLA
into low-level rules. The toolkit automatically translates the high-level
policies into low-level rules for deployment in the network devices. The
policy refinement can be achieved in two stages: (a) in the first phase,
SDN controller gathers the network informations (e.g., latency, jitter)
from the data-plane and stores them in the policy repository. (b) In the
second stage, the framework translates the high-level SLAs into low-
level rules for deployment. Depending on the informations collected in
the first phase, the framework provides the best possible configuration
for the high-level SLA. The framework offers the best possible config-
uration for the high-level SLA depending on the information collected
from the data plane in the first phase. However, in this framework, it is
not clear how the network elements are configured beyond the policy
path computation.

Gao et al. (2015) introduced an SDN-based policy deployment
framework. It is a three-layer framework that offers a mechanism for
policy deployment. The main components of the framework are: (i)
policy engine; (ii) job scheduler; and (iii) device manager. The pol-
icy engine takes the high-level policies and network topology as inputs
and translates the policies into specific low-level device configuration.
The job scheduler maintains the real-time configuration of data plane
devices. The device manager module is responsible for the deployment
of low-level rules in the data plane devices. However, it did not con-
sider the different classes of policies and conflict that can arise in policy
enforcement.

The EnforSDN (Ben-Itzhak et al., 2015) architecture offers a mech-
anism to integrate the network appliances such as firewall, Intrusion
Prevention System (IPS), and IDSs into SDN networks. The main pur-
pose is to centralize the policy resolution layer and route the flow
through appropriate network appliances such as firewall, IDS, etc.
In the architecture, policy resolution layer is decoupled from policy
enforcement layer and is centralized at the controller. High-level poli-
cies are expressed at the policy resolution layer. An application called
EnforSDN manager is deployed at the controller, which can be used to
express the high level policies. The SDN controller configures the data
plane devices to steer the flow through appropriate instances of net-
work appliances in the network. EnforSDN framework can efficiently
route the traffic through the network by avoiding the unnecessary pro-
cessing through the middleboxes.

Tripathy et al. (2016) proposed a policy management framework
for policy enforcement after detecting and resolving conflicts by a certi-

99



R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Table 7
SDN-based policy management.

Policy Management Short description Policy Language

Hierarchical Flow Table (HFT) (Ferguson et al., 2012) provides a framework to realize the hierarchical
policies in the SDN

Policies are defined as a tree in the
framework

Policy refinement toolkit (Machado et al., 2015) facilitates to define the SLA without knowing the
implementation details

Controlled natural language is used to
define the high-level policies

EnforSDN (Ben-Itzhak et al., 2015) Decouples policy resolution layer from policy
enforcement layer

No policy specification language is given

Computer Network defense Policy (Gao et al., 2015) provides policy based network management to
achieve security in the network

Provides Computer Network Defense
Policy (CNDP) policy specification

Policy Management Framework (Tripathy et al., 2016) Provides security, correctness and adaptability for
on-demand changes in the policies and ensures
that policies are enforced by a certified server and
conflicts are resolved before enforcement

No policy specification language is given

PolicyCop (Bari et al., 2013) Provides policy-based QoS management using SDN No policy specification language is given
PbSA (Karmakar et al., 2016) Specify path and flow based security policies to

protect services in SDN
Policies are defined in JSON format

Adaptive Policy Management (Sahay et al., 2017b) Policy framework to protect the ISP as well as its
customers

Policies are defined in CNL format

HACFlow (Rosendo et al., 2017) Provides an autonomic policy based framework
for access control management in SDN networks

Access control policies are defined using
OrBAC model

fied server. The authors argue that most of the frameworks (Ben-Itzhak
et al., 2015; Machado et al., 2015; Bari et al., 2013; Ferguson et al.,
2012; Gao et al., 2015; Porras et al., 2012) could not address the threats
that arise from application layer because of compromised server. They
also found that these existing frameworks did not consider different
classes of policies. Furthermore, there is a lack of consistency checking
between the updated policy rules and the existing flow rules. To miti-
gate this issue, FortNOX introduced a mechanism for conflict resolution,
role based authorization, and rule set reduction for NOX controller (Por-
ras et al., 2012). The proposed framework provides three network func-
tions: a) trust verify, b) policy conflict resolve, and c) policy consistency
checking. Trust verify function identifies the compromised applications
and applies the appropriate measures for control. Policy conflict resolve
function can analyze the conflicts among the policies and resolve them
for deployment. Policy consistency function checks whether the existing
flow table entries in the switches comply with the high-level policies.
These functions guarantee security, correctness and adaptability for on-
demand changes in the policy rules. The proposed architecture ensures
the policies are enforced through certified server.

The PbSA (Karmakar et al., 2016) is a policy based security frame-
work aiming to secure the end services across multiple domains in an
SDN environment. The authors describe a policy language to define
security and network policies that are important for protecting SDN ser-
vices and communications. For policy specification, the framework con-
siders variety of attributes associated with users, devices and context
information, such as location, routing information, services accessed as
well as security attributes associated with the switches and the con-
trollers in different domains. An important aspect of this framework is
to specify path and flow based security policies, which are important
for protecting end to end services in SDN.

In Sahay et al. (2017b), the authors proposed a policy management
architecture for securing end user network. It offers a policy language
based on controlled natural language (CNL) (Kuhn, 2014) to express
the high-level security and network policies. The CNL based policy lan-
guage allows to express the policies in human understandable format.
The framework enables the multiple customers to share security events
with their Internet Service Provider (ISP) for appropriate actions in the
ISP network. The security and network policies should consider the cur-
rent network status to offer reaction policies, like the context of end
user and service level agreement (SLA) with end user.

Table 7 provides a short description of SDN-based policy manage-
ment frameworks and policy language that they can support. Table 7
also shows that only (Ferguson et al., 2012; Machado et al., 2015; Gao
et al., 2015) provide a grammar to define the high-level policies.

5. Smart grid security using SDN

Communication infrastructure in smart grid is comprised of hetero-
geneous devices such as controller, sensors and actuators that exchange
real time information for monitoring the status of grid infrastructure.
In the existing power grid infrastructure, the communication network
relies on the traditional network architecture which makes it static
in nature. In this traditional communication infrastructure, it is very
difficult to get the real-time network status for self-healing and adap-
tive resource scheduling. Due to the lack of unified control, it is dif-
ficult to implement fine grained traffic monitoring and access control
(Zhang et al., 2016). Furthermore, in case of network fault or conges-
tion network operators are required to manually configure the network-
ing devices to adapt the network according to the current status. Partic-
ularly, reliance on manual configuration can increase the implementa-
tion complexity and time consumption to adapt the network according
to requirements. Recently, there have been some research efforts trying
to improve the management of communication infrastructure of grid
using SDN (Aydeger et al., 2016; da Silva et al., 2015; Nobakht et al.,
2016; Gyllstrom et al., 2014).

An SDN-based smart grid infrastructure is shown in Fig. 2. As we can
see, an SDN controller in the smart grid architecture provides an addi-
tional control layer, which offers a platform to deploy new algorithms
and grid applications for spreading the power grid data. It also enables
configuring the data plane by deploying rules in switches and routers.
As shown in Fig. 2, in the SDN-based smart grid environment, SCADA
and SDN controller can collaborate with each other, which can ease the
management of the network. SDN controller manages the cyber or net-
work layer of the smart grid infrastructure. Moreover, the SCADA con-
troller analyzes the data received from the power grid layer and reports
any anomalous deviation to the SDN controller. This can configure the
rule in the switches to mitigate the cyber attacks or to redirect the traf-
fic through another path. Fig. 2 shows that the switches or routers are
also connected with the power grid infrastructure. If there is a network
failure or congestion in some parts of the infrastructure, then based on
the decision from the SCADA controller, the SDN controller can config-
ure the rules in the switches to divert the traffic to another power grid
station. Global visibility of the SDN controller offers the detailed traffic
monitoring and facilitates the deployment of fail-over communication
paths.

Nobakht et al. (2016) proposed an intrusion detection and mitiga-
tion framework, called IoT-IDM, by using OpenFlow to protect smart
home from network attacks. Detection unit in the IoT-IDM framework
examines the network traffic for suspicious and malicious activities. If

100



R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Fig. 2. Smart grid Architecture.

it detects any suspicious or malicious traffic, it can send all the relevant
information to the mitigation engine which is responsible for enforc-
ing the countermeasure. Modular architecture of the framework allows
to deploy any machine learning algorithms for detecting malicious
traffic.

da Silva et al. (2015) presented a mechanism to handle anti-
eavesdropping in SCADA systems using SDN. It relies on redundant net-
work connectivity to distribute the traffic across multiple paths. Each
path only transmits a portion of the packets towards end hosts to thwart
the interception of flows by unauthorized hosts.

In Aydeger et al. (2016), the authors introduced an architecture
based on SDN for resilient communication in smart grid network. They
proposed to use multiple wireless links for communication which can
be used during emergencies. In the architecture, an SDN based com-
munication network is deployed within and among the substations for
communication. Each substation maintains an SDN switch which can
be configured by the global SDN controller at the control center for
forwarding the traffic among different substations. Moreover, each sub-
station has a local SDN controller, which is responsible for controlling
the traffic within the substation.

The authors in Gyllstrom et al. (2014), introduced a link fail-
ure detection, reporting and recovery mechanism based on SDN for
smart grid communication network. They presented a set of algo-
rithms called APLESEED, which could run at the SDN controller with
the aim to detect a link failure, compute backup paths and quickly
deploy the rules in the data plane. The objective of APLESEED is
to compute the optimal path after the link failure in the network.
They also presented a local optimization mechanism to create min-
imal sets of forwarding rules to reduce the forwarding state in the
switches.

Bhardwaj et al. (2018) presented an architecture ShadowNet to
defend against application-level IoT-DDoS attack by leveraging the edge
computing infrastructure. The architecture makes the edge as the first
line of defense against IoT-DDoS attack. The edge functions collect the
information about the incoming traffic and send those information to
a nearby detection service. It expedites the detection and mitigation of
such attacks by limiting their impact.

Rubio-Hernan et al. (2018) proposed a cyber physical architecture
by leveraging the characteristics of SDN. The architecture combines
the control-theoretic solutions together with the SDN technology to
tackle the threats to cyber physical system for improving the resilience.

The architecture allows cooperation between traditional Feedback Con-
trollers and SDN devices to mitigate related threats.

Aydeger et al. (2015) presented an approach to improve the
resilience by utilizing SDN for redundant communications in smart grid
environment. If a wired link is failed, then the SDN controller makes the
wireless link up. The authors illustrated their approach using mininet
with ns-3. In the demo, the authors purposely dropped the wired link
and illustrated that the SDN controller could update the flow table to
enable the wireless link as a backup path to achieve resilience. This
work aims to connect the Mininet (Lantz et al., 2010) with the ns-3 to
show the proposed scenario.

The Flow Validator (Kumar and Nicol, 2016) is a framework which
leverages the north bound API of SDN to gather information about the
current state of the SDN. Depending on this information, Flow Validator
performs fast failover to achieve the resilience in smart grid communi-
cation.

An SDN based architecture, called ARES, is introduced in Lopes et
al. (2017), for autonomic and resilient communication in smart grid.
The framework introduced a new API SCADA-NG at the management
layer. This API is responsible for controlling, configuring and monitor-
ing all the information in smart grid environment. Whenever a failure
occurs, the backup path is automatically chosen. Moreover, the frame-
work presented an algorithm to calculate the shortest path to all possi-
ble source-destination pairs in the network. The authors implemented
the framework using mininet and RYU SDN controller. In comparison to
other proposals, it shows the maximum recovery time of 610 𝜇s, which
is a significant improvement.

In Al-Rubaye et al. (2018), the authors introduced an architecture
by leveraging the SDN paradigm to improve resilience in the smart grid
network. The authors proposed a fault tolerance approach in which
the architecture evaluates both the end-to-end delay and the data flow
traffic under the presence of faults. Moreover, the authors presented
an algorithm, which runs on the SDN controller to compute the path
between SDN controller and switches. The experimental results show
that the proposed architecture incurs low end-to-end delay in compari-
son to traditional network settings.

5.1. Some insights and lessons learned

In this section, we have provided a detailed description of mech-
anisms proposed to secure smart grid environment using SDN tech-

101



R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Table 8
SDN-based smart grid infrastructure.

Smart Grid Main Purpose Simulation Tool

IoT-IDM (Nobakht et al., 2016) provides a framework using OpenFlow to protect
smart home from network attacks

Floodlight controller used in mininet for
implementation

Anti-eavesdropping in SCADA (da Silva et al., 2015) Distribute the traffic in the network through multiple
paths to defend against eavesdropping

POX controller is used in mininet for
implementation.

SDN based Inter Substation framework (Aydeger et al.,
2016)

Relies on redundant links to achieve resilience OpenDaylight controller used in mininet
for implementation

APPLESSED (Gyllstrom et al., 2014) Proposed a set of algorithm to detect link failure,
computing back up paths, and installation of backup
paths

Mininet and POX controller

ShadowNet (Bhardwaj et al., 2018) Introduced an architecture to defend against
application-level IoT-DDoS attack by leveraging the
edge computing infrastructure

Created the testbed using GENI platform

Flow Validator (Kumar and Nicol, 2016) Presented an architecture for fast failover to achieve
the resilience in smart grid communication

Mininet

ARES (Lopes et al., 2017) Main idea is to achieve autonomic, resilient
communication and fast failover in smart grid

Mininet

Rubio-Hernan et al. (2018) Combines the control-theoretic solutions together with
the SDN technology to tackle the threats for improving
the resilience.

Mininet

Aydeger et al. (2015) Improves the resilience by utilizing SDN for redundant
communications in smart grid environment.

Mininet and NS-3

IIOT (Al-Rubaye et al., 2018) Improves the resilience by utilizing SDN for redundant
communications in smart grid environment.

OpenDaylight controller, Openstack

nology. The literature review reveals that using SDN in smart grid
communication infrastructure can help ease the network management
tasks. It allows deploying additional functionalities in the communi-
cation devices to deal with the failures. It offers flexibility to deploy
various algorithms and to maintain redundant paths in the network
which can be deployed dynamically. Furthermore, the SDN controller
can have a global view of the network and make the routing deci-
sions based on the current status of the network. The SDN controller
can configure the flow table of switches dynamically to route the
flow through another path when needed. It reduces the time con-
sumption to recover from link failure or congestion in the network.
However, the SDN controller can be a single point of failure, there-
fore, leading to communication breakdown in smart grid environ-
ment. First, further study should be required to tackle the failure
of SDN controller in the smart grid environment. Moreover, com-
munication between the SDN controller and the cyber-physical con-
troller should be secured for a better collaboration between them.
Table 8 summarizes related SDN-based applications that aim to pro-
tect and improve the resilience of the smart grid infrastructure using
SDN.

6. Research challenges and future directions

In this section, we discuss research challenges and potential future
research directions on how to enhance the network security via SDN.
In addition, it is worth noting that SDN itself has many security issues
that need to be addressed before/when deploying SDN for improving
network security.

6.1. SDN security

In the above sections, we have discussed many research studies on
improving network security using SDN technology. In this part, we
present major security issues of SDN itself, which need to be addressed
before the deployment of SDN. There have been some efforts in iden-
tifying different attack vectors in SDN (Kreutz et al., 2013), as well as
security issues in the SDN enabled network (Alsmadi and Xu, 2015;
Shin et al., 2014; Benton et al., 2013; Sezer et al., 2013).

In Kreutz et al. (2013) the authors highlighted seven threat vectors
in SDN architecture. While some of the attack vectors are present in

the traditional network, the others are more specific to SDN network.
For instance, attacks on logically centralized controller and control-
data plane communication channel are specific to SDN network. The
attack on logically centralized controller poses more serious threat as
it impacts the whole network. Forged flows can be used to attack
switches and controllers in the network. Moreover, communication
channel between data and control plane can also be attacked by the
forged traffic. Furthermore, attacker can use the compromised applica-
tions on the SDN controller to program the network.

Several countermeasures have been proposed to address the secu-
rity threats in SDN. For example, packet filtering, rate limiting, rule
timeout can be used to defend against DDoS and forged traffic. Rules
can also be proactively deployed in the switches to reduce the frequent
interaction between the controller and the switches. It protects the con-
troller against control plane saturation attack. Availability of the con-
trollers can be achieved through replicating the controllers (Botelho et
al., 2013).

Implementing trust between the applications and the SDN controller
is also important, since malicious or poorly configured applications at
the controller can compromised the network. Wen et al. (2013) intro-
duced a fine grained permission system as a first line of defense to
tackle the attacks launched through northbound API of the controller.
They summarized a set of 18 permissions to be enforced on applica-
tions for access. Moreover, it is worth mentioning that there are many
other proposals of access controls and authentication mechanism for
protecting SDN from security threats (Klaedtke et al., 2014; Toseef et
al., 2014). Klaedtke et al. (2014) proposed an access control scheme
for SDN controller. The proposed access control techniques detect and
resolve conflicts close to the southbound API. Moreover, C-BAS (Toseef
et al., 2014) provided a certificate-based authentication, authoriza-
tion and accounting (AAA) mechanism for SDN experimental facilities.
These studies are preliminary research efforts in the direction of secur-
ing the SDN network; however, there is still a considerable amount of
work needs to be done before SDN can be implemented in a practical
scenario.

6.2. Compatibility with traditional networking

Network operators might be reluctant to completely replace their
traditional IP-based networking infrastructure with SDN technology.

102



R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Therefore, SDN should be incrementally deployable to provide the
compatibility with the existing networking infrastructure. Compatibil-
ity with the legacy infrastructure can be assured by deploying hybrid
switches, i.e. switches which can be configured to behave as legacy as
well as OpenFlow switches. For instance, some ports on switches can be
configured for OpenFlow enabled network while others are assigned for
the legacy network. There have been some efforts dedicated to address
the compatibility issues of SDN with existing traditional IP based net-
working (Najd and Shue, 2017; Hong et al., 2016). DeepContext (Najd
and Shue, 2017) introduced a host based SDN approach which is com-
patible with OpenFlow. In this architecture, end hosts are responsible
for storing the rules, and it extends Open vSwitch to provide contex-
tual information to host which can assist controllers in decision mak-
ing. Hong et al. (2016) proposed a mechanism for incremental deploy-
ment of SDN in the ISP (Internet Service Provider) and enterprise net-
work. They performed a systematic analysis on which legacy devices
should be upgraded to SDN, and how SDN and legacy devices can
interoperate to achieve the traffic engineering objectives in the net-
work.

6.3. Scalability

Scalability is one of the major concerns of SDN, in which SDN
control and data plane could cause many scalability issues. Switch-to-
controller interaction because every first packet of a new flow is for-
warded to the controller cause potential performance bottleneck for
the controller and switches. In large data center , network controller is
required to handle millions of flows per second (Benson et al., 2010).
Therefore, processing overhead at the controller as well as at the data
plane can cause many performance issues. Therefore, researchers have
devoted their efforts to address the challenges posed by the scalabil-
ity of the controller and the data plane (Yu et al., 2010; Curtis et al.,
2011; Phemius et al., 2014; Tootoonchian and Ganjali, 2010; Hartert
et al., 2015; Cai et al., 2010; Tootoonchian et al., 2012). Work such as
DIFANE (Yu et al., 2010) reduces the burden of controller by keeping
most of the traffic in the data plane and selectively forwarding the traf-
fic through intermediate switches which have the rules to process the
incoming traffic. The controller only performs tasks such as partitioning
the rules over the switches in the network.

An alternative solution is to design scalable controllers like Maestro
(Cai et al., 2010) and NOX-MT (Tootoonchian et al., 2012). These high
performance controllers can handle millions of new flows per second
with an average latency of few microseconds. Moreover, there have
been some proposals to improve the scalability by deploying multiple
controllers in the network (Hassas Yeganeh and Ganjali, 2012; Levin
et al., 2012; Heller et al., 2012). Kandoo (Hassas Yeganeh and Gan-
jali, 2012) proposed to distribute the controllers physically in the net-
work for improving the scalability. In Heller et al. (2012), authors try
to address the controller placement problem. They address the issue
that if given a topology, how many controllers are needed and where
these controllers should be deployed to achieve the optimum scala-
bility. In Levin et al. (2012), authors address the problem using state
exchange between the different controllers deployed in the network.
They identified two key exchange points among the controllers and
simulate these scenarios in the context of an SDN load balancer appli-
cation.

Moreover, limitations of flow table entries in OpenFlow switches
also raise the scalability problems. It has been explored that limitations
of flow table entries can cause the flow table overflow attack (Qian et
al., 2016; Qiao et al., 2016). In Qian et al. (2016), authors proposed a
rate limiting approach to limit the amount of traffic that a switch can
handle. Flow table sharing approach is introduced by authors in Qiao
et al. (2016). In this mechanism, if a switch cannot process a flow, then
it can forward it to another switch in the network, which has a spare
flow table for processing. Moreover, researchers have also proposed to
deploy the software switches in the network to handle the problem

posed by the flow table limitations of real hardware switches. Nowa-
days, in the data center network, network operators deploy software
switches at the ingress point of the network to process the new flows
(Kreutz et al., 2015).

These research efforts have addressed most scalability concerns
regarding the data and the control plane of SDN; however, there is still
immense amount of work needed to improve the scalability of SDN. In
addition, the scalability of the controller will also be impacted by the
applications operated on the controller. For example, security and load
balancing applications running on the controller need more time to exe-
cute than a basic application, which is only responsible for forwarding
the network traffic.

6.4. High-level language abstraction

The high-level programming language in SDN should allow per-
forming low-level device configuration. It should allow programmer or
network administrator to perform policy changes in the network auto-
matically. There have been some efforts by the researchers to design a
good high-level programming language for SDN (Foster et al., 2010;
Voellmy et al., 2012, 2013; Voellmy and Hudak, 2011; Bosshart et
al., 2014; Yuan et al., 2014; Anderson et al., 2014; Monsanto et al.,
2012; Soulé et al., 2013). However, the existing programming lan-
guages in SDN offer constructs to handle specific challenges. How-
ever, these basic constructs force programmers to write even a basic
SDN applications. Therefore, it is still an open issue offering con-
structs in high-level languages to manage virtualized network func-
tions in an SDN environment. Furthermore, language constructs should
ensure to scale the network resources in an elastic and automated
way.

6.5. Resilience in SDN

Nowadays, achieving resilience in security and networking is a top
priority. Fault or failure in specific components should not impact
the availability of the services in the network. The resilience of SDN
environment depends on the fault tolerance in the data plane as well
as on the control plane. Therefore, achieving resilience in SDN is
a difficult task because failures may be caused from different lay-
ers as highlighted in Kim et al. (2012). Implementation of SDN in
the data centers of Google has shown that it can be resilient (Man-
dal, 2015). There have been some efforts from research community
to address concern of resilience from the control plane perspective
(Kempf et al., 2012; Reitblatt et al., 2013; Krishnamurthy et al., 2014;
Sharma et al., 2013; Dixit et al., 2013; Panda et al., 2013; Kuź-
niar et al., 2013). Most of these mechanisms rely on distributed con-
troller approach to achieve resilience in the SDN environment. How-
ever, there are security, consistency and scalability challenges which
need to be addressed to achieve resilience using distributed controller
environment.

Data plane resilience in the SDN technology is also an important
issue for the overall resilience of the network. It needs to be addressed
for the widespread deployment of SDN. On a similar pattern, few
studies address the problem of data plane resilience (Ramos et al.,
2013). It uses the idea of packet header space analysis and depends
on switches itself to route the traffic through backup path in case
of failure in the main path without involving the controller. On the
related line in Sgambelluri et al. (2013), the authors proposed to pro-
tect individual segment of path in the network without involving the
controller.

6.6. SDN and network function virtualization

Network functions virtualization (NFV) is an emerging technology,
which yields numerous benefits. For instance, instead of deploying spe-
cialized hardware equipments, virtualized network functions (VNF) in

103



R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

NFV can be realized through virtual machines, which decreases the
cost of purchasing specialized hardware equipments. Moreover, Soft-
ware defined networking and network function virtualization (NFV)
are complementary to each other, i.e., they can be both applied to
different types of networks (Haleplidis et al., 2014; Cerrato et al.,
2014a; Xia et al., 2014; Gember-Jacobson et al., 2014). Recently,
there have some initiative towards combining SDN and NFV (Cer-
rato et al., 2014b). In Wu et al. (2018b), the authors introduced a
novel and dynamic control architecture by leveraging the SDN and
NFV technology. The topology of the CPS system is controlled by
the SDN controller and sensor functions are developed for the CPS
using NFV technology. It improves the management of the network
and the closed loop collaboration between the cyber side and physi-
cal side. However, there are many security challenges in NFV which
need to be addressed (Yang and Fung, 2016). For instance, DDoS
attack and compromised VNF can cause huge damage to NFV supported
network.

6.7. Big data for informed decision in SDN

Recently there have been some initiative to bring the power of
big data to SDN specifically to manage the network resources intelli-
gently (Wu et al., 2018c; Using big data for SDN, 2013; Sideris et al.,
2016). Wu et al. (2018c) argue that in the large scale network, mul-
tiple SDN controllers are able to collaborate effectively to manage the
network. The authors proposed a big data analysis based cluster man-
agement architecture to manage the logically centralized and physi-
cally distributed controllers in the large scale network. Security of this
cluster of controllers is also a challenging task. A secure authentica-
tion mechanism is proposed to authenticate the data sources from dif-
ferent controllers. Moreover, an ant colony optimization mechanism is
used for big data analysis and optimizing the control plane. A frame-
work is introduced in Sideris et al. (2016), for network intelligence by
leveraging the network programmability of SDN and big data princi-
ples. The framework provides a fault tolerant, scalable and real-time
platform for data extraction to manage the entire network. In Using
big data for SDN (2013), the author argues to use the big data anal-
ysis technique to manage the network resources, which considers the
whole network as a resource rather than a collection of points. How-
ever, big data and SDN technology, both are in a nascent stage and
there are many open issues which need to be addressed. For instance,
efficiency of analytic technique as well as security of data storage mech-
anism in SDN should be considered. Moreover, security of messages
exchanged between different domains and scalability of the big data
analysis technique in the large scale SDN network should be addressed
for the real time integration of analytic technique with the SDN
technology.

6.8. SDN and 5G security

Nowadays, SDN is considered to achieve the demand of the 5G
mobile network. SDN has the potential to solve the security issues in
the mobile core network. The decoupled control plane from the data
plane and logically centralized controller in SDN offers great advan-
tages in solving the security challenges in the 5G mobile network. By
leveraging the global visibility of the SDN, consistent flow rules can
be deployed at the required location to filter attack traffic or redirect
the traffic towards middleboxes. In the regard, Liang and Qiu (2016)
proposed an SDN based architecture for 5G network. The architecture
offers an on-demand security service running in parallel with mobile
network domain. It ensures the security service for the mobile con-
sumers. Different types of applications can be programmed to secure
the 5G mobile network that can communicate with the SDN controller,
which is responsible to install the flow rules to protect the network.
In Ahmad et al. (2017), the authors highlighted the security challenges
in 5G network and argue that SDN and NFV can offer potential tech-

nological solutions for 5G mobile network. However, they also pointed
out that the new types of security threats and challenges will be posed
by the 5G mobile network with the deployment of these technolog-
ical solutions. It is worth noting that addressing these security chal-
lenges from the design stage will minimize the impact of potential
vulnerabilities.

7. Conclusion

In this paper, we surveyed existing research regarding the appli-
cation of SDN on securing computer networks. Relevant research in
SDN community is still in its early stages, but there is immense work
has been done to design and develop different applications to ease
the burden of network management by means of SDN. We catego-
rized existing work into nine categories: attack detection, vulnerabil-
ity detection, attack mitigation, dynamic configuration based on SDN,
security policy management using SDN, traffic engineering achieved
using SDN, traffic monitoring, deployment of middleboxes, and ser-
vice chaining. Also, we presented some research efforts on securing
smart grid infrastructure via SDN. Then, we discuss research chal-
lenges and potential future directions, including SDN security, com-
patibility, and scalability issues. Our survey aims to stimulate more
research to investigate how to design a deployable and secure SDN,
and how to apply SDN for achieving network security in a practical
scenario.

Acknowledgement

This work was partially supported by the Project of Cyber Resilience
for the Shipping Industry (CyberShip), through the Danish Maritime
Fund and Orients Fund.

References

van Adrichem, N.L.M., Doerr, C., Kuipers, F.A., 2014. Opennetmon: network monitoring
in openflow software-defined networks. In: 2014 IEEE Network Operations and
Management Symposium (NOMS), pp. 1–8, https://doi.org/10.1109/NOMS.2014.
6838228.

Agarwal, S., Kodialam, M., Lakshman, T.V., 2013. Traffic engineering in software
defined networks. In: 2013 Proceedings IEEE INFOCOM, pp. 2211–2219, https://
doi.org/10.1109/INFCOM.2013.6567024.

Ahmad, I., Kumar, T., Liyanage, M., Okwuibe, J., Ylianttila, M., Gurtov, A., 2017. 5g
security: analysis of threats and solutions. In: 2017 IEEE Conference on Standards
for Communications and Networking (CSCN), pp. 193–199, https://doi.org/10.
1109/CSCN.2017.8088621.

Ahn, L.V., Blum, M., Hopper, N.J., Langford, J., 2003. Captcha: using hard ai problems
for security. In: Proceedings of the 22Nd International Conference on Theory and
Applications of Cryptographic Techniques, EUROCRYPT’03. Springer-Verlag, Berlin,
Heidelberg, pp. 294–311. http://dl.acm.org/citation.cfm?id=1766171.1766196.

Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., Vahdat, A., 2010. Hedera:
dynamic flow scheduling for data center networks. In: Proceedings of the 7th
USENIX Conference on Networked Systems Design and Implementation, NSDI’10.
USENIX Association, Berkeley, CA, USA, p. 19.

Al-Rubaye, S., Kadhum, E., Ni, Q., Anpalagan, A., 2018. Industrial internet of things
driven by sdn platform for smart grid resiliency. IEEE Internet Things J. 1, https://
doi.org/10.1109/JIOT.2017.2734903.

Ali, S.T., Sivaraman, V., Radford, A., Jha, S., 2015. A survey of securing networks using
software defined networking. IEEE Trans. Reliab. 64 (3), 1086–1097, https://doi.
org/10.1109/TR.2015.2421391.

Alsmadi, I., Xu, D., 2015. Security of software defined networks: A survey. Comput.
Secur. 53, 79–108.

Anderson, C.J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D., Schlesinger, C., Walker,
D., 2014. Netkat: semantic foundations for networks. SIGPLAN Not. 49 (1),
113–126, https://doi.org/10.1145/2578855.2535862.

Anon. 1. [link]. URL https://www.ibm.com/developerworks/community/blogs/
ibmsyssw/entry/sdn_openflow_for_increased_flexibility_improved_performance_and_
simplified_operations?lang=en.

Anon. 2. [link]. URL http://h17007.www1.hpe.com/si/en/networking/solutions/
technology/sdn/portfolio.aspx#.W2BvMHVubCI.

Anwer, B., Benson, T., Feamster, N., Levin, D., Rexford, J., 2013. A slick control plane
for network middleboxes. In: Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN ’13. ACM, New York, NY,
USA, pp. 147–148, https://doi.org/10.1145/2491185.2491223.

104

https://doi.org/10.1109/NOMS.2014.6838228
https://doi.org/10.1109/NOMS.2014.6838228
https://doi.org/10.1109/INFCOM.2013.6567024
https://doi.org/10.1109/INFCOM.2013.6567024
https://doi.org/10.1109/CSCN.2017.8088621
https://doi.org/10.1109/CSCN.2017.8088621
http://dl.acm.org/citation.cfm?id=1766171.1766196
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref5
https://doi.org/10.1109/JIOT.2017.2734903
https://doi.org/10.1109/JIOT.2017.2734903
https://doi.org/10.1109/TR.2015.2421391
https://doi.org/10.1109/TR.2015.2421391
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref8
https://doi.org/10.1145/2578855.2535862
https://www.ibm.com/developerworks/community/blogs/ibmsyssw/entry/sdn_openflow_for_increased_flexibility_improved_performance_and_simplified_operations?lang=en
https://www.ibm.com/developerworks/community/blogs/ibmsyssw/entry/sdn_openflow_for_increased_flexibility_improved_performance_and_simplified_operations?lang=en
https://www.ibm.com/developerworks/community/blogs/ibmsyssw/entry/sdn_openflow_for_increased_flexibility_improved_performance_and_simplified_operations?lang=en
http://h17007.www1.hpe.com/si/en/networking/solutions/technology/sdn/portfolio.aspx#.W2BvMHVubCI
http://h17007.www1.hpe.com/si/en/networking/solutions/technology/sdn/portfolio.aspx#.W2BvMHVubCI
https://doi.org/10.1145/2491185.2491223


R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Arbor Networks, 2016. Worldwide Infrastructure Security Report. Tech. rep.. Arbor
Networks.

Argyropoulos, C., Kalogeras, D., Androulidakis, G., Maglaris, V., 2012. Paflomon – a
slice aware passive flow monitoring framework for openflow enabled experimental
facilities. In: 2012 European Workshop on Software Defined Networking, pp.
97–102, https://doi.org/10.1109/EWSDN.2012.13.

Ashraf, J., Latif, S., 2014. Handling intrusion and ddos attacks in software defined
networks using machine learning techniques. In: 2014 National Software
Engineering Conference, pp. 55–60, https://doi.org/10.1109/NSEC.2014.6998241.

Aydeger, A., Akkaya, K., Uluagac, A.S., 2015. Sdn-based resilience for smart grid
communications. In: 2015 IEEE Conference on Network Function Virtualization and
Software Defined Network (NFV-SDN), pp. 31–33, https://doi.org/10.1109/NFV-
SDN.2015.7387401.

Aydeger, A., Akkaya, K., Cintuglu, M.H., Uluagac, A.S., Mohammed, O., 2016. Software
defined networking for resilient communications in smart grid active distribution
networks. In: 2016 IEEE International Conference on Communications (ICC), pp.
1–6, https://doi.org/10.1109/ICC.2016.7511049.

Ballard, J.R., Rae, I., Akella, A., 2010. Extensible and scalable network monitoring using
opensafe. In: Proceedings of the 2010 Internet Network Management Conference on
Research on Enterprise Networking, INM/WREN’10. USENIX Association, Berkeley,
CA, USA, p. 8. http://dl.acm.org/citation.cfm?id=1863133.1863141.

Bari, M.F., Chowdhury, S.R., Ahmed, R., Boutaba, R., 2013. Policycop: an autonomic qos
policy enforcement framework for software defined networks. In: 2013 IEEE SDN
for Future Networks and Services (SDN4FNS), pp. 1–7, https://doi.org/10.1109/
SDN4FNS.2013.6702548.

Bawany, N.Z., Shamsi, J.A., Salah, K., 2017. Ddos attack detection and mitigation using
sdn: methods, practices, and solutions. Arabian J. Sci. Eng. 42 (2), 425–441, https://
doi.org/10.1007/s13369-017-2414-5.

Ben-Itzhak, Y., Barabash, K., Cohen, R., Levin, A., Raichstein, E., 2015. Enforsdn:
network policies enforcement with sdn. In: 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pp. 80–88, https://doi.org/
10.1109/INM.2015.7140279.

Benson, T., Akella, A., Maltz, D., 2009a. Unraveling the complexity of network
management. In: Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation, NSDI’09. USENIX Association, Berkeley, CA, USA, pp.
335–348. http://dl.acm.org/citation.cfm?id=1558977.1559000.

Benson, T., Akella, A., Maltz, D., 2009b. Unraveling the complexity of network
management. In: Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation, NSDI’09. USENIX Association, pp. 335–348. http://dl.
acm.org/citation.cfm?id=1558977.1559000.

Benson, T., Akella, A., Maltz, D.A., 2010. Network traffic characteristics of data centers
in the wild. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, IMC ’10. ACM, New York, NY, USA, pp. 267–280, https://doi.org/10.
1145/1879141.1879175.

Benton, K., Camp, L.J., Small, C., 2013. Openflow vulnerability assessment. In:
Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, HotSDN ’13. ACM, New York, NY, USA, pp. 151–152, https://
doi.org/10.1145/2491185.2491222.

Bhardwaj, K., Miranda, J.C., Gavrilovska, A., 2018. Towards iot-ddos prevention using
edge computing. In: USENIX Workshop on Hot Topics in Edge Computing (HotEdge
18). USENIX Association, Boston, MA, https://www.usenix.org/conference/
hotedge18/presentation/bhardwaj.

Bisong, A., Rahman, S.M., 2011. An Overview of the Security Concerns in Enterprise
Cloud Computing. CoRR abs/1101.5613. arXiv:1101.5613, http://arxiv.org/abs/
1101.5613.

Blendin, J., Ruckert, J., Leymann, N., Schyguda, G., Hausheer, D., 2014. Position paper:
software-defined network service chaining. In: 2014 Third European Workshop on
Software Defined Networks, https://doi.org/10.1109/EWSDN.2014.14.

Boite, J., Nardin, P., Rebecchi, F., Bouet, M., Conan, V., 2017. Statesec: stateful
monitoring for ddos protection in software defined networks. In: 2017 IEEE
Conference on Network Softwarization (NetSoft), pp. 1–9, https://doi.org/10.1109/
NETSOFT.2017.8004113.

Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C.,
Talayco, D., Vahdat, A., Varghese, G., Walker, D., 2014. P4: programming
protocol-independent packet processors. SIGCOMM Comput. Commun. Rev. 44 (3),
87–95, https://doi.org/10.1145/2656877.2656890.

Botelho, F.A., Ramos, F.M.V., Kreutz, D., Bessani, A.N., 2013. On the feasibility of a
consistent and fault-tolerant data store for sdns. In: 2013 Second European
Workshop on Software Defined Networks, pp. 38–43.

Braga, R., Mota, E., Passito, A., 2010. Lightweight DDoS flooding attack detection using
NOX/OpenFlow. In: 35th IEEE Conference on Local Computer Networks (LCN), pp.
408–415, https://doi.org/10.1109/LCN.2010.5735752.

Cai, Z., Cox, A.L., Ng, T.S.E., 2010. Maestro: A System for Scalable Openflow Control.
Cao, Z., Kodialam, M., Lakshman, T.V., 2014. Traffic steering in software defined

networks: planning and online routing. SIGCOMM Comput. Commun. Rev. 44 (4),
https://doi.org/10.1145/2740070.2627574.

Casado, M., Freedman, M.J., Pettit, J., Luo, J., McKeown, N., Shenker, S., 2007. Ethane:
taking control of the enterprise. SIGCOMM Comput. Commun. Rev. 37 (4), 1–12,
https://doi.org/10.1145/1282427.1282382.

Cerrato, I., Jungel, T., Palesandro, A., Risso, F., Suñé, M., Woesner, H., 2014a.
User-specific network service functions in an sdn-enabled network node. In: 2014
Third European Workshop on Software Defined Networks, pp. 135–136, https://doi.
org/10.1109/EWSDN.2014.26.

Cerrato, I., Annarumma, M., Risso, F., 2014b. Supporting fine-grained network functions
through intel dpdk. In: 2014 Third European Workshop on Software Defined
Networks, pp. 1–6, https://doi.org/10.1109/EWSDN.2014.33.

Chen, X., Mao, Z.M., Van Der Merwe, J., 2009. Shadownet: a platform for rapid and safe
network evolution. In: Proceedings of the 2009 Conference on USENIX Annual
Technical Conference, USENIX’09. USENIX Association, Berkeley, CA, USA, p. 3.
http://dl.acm.org/citation.cfm?id=1855807.1855810.

CISCO, 2018. Tech. rep.. In: Annual Cybersecurity Report. CISCO.
Colville, R.J., Spafford, G., 2010. Configuration Management for Virtual and Cloud

Infrastructures. Tech. rep.. Gartner Inc.
Curtis, A.R., Mogul, J.C., Tourrilhes, J., Yalagandula, P., Sharma, P., Banerjee, S., 2011.

Devoflow: scaling flow management for high-performance networks. In: Proceedings
of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11. ACM, New York, NY, USA,
pp. 254–265, https://doi.org/10.1145/2018436.2018466.

Dixit, A., Hao, F., Mukherjee, S., Lakshman, T., Kompella, R., 2013. Towards an elastic
distributed sdn controller. In: Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN ’13. ACM, New York, NY,
USA, pp. 7–12, https://doi.org/10.1145/2491185.2491193.

Enns, R., Bjorklund, M., Bierman, A., Schönwälder, J., Jun. 2011. Network
Configuration Protocol (NETCONF). RFC 6241. , https://doi.org/10.17487/
RFC6241, https://rfc-editor.org/rfc/rfc6241.txt.

F5, 2014. The F5 DDoS Protection Reference Architecture. F5, Tech. rep.
Fayaz, S.K., Tobioka, Y., Sekar, V., Bailey, M., 2015. Bohatei: flexible and elastic ddos

defense. In: 24th USENIX Security Symposium (USENIX Security 15). USENIX
Association, pp. 817–832.

Fayazbakhsh, S.K., Chiang, L., Sekar, V., Yu, M., Mogul, J.C., 2014. Enforcing
network-wide policies in the presence of dynamic middlebox actions using flowtags.
In: Proceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation, NSDI’14. USENIX Association, Berkeley, CA, USA, pp. 533–546.
http://dl.acm.org/citation.cfm?id=2616448.2616497.

Ferguson, A.D., Guha, A., Liang, C., Fonseca, R., Krishnamurthi, S., 2012. Hierarchical
policies for software defined networks. In: Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, HotSDN ’12. ACM, New York, NY, USA, pp.
37–42, https://doi.org/10.1145/2342441.2342450.

Floodlight Project: Github - Floodlight/oftest: Openflow Switch Test Framework, 2016.
http://www.projectfloodlight.org/oftest/.

Foster, N., Freedman, M.J., Harrison, R., Rexford, J., Meola, M.L., Walker, D., 2010.
Frenetic: a high-level language for openflow networks. In: Proceedings of the
Workshop on Programmable Routers for Extensible Services of Tomorrow, PRESTO
’10. ACM, New York, NY, USA, pp. 6:1–6:6, https://doi.org/10.1145/1921151.
1921160.

François, J., Dolberg, L., Festor, O., Engel, T., 2014. Network security through software
defined networking: a survey. In: Proceedings of the Conference on Principles,
Systems and Applications of IP Telecommunications, IPTComm ’14. ACM, New
York, NY, USA, pp. 6:1–6:8, https://doi.org/10.1145/2670386.2670390.

Gao, J., Xia, C., Wang, S., Zhang, H., 2015. A sdn-based deployment framework for
computer network defense policy. In: 2015 4th International Conference on
Computer Science and Network Technology (ICCSNT), vol. 01, pp. 1253–1258,
https://doi.org/10.1109/ICCSNT.2015.7490959.

Gember-Jacobson, A., Viswanathan, R., Prakash, C., Grandl, R., Khalid, J., Das, S.,
Akella, A., 2014. Opennf: enabling innovation in network function control. In:
Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14. ACM, New
York, NY, USA, pp. 163–174, https://doi.org/10.1145/2619239.2626313.

Giotis, K., Argyropoulos, C., Androulidakis, G., Kalogeras, D., Maglaris, V., 2014a.
Combining openflow and sflow for an effective and scalable anomaly detection and
mitigation mechanism on sdn environments. Comput. Network. 62 (0), 122–136.

Giotis, K., Androulidakis, G., Maglaris, V., 2014b. Leveraging sdn for efficient anomaly
detection and mitigation on legacy networks. In: Proceedings of the 2014 Third
European Workshop on Software Defined Networks, EWSDN ’14. IEEE Computer
Society, Washington, DC, USA, pp. 85–90, https://doi.org/10.1109/EWSDN.2014.
24.

Github - snrism/florence-dev: Sdn Security Test Framework, 2016. https://github.com/
snrism/florence-dev.

Glick, M., Rastegarfar, H., 2017. Scheduling and control in hybrid data centers. In: 2017
IEEE Photonics Society Summer Topical Meeting Series (SUM), pp. 115–116,
https://doi.org/10.1109/PHOSST.2017.8012677.

Graur, F., 2017. Dynamic network configuration in the internet of things. In: 2017 5th
International Symposium on Digital Forensic and Security (ISDFS), pp. 1–4, https://
doi.org/10.1109/ISDFS.2017.7916503.

Gyllstrom, D., Braga, N., Kurose, J., 2014. Recovery from link failures in a smart grid
communication network using openflow. In: 2014 IEEE International Conference on
Smart Grid Communications (SmartGridComm), pp. 254–259, https://doi.org/10.
1109/SmartGridComm.2014.7007655.

Haleplidis, E., Joachimpillai, D., Salim, J.H., Lopez, D., Martin, J., Pentikousis, K.,
Denazis, S., Koufopavlou, O., 2014. Forces applicability to sdn-enhanced nfv. In:
2014 Third European Workshop on Software Defined Networks, pp. 43–48, https://
doi.org/10.1109/EWSDN.2014.27.

Halpern, J.M., HAAS, R., Doria, A., Dong, L., Wang, W., Khosravi, H.M., Salim, J.H.,
Gopal, R., Mar. 2010. Forwarding and Control Element Separation (ForCES)
Protocol Specification. RFC 5810. , https://doi.org/10.17487/RFC5810, https://rfc-
editor.org/rfc/rfc5810.txt.

Hartert, R., Vissicchio, S., Schaus, P., Bonaventure, O., Filsfils, C., Telkamp, T., Francois,
P., 2015. A declarative and expressive approach to control forwarding paths in
carrier-grade networks. SIGCOMM Comput. Commun. Rev. 45 (4), 15–28.

Hassas Yeganeh, S., Ganjali, Y., 2012. Kandoo: a framework for efficient and scalable
offloading of control applications. In: Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, HotSDN ’12. ACM, New York, NY, USA, pp.
19–24, https://doi.org/10.1145/2342441.2342446.

105

http://refhub.elsevier.com/S1084-8045(19)30027-X/sref13
https://doi.org/10.1109/EWSDN.2012.13
https://doi.org/10.1109/NSEC.2014.6998241
https://doi.org/10.1109/NFV-SDN.2015.7387401
https://doi.org/10.1109/NFV-SDN.2015.7387401
https://doi.org/10.1109/ICC.2016.7511049
http://dl.acm.org/citation.cfm?id=1863133.1863141
https://doi.org/10.1109/SDN4FNS.2013.6702548
https://doi.org/10.1109/SDN4FNS.2013.6702548
https://doi.org/10.1007/s13369-017-2414-5
https://doi.org/10.1007/s13369-017-2414-5
https://doi.org/10.1109/INM.2015.7140279
https://doi.org/10.1109/INM.2015.7140279
http://dl.acm.org/citation.cfm?id=1558977.1559000
http://dl.acm.org/citation.cfm?id=1558977.1559000
http://dl.acm.org/citation.cfm?id=1558977.1559000
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/2491185.2491222
https://doi.org/10.1145/2491185.2491222
https://www.usenix.org/conference/hotedge18/presentation/bhardwaj
https://www.usenix.org/conference/hotedge18/presentation/bhardwaj
arXiv:1101.5613
http://arxiv.org/abs/1101.5613
http://arxiv.org/abs/1101.5613
https://doi.org/10.1109/EWSDN.2014.14
https://doi.org/10.1109/NETSOFT.2017.8004113
https://doi.org/10.1109/NETSOFT.2017.8004113
https://doi.org/10.1145/2656877.2656890
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref31
https://doi.org/10.1109/LCN.2010.5735752
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref33
https://doi.org/10.1145/2740070.2627574
https://doi.org/10.1145/1282427.1282382
https://doi.org/10.1109/EWSDN.2014.26
https://doi.org/10.1109/EWSDN.2014.26
https://doi.org/10.1109/EWSDN.2014.33
http://dl.acm.org/citation.cfm?id=1855807.1855810
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref39
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref40
https://doi.org/10.1145/2018436.2018466
https://doi.org/10.1145/2491185.2491193
https://doi.org/10.17487/RFC6241
https://doi.org/10.17487/RFC6241
https://rfc-editor.org/rfc/rfc6241.txt
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref44
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref45
http://dl.acm.org/citation.cfm?id=2616448.2616497
https://doi.org/10.1145/2342441.2342450
http://www.projectfloodlight.org/oftest/
https://doi.org/10.1145/1921151.1921160
https://doi.org/10.1145/1921151.1921160
https://doi.org/10.1145/2670386.2670390
https://doi.org/10.1109/ICCSNT.2015.7490959
https://doi.org/10.1145/2619239.2626313
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref53
https://doi.org/10.1109/EWSDN.2014.24
https://doi.org/10.1109/EWSDN.2014.24
https://github.com/snrism/florence-dev
https://github.com/snrism/florence-dev
https://doi.org/10.1109/PHOSST.2017.8012677
https://doi.org/10.1109/ISDFS.2017.7916503
https://doi.org/10.1109/ISDFS.2017.7916503
https://doi.org/10.1109/SmartGridComm.2014.7007655
https://doi.org/10.1109/SmartGridComm.2014.7007655
https://doi.org/10.1109/EWSDN.2014.27
https://doi.org/10.1109/EWSDN.2014.27
https://doi.org/10.17487/RFC5810
https://rfc-editor.org/rfc/rfc5810.txt
https://rfc-editor.org/rfc/rfc5810.txt
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref61
https://doi.org/10.1145/2342441.2342446


R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Heller, B., Sherwood, R., McKeown, N., 2012. The controller placement problem. In:
Proceedings of the First Workshop on Hot Topics in Software Defined Networks,
HotSDN ’12. ACM, New York, NY, USA, pp. 7–12, https://doi.org/10.1145/
2342441.2342444.

Hong, D.K., Ma, Y., Banerjee, S., Mao, Z.M., 2016. Incremental deployment of sdn in
hybrid enterprise and isp networks. In: Proceedings of the Symposium on SDN
Research, SOSR ’16. ACM, New York, NY, USA, pp. 1:1–1:7, https://doi.org/10.
1145/2890955.2890959.

Jero, S., Bu, X., Nita-Rotaru, C., Okhravi, H., Skowyra, R., Fahmy, S., 2017. Beads:
automated attack discovery in openflow-based sdn systems. In: Dacier, M., Bailey,
M., Polychronakis, M., Antonakakis, M. (Eds.), Research in Attacks, Intrusions, and
Defenses. Springer International Publishing, Cham, pp. 311–333.

Kalam, A.A.E., Benferhat, S., Miège, A., Baida, R.E., Cuppens, F., Saurel, C., Balbiani, P.,
Deswarte, Y., Trouessin, G., 2003. Organization based access control. In:
Proceedings of the 4th IEEE International Workshop on Policies for Distributed
Systems and Networks, POLICY ’03. IEEE Computer Society, p. 120. http://dl.acm.
org/citation.cfm?id=826036.826869.

Karmakar, K.K., Varadharajan, V., Tupakula, U., Hitchens, M., 2016. A Policy Based
Security Architecture for Software Defined Networks. CsCR, https://arxiv.org/abs/
1806.02053.

Kempf, J., Bellagamba, E., Kern, A., Jocha, D., Takacs, A., Sköldström, P., 2012. Scalable
fault management for openflow. In: 2012 IEEE International Conference on
Communications (ICC), pp. 6606–6610, https://doi.org/10.1109/ICC.2012.
6364688.

Kim, H., Benson, T., Akella, A., Feamster, N., 2011. The evolution of network
configuration: a tale of two campuses. In: Internet Measurement Conference.

Kim, H., Schlansker, M., Santos, J.R., Tourrilhes, J., Turner, Y., Feamster, N., 2012.
Coronet: fault tolerance for software defined networks. In: 2012 20th IEEE
International Conference on Network Protocols (ICNP), pp. 1–2, https://doi.org/10.
1109/ICNP.2012.6459938.

Klaedtke, F., Karame, G.O., Bifulco, R., Cui, H., 2014. Access control for sdn controllers.
In: Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, HotSDN ’14. ACM, New York, NY, USA, pp. 219–220, https://doi.org/
10.1145/2620728.2620773.

Kreutz, D., Ramos, F.M., Verissimo, P., 2013. Towards secure and dependable
software-defined networks. In: Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN ’13. ACM, New York, NY,
USA, pp. 55–60, https://doi.org/10.1145/2491185.2491199.

Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.,
2015. Software-defined networking: a comprehensive survey. Proc. IEEE 103 (1),
14–76.

Krishnamurthy, A., Chandrabose, S.P., Gember-Jacobson, A., 2014. Pratyaastha: an
efficient elastic distributed sdn control plane. In: Proceedings of the Third Workshop
on Hot Topics in Software Defined Networking, HotSDN ’14. ACM, New York, NY,
USA, pp. 133–138, https://doi.org/10.1145/2620728.2620748.

Krishnan, R., Durrani, M., 2014. Real-time SDN Analytics for DDoS Mitigation.
Kuhn, T., 2014. A survey and classification of controlled natural languages. Comput.

Linguist. 40 (1), 121–170, https://doi.org/10.1162/COLI_a_00168.
Kumar, R., Nicol, D.M., 2016. Validating resiliency in software defined networks for

smart grids. In: 2016 IEEE International Conference on Smart Grid Communications
(SmartGridComm), pp. 441–446, https://doi.org/10.1109/SmartGridComm.2016.
7778801.

Kuźniar, M., Perešíni, P., Vasić, N., Canini, M., Kostić, D., 2013. Automatic failure
recovery for software-defined networks. In: Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN ’13.
ACM, New York, NY, USA, pp. 159–160, https://doi.org/10.1145/2491185.
2491218.

Lantz, B., Heller, B., McKeown, N., 2010. A network in a laptop: rapid prototyping for
software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, Hotnets-IX. ACM, New York, NY, USA, pp. 19:1–19:6,
https://doi.org/10.1145/1868447.1868466.

Lee, S., Kim, J., Shin, S., Porras, P., Yegneswaran, V., 2017a. Athena: a framework for
scalable anomaly detection in software-defined networks. In: 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
pp. 249–260, https://doi.org/10.1109/DSN.2017.42.

Lee, S., Yoon, C., Lee, C., Shin, S., Yegneswaran, V., Porras, P.A., 2017b. Delta: a
security assessment framework for software-defined networks. In: NDSS.

Levin, D., Wundsam, A., Heller, B., Handigol, N., Feldmann, A., 2012. Logically
centralized?: state distribution trade-offs in software defined networks. In:
Proceedings of the First Workshop on Hot Topics in Software Defined Networks,
HotSDN ’12. ACM, New York, NY, USA, pp. 1–6, https://doi.org/10.1145/2342441.
2342443.

Li, J., Berg, S., Zhang, M., Reiher, P., Wei, T., 2014. Drawbridge: software-defined
ddos-resistant traffic engineering. In: Proceedings of the 2014 ACM Conference on
SIGCOMM. ACM, New York, NY, USA, pp. 591–592, https://doi.org/10.1145/
2619239.2631469.

Li, W., Meng, W., Kwok, L.F., 2016. A survey on openflow-based software defined
networks. J. Netw. Comput. Appl. 68 (C), 126–139.

Liang, X., Qiu, X., 2016. A software defined security architecture for sdn-based 5g
network. In: 2016 IEEE International Conference on Network Infrastructure and
Digital Content (IC-NIDC), pp. 17–21, https://doi.org/10.1109/ICNIDC.2016.
7974528.

Lim, S., Ha, J., Kim, H., Kim, Y., Yang, S., 2014. A sdn-oriented ddos blocking scheme
for botnet-based attacks. In: 2014 Sixth International Conference on Ubiquitous and
Future Networks (ICUFN), pp. 63–68, https://doi.org/10.1109/ICUFN.2014.
6876752.

Lopes, Y., Fernandes, N.C., Muchaluat-Saade, D.C., Obraczka, K., 2017. Ares: an
autonomic and resilient framework for smart grids. In: 2017 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM), pp. 222–229, https://doi.org/
10.23919/INM.2017.7987283.

Lorenz, C., Hock, D., Scherer, J., Durner, R., Kellerer, W., Gebert, S., Gray, N., Zinner, T.,
Tran-Gia, P., 2017. An sdn/nfv-enabled enterprise network architecture offering
fine-grained security policy enforcement. IEEE Commun. Mag. 55 (3), 217–223,
https://doi.org/10.1109/MCOM.2017.1600414CM.

Machado, C.C., Wickboldt, J.A., Granville, L.Z., Schaeffer-Filho, A., 2015. Policy
authoring for software-defined networking management. In: 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM), pp. 216–224,
https://doi.org/10.1109/INM.2015.7140295.

Mahimkar, A., Dange, J., Shmatikov, V., Vin, H., Zhang, Y., 2007. Dfence: transparent
network-based denial of service mitigation. In: Proceedings of the 4th USENIX
Conference on Networked Systems Design & Implementation, NSDI’07. USENIX
Association, Berkeley, CA, USA, p. 24. http://dl.acm.org/citation.cfm?id=1973430.
1973454.

Mandal, S., 2015. Experience with B4: Google’s Private SDN Backbone. USENIX
Association, Santa Clara, CA.

Mann, V., Vishnoi, A., Kannan, K., Kalyanaraman, S., 2012. Crossroads: seamless vm
mobility across data centers through software defined networking. In: 2012 IEEE
Network Operations and Management Symposium, pp. 88–96, https://doi.org/10.
1109/NOMS.2012.6211886.

McGillicuddy, S., 2013. Radware Adds Open Source DDoS Protection to OpenDaylight
Project. Tech. rep.. Radware.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J., 2008a. Openflow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38 (2), 69–74.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J., 2008b. Openflow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38 (2), 69–74, https://doi.org/10.1145/
1355734.1355746.

Mehdi, S.A., Khalid, J., Khayam, S.A., 2011a. Revisiting traffic anomaly detection using
software defined networking. In: Sommer, R., Balzarotti, D., Maier, G. (Eds.), Recent
Advances in Intrusion Detection. Vol. 6961 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp. 161–180, https://doi.org/10.1007/978-3-642-
23644-0_9.

Mehdi, S.A., Khalid, J., Khayam, S.A., 2011b. Revisiting Traffic Anomaly Detection
Using Software Defined Networking. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 161–180, https://doi.org/10.1007/978-3-642-23644-0_9.

Meng, W., Choo, K.R., Furnell, S., Vasilakos, A.V., Probst, C.W., 2018. Towards
bayesian-based trust management for insider attacks in healthcare software-defined
networks. IEEE Trans. Netw. Serv. Manag. 15 (2), 761–773.

Migault, D., Simplicio, M.A., Barros, B.M., Pourzandi, M., Almeida, T.R., Andrade, E.R.,
Carvalho, T.C., 2018. A framework for enabling security services collaboration
across multiple domains. Comput. Electr. Eng. 69, 224–239. http://www.
sciencedirect.com/science/article/pii/S0045790617311242.

Monsanto, C., Foster, N., Harrison, R., Walker, D., 2012. A compiler and run-time system
for network programming languages. SIGPLAN Not. 47 (1), 217–230, https://doi.
org/10.1145/2103621.2103685.

Najd, M.E., Shue, C.A., 2017. Deepcontext: an openflow-compatible, host-based sdn for
enterprise networks. In: 2017 IEEE 42nd Conference on Local Computer Networks
(LCN), pp. 112–119, https://doi.org/10.1109/LCN.2017.12.

Naous, J., Gibb, G., Bolouki, S., McKeown, N., 2008. Netfpga: reusable router
architecture for experimental research. In: Proceedings of the ACM Workshop on
Programmable Routers for Extensible Services of Tomorrow, PRESTO ’08. ACM,
New York, NY, USA, pp. 1–7, https://doi.org/10.1145/1397718.1397720.

Niyaz, Q., Sun, W., Javaid, A.Y., 2017. A deep learning based ddos detection system in
software-defined networking (sdn). ICST Trans. Secur. Saf. 4, e2.

Nobakht, M., Sivaraman, V., Boreli, R., 2016. A host-based intrusion detection and
mitigation framework for smart home iot using openflow. In: 2016 11th
International Conference on Availability, Reliability and Security (ARES), pp.
147–156, https://doi.org/10.1109/ARES.2016.64.

Open networking foundation. URL https://www.opennetworking.org/.
Open Networking Foundation, 2008. What’s behind Network Downtime? Tech. rep..

Juniper Networks.
Open Networking Foundation, 2012. SDN Security Considerations in the Data Center.

Tech. rep.. ONF.
Open Networking Foundation, 2013. SDN Security Considerations in the Data Center.

Tech. rep.. ONF.
Openflow in Europe: Linking infrastructure and applications. URL http://www.fp7-

ofelia.eu.
Openflow network research center. URL http://onrc.stanford.edu/.
Panda, A., Scott, C., Ghodsi, A., Koponen, T., Shenker, S., 2013. Cap for networks. In:

Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, HotSDN ’13. ACM, New York, NY, USA, pp. 91–96, https://doi.
org/10.1145/2491185.2491186.

Peng, H., Sun, Z., Zhao, X., Tan, S., Sun, Z., 2018. A detection method for anomaly flow
in software defined network. IEEE Access 6, 27809–27817, https://doi.org/10.
1109/ACCESS.2018.2839684.

106

https://doi.org/10.1145/2342441.2342444
https://doi.org/10.1145/2342441.2342444
https://doi.org/10.1145/2890955.2890959
https://doi.org/10.1145/2890955.2890959
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref65
http://dl.acm.org/citation.cfm?id=826036.826869
http://dl.acm.org/citation.cfm?id=826036.826869
https://arxiv.org/abs/1806.02053
https://arxiv.org/abs/1806.02053
https://doi.org/10.1109/ICC.2012.6364688
https://doi.org/10.1109/ICC.2012.6364688
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref69
https://doi.org/10.1109/ICNP.2012.6459938
https://doi.org/10.1109/ICNP.2012.6459938
https://doi.org/10.1145/2620728.2620773
https://doi.org/10.1145/2620728.2620773
https://doi.org/10.1145/2491185.2491199
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref73
https://doi.org/10.1145/2620728.2620748
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref75
https://doi.org/10.1162/COLI_a_00168
https://doi.org/10.1109/SmartGridComm.2016.7778801
https://doi.org/10.1109/SmartGridComm.2016.7778801
https://doi.org/10.1145/2491185.2491218
https://doi.org/10.1145/2491185.2491218
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1109/DSN.2017.42
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref81
https://doi.org/10.1145/2342441.2342443
https://doi.org/10.1145/2342441.2342443
https://doi.org/10.1145/2619239.2631469
https://doi.org/10.1145/2619239.2631469
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref84
https://doi.org/10.1109/ICNIDC.2016.7974528
https://doi.org/10.1109/ICNIDC.2016.7974528
https://doi.org/10.1109/ICUFN.2014.6876752
https://doi.org/10.1109/ICUFN.2014.6876752
https://doi.org/10.23919/INM.2017.7987283
https://doi.org/10.23919/INM.2017.7987283
https://doi.org/10.1109/MCOM.2017.1600414CM
https://doi.org/10.1109/INM.2015.7140295
http://dl.acm.org/citation.cfm?id=1973430.1973454
http://dl.acm.org/citation.cfm?id=1973430.1973454
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref91
https://doi.org/10.1109/NOMS.2012.6211886
https://doi.org/10.1109/NOMS.2012.6211886
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref93
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref94
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1007/978-3-642-23644-0_9
https://doi.org/10.1007/978-3-642-23644-0_9
https://doi.org/10.1007/978-3-642-23644-0_9
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref98
http://www.sciencedirect.com/science/article/pii/S0045790617311242
http://www.sciencedirect.com/science/article/pii/S0045790617311242
https://doi.org/10.1145/2103621.2103685
https://doi.org/10.1145/2103621.2103685
https://doi.org/10.1109/LCN.2017.12
https://doi.org/10.1145/1397718.1397720
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref103
https://doi.org/10.1109/ARES.2016.64
https://www.opennetworking.org/
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref106
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref107
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref108
http://www.fp7-ofelia.eu
http://www.fp7-ofelia.eu
http://onrc.stanford.edu/
https://doi.org/10.1145/2491185.2491186
https://doi.org/10.1145/2491185.2491186
https://doi.org/10.1109/ACCESS.2018.2839684
https://doi.org/10.1109/ACCESS.2018.2839684


R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Phemius, K., Bouet, M., Leguay, J., 2014. Disco: distributed multi-domain sdn
controllers. In: 2014 IEEE Network Operations and Management Symposium
(NOMS), pp. 1–4, https://doi.org/10.1109/NOMS.2014.6838330.

Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., Gu, G., 2012. A security
enforcement kernel for openflow networks. In: Proceedings of the First Workshop on
Hot Topics in Software Defined Networks, HotSDN ’12. ACM, New York, NY, USA,
pp. 121–126, https://doi.org/10.1145/2342441.2342466.

Qazi, Z.A., Tu, C.-C., Chiang, L., Miao, R., Sekar, V., Yu, M., 2013. SIMPLE-fying
middlebox policy enforcement using SDN. SIGCOMM Comput. Commun. Rev. 43
(4), 27–38, https://doi.org/10.1145/2534169.2486022.

Qian, Y., You, W., Qian, K., 2016. Openflow flow table overflow attacks and
countermeasures. In: 2016 European Conference on Networks and Communications
(EuCNC), pp. 205–209, https://doi.org/10.1109/EuCNC.2016.7561033.

Qiao, S., Hu, C., Guan, X., Zou, J., 2016. Taming the flow table overflow in openflow
switch. In: Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16.
ACM, New York, NY, USA, pp. 591–592, https://doi.org/10.1145/2934872.
2959063.

Ramos, R.M., Martinello, M., Rothenberg, C.E., 2013. Slickflow: resilient source routing
in data center networks unlocked by openflow. In: 38th Annual IEEE Conference on
Local Computer Networks, pp. 606–613, https://doi.org/10.1109/LCN.2013.
6761297.

Reitblatt, M., Canini, M., Guha, A., Foster, N., 2013. Fattire: declarative fault tolerance
for software-defined networks. In: Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, HotSDN ’13. ACM, New
York, NY, USA, pp. 109–114, https://doi.org/10.1145/2491185.2491187.

Rosendo, D., Endo, P.T., Sadok, D., Kelner, J., 2017. An autonomic and policy-based
authorization framework for openflow networks. In: 2017 13th International
Conference on Network and Service Management (CNSM), pp. 1–5, https://doi.org/
10.23919/CNSM.2017.8255990.

Rubio-Hernan, J., Sahay, R., De Cicco, L., Garcia-Alfaro, J., 2018. Cyber-physical
architecture assisted by programmable networking. Internet Technol. Lett. 1 (4),
e44, https://doi.org/10.1002/itl2.44, https://onlinelibrary.wiley.com/doi/pdf/10.
1002/itl2.44.

Sahay, R., Blanc, G., Zhang, Z., Debar, H., 2015. Towards autonomic ddos mitigation
using software defined networking. In: Proceedings of the NDSS Workshop on
Security of Emerging Technologies (SENT).

Sahay, R., Blanc, G., Zhang, Z., Debar, H., 2017a. Aroma: an sdn based autonomic ddos
mitigation framework. Comput. Secur. 70, 482–499. https://doi.org/10.1016/j.cose.
2017.07.008.

Sahay, R., Blanc, G., Zhang, Z., Toumi, K., Debar, H., 2017b. Adaptive policy-driven
attack mitigation in sdn. In: Proceedings of the 1st International Workshop on
Security and Dependability of Multi-Domain Infrastructures, XDOMO’17. ACM, New
York, NY, USA, pp. 4:1–4:6, https://doi.org/10.1145/3071064.3071068.

Scheid, E.J., Machado, C.C., dos Santos, R.L., Schaeffer-Filho, A.E., Granville, L.Z., 2016.
Policy-based dynamic service chaining in network functions virtualization. In: 2016
IEEE Symposium on Computers and Communication (ISCC), pp. 340–345, https://
doi.org/10.1109/ISCC.2016.7543763.

Scott, C., Wundsam, A., Raghavan, B., Panda, A., Or, A., Lai, J., Huang, E., Liu, Z.,
El-Hassany, A., Whitlock, S., Acharya, H., Zarifis, K., Shenker, S., 2014.
Troubleshooting blackbox sdn control software with minimal causal sequences.
SIGCOMM Comput. Commun. Rev. 44 (4), 395–406, https://doi.org/10.1145/
2740070.2626304.

Scott-Hayward, S., O’Callaghan, G., Sezer, S., 2013. SDN security: a survey. In: 2013
IEEE SDN for Future Networks and Services (SDN4FNS), pp. 1–7.

Sezer, S., Scott-Hayward, S., Chouhan, P.K., Fraser, B., Lake, D., Finnegan, J., Viljoen,
N., Miller, M., Rao, N., 2013. Are we ready for sdn? implementation challenges for
software-defined networks. IEEE Commun. Mag. 51 (7), 36–43.

Sgambelluri, A., Giorgetti, A., Cugini, F., Paolucci, F., Castoldi, P., 2013.
Openflow-based segment protection in ethernet networks. IEEE/OSA J. Opt.
Commun. Netw. 5 (9), 1066–1075, https://doi.org/10.1364/JOCN.5.001066.

Sharma, S., Staessens, D., Colle, D., Pickavet, M., Demeester, P., 2013. Openflow:
meeting carrier-grade recovery requirements. Comput. Commun. 36 (6), 656–665,
https://doi.org/10.1016/j.comcom.2012.09.011.

Shin, S., Porras, P.A., Yegneswaran, V., Fong, M.W., Gu, G., Tyson, M., 2013. FRESCO:
modular composable security services for software-defined networks. In:
Proceedings of the ISOC Network and Distributed System Security Symposium
(NDSS).

Shin, S., Song, Y., Lee, T., Lee, S., Chung, J., Porras, P., Yegneswaran, V., Noh, J., Kang,
B.B., 2014. Rosemary: a robust, secure, and high-performance network operating
system. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, New York, NY, USA, pp. 78–89, https://doi.org/10.
1145/2660267.2660353.

Shu, Z., Wan, J., Lin, J., Wang, S., Li, D., Rho, S., Yang, C., 2016. Traffic engineering in
software-defined networking: measurement and management. IEEE Access 4,
3246–3256, https://doi.org/10.1109/ACCESS.2016.2582748.

Sideris, K., Nejabati, R., Simeonidou, D., 2016. Seer: empowering software defined
networking with data analytics. In: 2016 15th International Conference on
Ubiquitous Computing and Communications and 2016 International Symposium on
Cyberspace and Security (IUCC-CSS), pp. 181–188, https://doi.org/10.1109/IUCC-
CSS.2016.033.

da Silva, E.G., Knob, L.A.D., Wickboldt, J.A., Gaspary, L.P., Granville, L.Z.,
Schaeffer-Filho, A., 2015. Capitalizing on sdn-based scada systems: an
anti-eavesdropping case-study. In: 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM), pp. 165–173, https://doi.org/10.1109/INM.
2015.7140289.

da Silva, A.S., Wickboldt, J.A., Granville, L.Z., Schaeffer-Filho, A., 2016. Atlantic: a
framework for anomaly traffic detection, classification, and mitigation in sdn. In:
NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium,
pp. 27–35, https://doi.org/10.1109/NOMS.2016.7502793.

Song, C., Park, Y., Golani, K., Kim, Y., Bhatt, K., Goswami, K., 2017. Machine-learning
based threat-aware system in software defined networks. In: 2017 26th International
Conference on Computer Communication and Networks (ICCCN), pp. 1–9, https://
doi.org/10.1109/ICCCN.2017.8038436.

Soulé, R., Basu, S., Kleinberg, R., Sirer, E.G., Foster, N., 2013. Managing the network
with merlin. In: Proceedings of the Twelfth ACM Workshop on Hot Topics in
Networks, HotNets-XII. ACM, New York, NY, USA, pp. 24:1–24:7, https://doi.org/
10.1145/2535771.2535792.

Symantec, 2018. Internet Security Threat Report. Tech. rep.. Symantec.
Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M., 2016. Deep learning

approach for network intrusion detection in software defined networking. In: 2016
International Conference on Wireless Networks and Mobile Communications
(WINCOM), pp. 258–263, https://doi.org/10.1109/WINCOM.2016.7777224.

Tootoonchian, A., Ganjali, Y., 2010. Hyperflow: a distributed control plane for openflow.
In: Proceedings of the 2010 Internet Network Management Conference on Research
on Enterprise Networking, INM/WREN’10. USENIX Association, Berkeley, CA, USA,
p. 3.

Tootoonchian, A., Ghobadi, M., Ganjali, Y., 2010. OpenTM: Traffic Matrix Estimator for
OpenFlow Networks. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 201–210,
https://doi.org/10.1007/978-3-642-12334-4_21.

Tootoonchian, A., Gorbunov, S., Ganjali, Y., Casado, M., Sherwood, R., 2012. On
controller performance in software-defined networks. In: Presented as Part of the
2nd USENIX Workshop on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services. USENIX, San Jose, CA.

Toseef, U., Zaalouk, A., Rothe, T., Broadbent, M., Pentikousis, K., 2014. C-bas:
certificate-based aaa for sdn experimental facilities. In: 2014 Third European
Workshop on Software Defined Networks, pp. 91–96, https://doi.org/10.1109/
EWSDN.2014.41.

Tripathy, B.K., Sethy, A.G., Bera, P., Rahman, M.A., 2016. A novel secure and efficient
policy management framework for software defined network. In: 2016 IEEE 40th
Annual Computer Software and Applications Conference, vol. 2, pp. 423–430,
https://doi.org/10.1109/COMPSAC.2016.31.

Using Big Data for SDN: How Analytics Will Enable Programmability, 2013. https://
searchnetworking.techtarget.com/opinion/Using-big-data-for-SDN-How-analytics-
will-enable-programmability.

Voellmy, A., Hudak, P., 2011. Nettle: taking the sting out of programming network
routers. In: Proceedings of the 13th International Conference on Practical Aspects of
Declarative Languages, PADL’11. Springer-Verlag, Berlin, Heidelberg, pp. 235–249.
http://dl.acm.org/citation.cfm?id=1946313.1946339.

Voellmy, A., Kim, H., Feamster, N., 2012. Procera: a language for high-level reactive
network control. In: Proceedings of the First Workshop on Hot Topics in Software
Defined Networks, HotSDN ’12. ACM, New York, NY, USA, pp. 43–48, https://doi.
org/10.1145/2342441.2342451.

Voellmy, A., Wang, J., Yang, Y.R., Ford, B., Hudak, P., 2013. Maple: simplifying sdn
programming using algorithmic policies. SIGCOMM Comput. Commun. Rev. 43 (4),
87–98, https://doi.org/10.1145/2534169.2486030.

Wang, Y., Zhang, Y., Singh, V., Lumezanu, C., Jiang, G., 2013. Netfuse: short-circuiting
traffic surges in the cloud. In: Communications (ICC), 2013 IEEE International
Conference on, pp. 3514–3518.

Wang, R., Jia, Z., Ju, L., 2015. An entropy-based distributed ddos detection mechanism
in software-defined networking. In: 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1,
pp. 310–317, https://doi.org/10.1109/Trustcom.2015.389.

Wen, X., Chen, Y., Hu, C., Shi, C., Wang, Y., 2013. Towards a secure controller platform
for openflow applications. In: Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN ’13. ACM, New York, NY,
USA, pp. 171–172.

Wichtlhuber, M., Reinecke, R., Hausheer, D., 2015. An sdn-based cdn/isp collaboration
architecture for managing high-volume flows. IEEE Trans. Netw. Serv. Manag. 12
(1), 48–60.

Wu, J., Dong, M., Ota, K., Li, J., Guan, Z., 2018a. Fcss: fog computing based
content-aware filtering for security services in information centric social networks.
IEEE Trans. Emerg. Top. Comput. 1, https://doi.org/10.1109/TETC.2017.2747158.

Wu, J., Luo, S., Wang, S., Wang, H., 2018b. Nles: a novel lifetime extension scheme for
safety-critical cyber-physical systems using sdn and nfv. IEEE Internet Things J. 1,
https://doi.org/10.1109/JIOT.2018.2870294.

Wu, J., Dong, M., Ota, K., Li, J., Guan, Z., 2018c. Big data analysis-based secure cluster
management for optimized control plane in software-defined networks. IEEE Trans.
Netw. Serv. Manag. 15 (1), 27–38, https://doi.org/10.1109/TNSM.2018.2799000.

Xia, M., Shirazipour, M., Zhang, Y., Green, H., Takacs, A., 2014. SDN and optical flow
steering for network function virtualization. In: Presented as Part of the Open
Networking Summit 2014 (ONS 2014). USENIX, Santa Clara, CA, https://www.
usenix.org/conference/ons2014/technical-sessions/presentation/xia.

Xie, J., Yu, F.R., Huang, T., Xie, R., Liu, J., Liu, Y., 2018. A survey of machine learning
techniques applied to software defined networking (sdn): research issues and
challenges. IEEE Commun. Surv. Tutor. 1, https://doi.org/10.1109/COMST.2018.
2866942.

Yang, W., Fung, C., 2016. A survey on security in network functions virtualization. In:
2016 IEEE NetSoft Conference and Workshops (NetSoft), pp. 15–19, https://doi.org/
10.1109/NETSOFT.2016.7502434.

107

https://doi.org/10.1109/NOMS.2014.6838330
https://doi.org/10.1145/2342441.2342466
https://doi.org/10.1145/2534169.2486022
https://doi.org/10.1109/EuCNC.2016.7561033
https://doi.org/10.1145/2934872.2959063
https://doi.org/10.1145/2934872.2959063
https://doi.org/10.1109/LCN.2013.6761297
https://doi.org/10.1109/LCN.2013.6761297
https://doi.org/10.1145/2491185.2491187
https://doi.org/10.23919/CNSM.2017.8255990
https://doi.org/10.23919/CNSM.2017.8255990
https://doi.org/10.1002/itl2.44
https://onlinelibrary.wiley.com/doi/pdf/10.1002/itl2.44
https://onlinelibrary.wiley.com/doi/pdf/10.1002/itl2.44
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref122
https://doi.org/10.1016/j.cose.2017.07.008
https://doi.org/10.1016/j.cose.2017.07.008
https://doi.org/10.1145/3071064.3071068
https://doi.org/10.1109/ISCC.2016.7543763
https://doi.org/10.1109/ISCC.2016.7543763
https://doi.org/10.1145/2740070.2626304
https://doi.org/10.1145/2740070.2626304
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref127
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref128
https://doi.org/10.1364/JOCN.5.001066
https://doi.org/10.1016/j.comcom.2012.09.011
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref131
https://doi.org/10.1145/2660267.2660353
https://doi.org/10.1145/2660267.2660353
https://doi.org/10.1109/ACCESS.2016.2582748
https://doi.org/10.1109/IUCC-CSS.2016.033
https://doi.org/10.1109/IUCC-CSS.2016.033
https://doi.org/10.1109/INM.2015.7140289
https://doi.org/10.1109/INM.2015.7140289
https://doi.org/10.1109/NOMS.2016.7502793
https://doi.org/10.1109/ICCCN.2017.8038436
https://doi.org/10.1109/ICCCN.2017.8038436
https://doi.org/10.1145/2535771.2535792
https://doi.org/10.1145/2535771.2535792
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref139
https://doi.org/10.1109/WINCOM.2016.7777224
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref141
https://doi.org/10.1007/978-3-642-12334-4_21
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref143
https://doi.org/10.1109/EWSDN.2014.41
https://doi.org/10.1109/EWSDN.2014.41
https://doi.org/10.1109/COMPSAC.2016.31
https://searchnetworking.techtarget.com/opinion/Using-big-data-for-SDN-How-analytics-will-enable-programmability
https://searchnetworking.techtarget.com/opinion/Using-big-data-for-SDN-How-analytics-will-enable-programmability
https://searchnetworking.techtarget.com/opinion/Using-big-data-for-SDN-How-analytics-will-enable-programmability
http://dl.acm.org/citation.cfm?id=1946313.1946339
https://doi.org/10.1145/2342441.2342451
https://doi.org/10.1145/2342441.2342451
https://doi.org/10.1145/2534169.2486030
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref150
https://doi.org/10.1109/Trustcom.2015.389
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref152
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref153
https://doi.org/10.1109/TETC.2017.2747158
https://doi.org/10.1109/JIOT.2018.2870294
https://doi.org/10.1109/TNSM.2018.2799000
https://www.usenix.org/conference/ons2014/technical-sessions/presentation/xia
https://www.usenix.org/conference/ons2014/technical-sessions/presentation/xia
https://doi.org/10.1109/COMST.2018.2866942
https://doi.org/10.1109/COMST.2018.2866942
https://doi.org/10.1109/NETSOFT.2016.7502434
https://doi.org/10.1109/NETSOFT.2016.7502434


R. Sahay et al. Journal of Network and Computer Applications 131 (2019) 89–108

Yao, J., Wang, Z., Yin, X., Shiyz, X., Wu, J., 2014. Formal modeling and systematic
black-box testing of sdn data plane. In: 2014 IEEE 22nd International Conference on
Network Protocols, pp. 179–190, https://doi.org/10.1109/ICNP.2014.37.

Yap, K.-K., Kobayashi, M., Underhill, D., Seetharaman, S., Kazemian, P., McKeown, N.,
2009. The stanford openroads deployment. In: Proceedings of the 4th ACM
International Workshop on Experimental Evaluation and Characterization,
WINTECH ’09. ACM, New York, NY, USA, pp. 59–66, https://doi.org/10.1145/
1614293.1614304.

Yu, M., Rexford, J., Freedman, M.J., Wang, J., 2010. Scalable flow-based networking
with difane. SIGCOMM Comput. Commun. Rev. 41 (4).

Yu, M., Jose, L., Miao, R., 2013. Software defined traffic measurement with opensketch.
In: Presented as Part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13). USENIX, Lombard, IL, pp. 29–42. https://www.
usenix.org/conference/nsdi13/technical-sessions/presentation/yu.

Yu, M., Zhang, Y., Mirkovic, J., Alwabel, A., 2014. SENSS: software defined security
service. In: Presented as Part of the Open Networking Summit 2014 (ONS 2014).
USENIX, Santa Clara, CA, https://www.usenix.org/conference/ons2014/technical-
sessions/presentation/yu.

Yuan, Y., Alur, R., Loo, B.T., 2014. Netegg: programming network policies by examples.
In: Proceedings of the 13th ACM Workshop on Hot Topics in Networks,
HotNets-XIII. ACM, New York, NY, USA, pp. 20:1–20:7, https://doi.org/10.1145/
2670518.2673879.

YuHunag, C., MinChi, T., YaoTing, C., YuChieh, C., YanRen, C., 2010. A novel design for
future on-demand service and security. In: 2010 IEEE 12th International Conference
on Communication Technology, pp. 385–388, https://doi.org/10.1109/ICCT.2010.
5689156.

Zhang, Y., Beheshti, N., Beliveau, L., Lefebvre, G., Manghirmalani, R., Mishra, R.,
Patneyt, R., Shirazipour, M., Subrahmaniam, R., Truchan, C., Tatipamula, M., 2013.
Steering: a software-defined networking for inline service chaining. In: 2013 21st
IEEE International Conference on Network Protocols (ICNP), pp. 1–10.

Zhang, X., Wei, K., Guo, L., Hou, W., Wu, J., 2016. Sdn-based resilience solutions for
smart grids. In: 2016 International Conference on Software Networking (ICSN), pp.
1–5, https://doi.org/10.1109/ICSN.2016.7501931.

Zhong, H., Fang, Y., Cui, J., 2017. Lbbsrt: an efficient sdn load balancing scheme based
on server response time. Future Gener. Comput. Syst. 68, 183–190. https://doi.org/
10.1016/j.future.2016.10.001.

Rishikesh Sahay is a Postdoctoral researcher at Technical University of Denmark. He
completed his PhD from Télécom SudParis and University of Pierre and Marie Curie
(UPMC) in France. Currently, he is working on cyber resilience for shipping industry. His
PhD thesis was focused on autonomic cyber defense using software-defined networking.
His research interests include autonomic cyber defense, policy-based network manage-
ment, software-defined networking, cyber resilience, and network security.

Weizhi Meng is currently an assistant professor in the Cyber Security Section, Depart-
ment of Applied Mathematics and Computer Science, Technical University of Denmark
(DTU), Denmark. He obtained his Ph.D. degree in Computer Science from the City Univer-
sity of Hong Kong (CityU), Hong Kong. Prior to joining DTU, he worked as a research sci-
entist in Infocomm Security (ICS) Department, Institute for Infocomm Research, A∗Star,
Singapore, and as a senior research associate in CS Department, CityU. He won the Out-
standing Academic Performance Award during his doctoral study, and is a recipient of
the Hong Kong Institution of Engineers (HKIE) Outstanding Paper Award for Young Engi-
neers/Researchers in both 2014 and 2017. He is also a recipient of Best Paper Award
from ISPEC 2018, and Best Student Paper Award from NSS 2016. His primary research
interests are cyber security and intelligent technology in security, including intrusion
detection, smartphone security, biometric authentication, HCI security, trust manage-
ment, blockchain in security, and malware analysis. He served as program committee
members for 20 + international conferences. He is a co-PC chair for IEEE Blockchain
2018, IEEE ATC 2019, IFIPTM 2019, Socialsec 2019. He also served as guest editor for
FGCS, JISA, Sensors, CAEE, IJDSN, SCN, WCMC, etc.

Christian D. Jensen is an Associate Professor and the Head of the Cyber Security section
at the Department of Applied Mathematics and Computer Science, Technical University
of Denmark. He holds an M.Sc. in Computer Science from the University of Copenhagen
and a Ph.D. in Computer Science from Université Joseph Fourier (Grenoble I, France). He
held a position as Lecturer in Computer science at Trinity College Dublin from 1998 to
2002, where he was appointed to his current position. He conducts research in the area
of security in distributed systems, where he is particularly interested in the development
of models, policies and mechanisms that support secure collaboration in open distributed
systems, such as pervasive computing, mobile computing and sensor networks. He has
published more than 60 peer-reviewed papers in international journals, conferences and
workshops.

108

https://doi.org/10.1109/ICNP.2014.37
https://doi.org/10.1145/1614293.1614304
https://doi.org/10.1145/1614293.1614304
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref162
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu
https://www.usenix.org/conference/ons2014/technical-sessions/presentation/yu
https://www.usenix.org/conference/ons2014/technical-sessions/presentation/yu
https://doi.org/10.1145/2670518.2673879
https://doi.org/10.1145/2670518.2673879
https://doi.org/10.1109/ICCT.2010.5689156
https://doi.org/10.1109/ICCT.2010.5689156
http://refhub.elsevier.com/S1084-8045(19)30027-X/sref167
https://doi.org/10.1109/ICSN.2016.7501931
https://doi.org/10.1016/j.future.2016.10.001
https://doi.org/10.1016/j.future.2016.10.001

	The application of Software Defined Networking on securing computer networks: A survey
	1. Introduction
	2. Software-defined networking architecture
	3. SDN enabled security mechanisms
	3.1. Dynamic configuration using SDN
	3.2. Attack detection
	3.2.1. Entropy and threshold based detection in SDN
	3.2.2. Machine learning based detection

	3.3. Vulnerability detection
	3.4. Attack mitigation
	3.5. Some insights and lessons learned
	3.6. Traffic monitoring in SDN environment
	3.7. Traffic engineering (TE) using SDN

	4. SDN based network and security services
	4.1. SDN based middlebox deployment
	4.2. Service chaining
	4.3. Security policy management

	5. Smart grid security using SDN
	5.1. Some insights and lessons learned

	6. Research challenges and future directions
	6.1. SDN security
	6.2. Compatibility with traditional networking
	6.3. Scalability
	6.4. High-level language abstraction
	6.5. Resilience in SDN
	6.6. SDN and network function virtualization
	6.7. Big data for informed decision in SDN
	6.8. SDN and 5G security

	7. Conclusion
	Acknowledgement
	References


