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A B S T R A C T   

Better prediction and monitoring of flood events are key factors contributing to the reduction of their impact on 
local communities and infrastructure assets. Flood management involves successive phases characterized by 
specific types of assessments and interventions. Due to technological advances, computer vision plays an 
increasing role in flood monitoring, modeling and awareness. However, there is a lack of systemic analysis of 
computer vision’s relative adequacy to specific needs associated with successive flood management phases. This 
article presents a systematic review of relevant literature and proposes a need-based evaluation of these use- 
cases. Finally, the article highlights future areas of research in this domain.   

1. Introduction 

Floods are one of the most frequent, widespread and costly natural 
disasters in the world [1–10]. According to the United Nations (UN), 
floods result in the highest number of casualties in comparison to any 
other disaster [3,11]. It is expected that floods will become even more 
frequent and devastating because of global warming [1,12]. Flood 
events can be categorized into three groups: (a) flash floods, usually 
occurring within 6h of heavy rainfall (b) rive plain inundations, caused 
by sustained precipitations over large catchment areas, and (c) coastal 
floods, caused by coastal storms or cyclones and often reinforced by tidal 
cycles [6]. 

Flood management aims to reduce the impact of flood events on local 
communities and infrastructure assets. Flood management follows a 
four-step cycle including prevention, preparedness, response and re
covery phases [9,13]. Approaches to flood management include struc
tural and non-structural measures. Structural measures aim to create 
artificial structures such as dams, water diversions, embankments and 
channel improvements; non-structural measures involve flood plain 
zoning, early warning systems, flood proofing and evacuation plans [13, 
14]. Early warning systems rely upon access to relevant, timely and 
accurate data [15,16]. Therefore, remote data collection and automated 
interpretation have become essential instruments of modern flood 
management [17]. 

Automated Computer Vision is a field of Artificial Intelligence (AI) 
developing theories and algorithms for computer to automatically 
interpret and understand the content of visual information. This tech
nology is becoming increasingly useful for different flood management 

phases. Activities utilizing computer vision algorithms include land use 
classification for flood risk assessment [18,19], real-time flood moni
toring [7,20–23], flood surface water velocity measurement [24–39], 
flood modeling [40,41], flood detection and inundation mapping [8, 
42–55], flood debris management [56–58], and post flood damage as
sessments [59]. Despite these successful efforts, progress in using com
puter vision to its full strength is relatively slow compared to other 
domains of application. Thus, it is particularly relevant to analyze the 
potential advantages of computer vision approaches over the conven
tional monitoring ones in order to establish their proper use for flood 
management. 

Conventional flood monitoring uses point source and mono- 
dimensional data, such as rainfall and water level measurements, to 
calibrate and validate hydrological models. However, conventional 
synoptic networks are often costly to install and maintain [7]. 
Non-intrusive camera based monitoring (e.g., Gauge-Cams) of river flow 
for possible flood detection and water related measurements is one of 
the common approaches used in flood management. Gauge-Cams are 
permanently installed overhead cameras used to record the river flow 
using computer vision algorithms [24,28]. One application of 
Gauge-Cams is to measure the surface water velocity using computer 
vision and image analytic [27,29,31,60]. The non-intrusive nature of 
Gauge-Cams make them a suitable option during extreme flood condi
tions compared to conventional measurement approaches [25,28]. 

Satellite imagery has provided crucial spatially explicit visual in
formation to analyze interactions between land use, run-off and inun
dation. Amongst emerging technologies, satellite microwave remote 
sensing is a promising solution for mapping hydrodynamic ecosystems. 
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In particular, Synthetic Aperture Radar (SAR) can cope with challenging 
environments such as urban areas and dense vegetation covers [7]. 
However, given the limited orbital frequencies and inter-track spacing, 
satellite imagery and remote sensing are of limited use for real-time 
monitoring applications [7]. 

To overcome these limitations, airborne remote sensing has 
benefited from the rapid technological advances of civilian Unmanned 
Aerial Vehicles (UAVs). UAVs can be deployed on-demand and under 
heavy cloud cover, with low operational costs [61,62]. They have 
demonstrated their value for high resolution and rapid mapping of in
undations, especially in urban landscapes [2]. Ground cameras are also 
used in critical locations where people’s safety (visual detection of en
dangered individuals during a flood) or security of infrastructure (visual 
detection of submersion or structural damage) are at risk [22,63]. 
Although computer vision based solutions can monitor larger areas and 
collect multi-dimensional information associated with inundations [63], 
examples of fully-integrated applications are still rare. FloodX is an 
example of such an integrated monitoring system for urban flash flood 
[15]. 

Recent technological advances in mobile devices and access to 
crowdsourced data have made it possible to engage the community in 
explicitly collecting data for flood risk management and raising 
awareness [64–66]. Citizen science is the process of engaging the 
community in a collaborative effort to track, monitor and respond to 
common community issues [67,68]. Crowdsourcing or citizen science is 
actively used for facilitating during flood events (e.g., street flooding 
detection using social media, web and mobile applications for flood 
reporting) and post flood events (e.g., damage assessments) [69]. 
CrowdWater [70,71], CrowdHydrology [72], CityHyd [73], WeSenseIt 
[74], PetaJakarta [75], SCENT [76], Smartphones4Water [77], mPING 
[78] and GroundTruth2.0 [79] are few highlighted initiatives which 
used citizen science for flood detection, modeling and mapping by 
making use of mobile and web-based applications. From computer 
vision perspective, research in this domain can be categorized into (a) 
mobile and web applications where visual data is used for flood moni
toring, modeling and mapping [80–84] (b) social media visual Big Data 
for flood related measurements and detection (e.g., flood detection, 
water depth estimation) [85–96]. 

Despite an increasing number of scientific articles describing the use 
of various computer vision technologies in specific contexts [17,97], 
there is a need for a comprehensive review of these technologies, using a 
flood management perspective. Presented systematic review aims to 
create a common taxonomy linking assessment requirements for flood 
management and capabilities offered by various computer vision tech
nologies. Followings are the main contributions of the presented review: 

(a) Study highlights the lack of systematic analysis of various com
puter vision technologies specific to needs associated with suc
cessive flood management phases and proposes a common 
taxonomy to establish the link.  

(b) Study presents a comprehensive need-based analysis of literature. 
Furthermore, it highlights future directions with potential com
puter vision technologies as a possible solution and correspond
ing challenges. 

This article is organized as follows: Section 2 presents the method
ology adopted to perform the presented systematic review; Section 3 
presents a detailed taxonomy of functionalities required by each flood 
management phase and provided by each computer vision technology; 
Section 4 presents a structured review of the selected articles using our 
proposed taxonomy; Section 5 presents a need-based analysis of the 
selected articles and identifies several opportunities to enhance the role 
of computer vision for flood management; Section 6 presents the future 
directions of computer vision technologies and corresponding 
challenges. 

2. Review methodology 

This systematic review is performed using the Preferred Reporting 
Items for Systematic Reviews and Meta-analyzes (PRISMA) [98], and 
guidelines reported by Kitchenham et al. [99,100] and Kankanamge 
et al. [101]. Review protocol included formulation of research ques
tions, selection of pertinent keywords, selection of search databases, the 
definition of exclusion/inclusion criteria, descriptive analysis of selected 
literature, detailed review of the literature and need-based analysis. 

A set of research questions were formulated to perform the system
atic review with the aim to explore the state of the art computer vision 
technologies in flood management. Listed are three main research 
questions explored in the presented systematic review:  

(a) What is the current status of computer vision technologies in the flood 
management domain?  

(b) What are various computer vision technologies used to address flood 
management requirements/problems?  

(c) What is the future scope of computer vision in flood management? 

A list of relevant keywords was composed to extract the literature 
related to formulated research questions from academic databases. 
Search keywords included “computer vision” AND “flood”, “drone” AND 
“flood”, “UAV” and “flood”, “optical remote sensing” AND “flood”, 
“visual sensing” AND “flood”, “deep learning” AND “flood”, “CNN” AND 
“flood”, “Citizen Science” AND “flood”, “Crowdsourcing” AND “flood” 
and “image processing” AND “flood”. Three academic databases 
including Science Direct, IEEE Xplore and Scopus were searched against 
the defined keywords and pertinent literature was acquired. In total, 
8174 articles were obtained from all three databases with the individual 
distribution of 6403 from Science Direct, 680 from IEEE Xplore and 
1091 from Scopus. 

Extracted literature was refined and filtered based on defined in
clusion/exclusion criteria. Presented systematic review only included 
journal articles, conference articles, technical reports, thesis and books 
published in the English language between 1998 and 2020. Further
more, duplicate entries among the three databases were removed. 
Literature filtered through initial inclusion/exclusion criteria was 
further screened at three stages (a) title screening (b) abstract screening 
(c) full-text assessment. As a result, 103 unique entries were finalized 
and included in the presented review. Fig. 1 shows the PRISMA flow 
diagram for the systematic literature review. 

The selected use-cases were subjected to exploratory analysis for 
highlighting the trends in distribution across various categories. Fig. 2 
(a) presents the year-wise distribution of selected literature. It is evident 
from the bar graph that the volume of research in flood management 
using computer vision technologies has increased notably from 2015 
onward. Fig. 2(b) shows the pie-chart highlighting proportions of pub
lished research using different visual sensing technologies. From the pie- 
chart, it can be noticed that fixed ground camera based solutions were 
examined the most. In contrast, the potential of hybrid approaches has 
not been investigated in detail. Fig. 2(c) presents the distribution of 
literature across different flood management phases. From the pie-chart, 
it is apparent that computer vision technologies were predominantly 
used at the response phase in comparison to other phases. In contrast, to 
the best of authors knowledge, no published evidence was found for the 
use of computer vision at the recovery phase. Finally, Fig. 2(d) shows the 
distribution across different types of literature presented in the sys
tematic review. 91.1% of total literature was collectively from journals 
and conferences, 3.9% was from arXiv repository for unpublished 
research and 5% from other sources (thesis, technical reports, letters). 
Literature was not assessed for quality because of a relatively small 
number of records, therefore, all relevant published writings were 
included in the review. 
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Fig. 1. Prisma flow diagram for presented systematic review.  

Fig. 2. Exploratory analysis of selected literature.  
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3. Review taxonomy 

This section proposes and defines a detailed taxonomy based on (1) 
specific needs associated with each phase of a flood management pro
cess and (2) capabilities offered by various computer vision technolo
gies. In the following section, defined taxonomy is used to review 
selected articles. A broader objective for defined taxonomy is to serve as 
a foundation to an analytical framework for readers to review future 
scientific articles on the topic or for authors to categorize their research 
clearly. 

Each phase of a flood management process includes a series of 
assessment activities characterized by their intended functionality. For 
example, during the ‘prevention’ phase, the ‘flood risk estimation’ ac
tivity often uses a ‘land use management’ assessment, which intended 
functionalities include a land cover and human activity mapping of the 
target area. Table 1 summarizes functionalities associated with the most 
common assessment techniques used at each phase of flood management 
process. 

Capabilities associated with computer vision technologies fall into 
four categories: classification, detection, tracking and forecasting. Thus, 
our next step is to map the aforementioned required functionalities over 
these technological capabilities. For example, computer vision capabil
ities needed by a ‘land use management’ assessment will broadly fall 
into a ‘classification’ category. Table 2 shows how already identified 
functionalities (Table 1) can be associated with specific computer vision 
capabilities. 

Finally, we need to evaluate capabilities offered by computer vision 
sensing technologies (satellite imagery sensing, airborne remote sensing 
and ground cameras) against requirements associated with specific 
assessment activities. We have limited these requirements to three broad 
categories: coverage area, visual precision and real-time response. 
Table 3 presents a list of the most common flood related assessments and 
their particular requirements. Based on these assumptions, Table 4 
shows the suitability of computer vision sensing technologies for these 

flood related assessments. For example, ‘land use management’ assess
ment requires large area coverage at a low resolution without the need 
for real-time response. Satellite imagery is the most suitable solution for 
this use-case. 

4. Taxonomy-based review of computer vision technologies in 
flood management 

This section reviews successively use-cases associated with ground 
camera technology (4.1), spaceborne satellite imagery (4.2), airborne 
remote sensing (4.3) and hybrid approaches (4.4). A review of the 
literature is presented in chronological order to highlight the different 
stages of development. 

4.1. Ground camera approaches 

Fixed ground camera sensors equipped with edge-computing hard
ware and computer vision algorithms are used for facilitating flood 
management processes in the local scope. An abridgment of selected use- 
cases from literature where ground camera sensors are used for flood 
management is presented. 

In 1998, Fujita et al. [36] proposed Large Scale Particle Image 
Velocimetry (LSPIV) as an extension to the PIV approach for measuring 
surface water velocity. The LSPIV approach was improved in compari
son to conventional PIV for illumination conditions, seeding procedures 
and pre-processing. The Proposed LSPIV approach was based on 
computing the cross co-relation of features between two consecutive 
frames and calculating the flow vectors to determine the flow charac
teristics. The evaluation was performed for three different flow cases 
and a mean error of 3%–5% was reported for surface water velocity 
measurements. In 2008, Udomsiri and Iwahashi [20] developed a 
computer vision based water level detection system using a horizontal 
edge detector and Finite Impulse Response (FIR) filter. Conventional 
edge detection and the FIR filter were used to identify the water-ground 
boundary and enhance performance in assorted lighting conditions, 
respectively. The proposed approach was validated for a custom 
collected dataset of 15 video sequences with encouraging results. No 
comparison with existing literature was made to highlight the scope of 
the study. Later on, Yu and Hahn [102] adopted a similar approach to 
using conventional image processing techniques to detect the water 
level. The proposed algorithm used image subtraction, image registra
tion, reference marking and edge detection techniques. Furthermore, to 
compensate for the camera viewpoint variations, a camera calibration 
approach was used. Results of the proposed method were compared with 
ultrasonic water level measurements and were found relatively close 
indicating the high accuracy of the computer vision approach. Park et al. 
[21] proposed a solution for flood water depth detection at the response 
phase by using a fixed camera. The water level was determined by 
identifying the level at the reference measuring scale using an accu
mulated histogram and bandpass filter approaches. The developed so
lution was not validated for generalized data and results were not 
compared with existing literature to determine the scope. 

In 2010, Rankin and Mathies [43] used the saturation-to-brightness 
ratio as a key factor for semantic segmentation of the water body from 
other terrain types. Color, saturation and texture information of water 
was efficiently used in the designed approach. However, no validation 
metric was defined to evaluate the performance of the developed algo
rithm. Three years later, Kao et al. [57] introduced a real-time computer 
vision based debris flow monitoring system using background subtrac
tion and spatial filtering techniques. The developed algorithm was 
validated comprehensively for three datasets; however, no comparison 
to existing literature was made to highlight the scope of the study. In 
2013, Li et al. [37] implemented a multi-channel Large Scale Particle 
Velocimetry (LSPTV) approach to measure the surface velocity for un
steady flow conditions. Most critical issues of flow seeding, illumination, 
tracer identification and particle matching were addressed. The 

Table 1 
List of different functionalities involved in flood management related 
assessments.   

Functionalities 

Socio-Economic 
Assessment 

land cover 
classification 

classification of 
human 

related activities 

land use 
classification 

Baseline Data 
Collection 

visual data 
collection 

questionnaires and 
surveys 

interviews 

Flood Monitoring 
and Early 

Warning System 

water level 
measurement 

surface water 
detection/surface 

water velocity 

forecasting 
and prediction 
of future 
floods 

Flood modeling hydrological flow 
behviours 
estimation 

hydrological 
structures 
design and 
modeling 

– 

Flood Inundation 
Mapping 

surface water 
detection 

water depth 
estimations 

– 

Flood Debris 
Management 

debris flow 
estimation 

debris recognition debris 
blockage 
detection 

Post Flood 
Damage 

Assessment 

detection of 
damaged 

infrastructures 

total flood damage 
estimations 

structural 
health 

monitoring 

Search and Rescue victim 
identification 

crowd detection – 

Reconstruction 
and Debris 
Removal 

Monitoring 

change detection 
in infrastructures 

development 

– –  
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approach was evaluated for a test case and encouraging results were 
reported. In 2015, Lo et al. [7] addressed the early flood warning 
problem at the preparedness stage by proposing a Closed-Circuit 

Television (CCTV) camera based solution. The water body from images 
was extracted using computer vision techniques and a virtual marker 
was used to determine the water level. A continuous water elevation was 
plotted and a threshold on water elevation was set to issue flood 
warnings. The designed method was extensively assessed for its 
real-time functionality. However, no proper evaluation metric was 
defined to measure its generalized performance. 

In 2016, San Miguel et al. [42] used conventional image processing 
techniques including background subtraction, histogram equalization 
and object detection to extract surface water bodies from the video feed. 
Extensive testing of the developed method for a diverse dataset was not 
reported. The same year, Hiroi and Kawaguchi [103] used conventional 
image processing techniques to detect the water level in rivers for early 
flood warning. Accurate water level measurements were reported for 
use-case; however, the generalized performance was not investigated. 
Later, Yeum [104] proposed the use of Convolutional Neural Network 
(CNN) based object classification and detection algorithms for steel and 
concrete structural damage assessments. The proposed method was 
validated on custom collected data from a use-case and admissible re
sults were reported. In 2016, Tauro et al. [25] emphasized the need for a 
non-intrusive fully autonomous mechanism to measure surface water 
velocity during extreme flood conditions. The LSPIV approach was used 
to measure the velocity for a case study on the Tiber River flood event. 
The performance was assessed for challenging environmental conditions 
(e.g., peak flood, variable illumination, variable weather). The use of the 
LSPIV approach for extreme flood conditions was suggested because of 
its non-intrusive nature and comparable accuracy to conventional ap
proaches. However, a possible degraded performance may exist under 
reduced visibility conditions (e.g., extreme rain, bad lighting, fog). 

In 2017, Tauro et al. [31] compared the performance of LSPIV and 
PTV image velocimetry approaches for custom collected videos of high 
flows. Dataset consisted of 12 videos with artificial seeds distributed 
homogeneously to improve the measurement accuracy. From the 
experimental results, the modified PTV approach was found in close 
agreement with ground truth, while the LSPIV approach underestimated 
the velocity measurements. In 2017, Lopez-Fuentes et al. [44] used 
existing CNN based semantic segmentation algorithms to extract water 
from images. High segmentation precision was achieved; however, the 
dataset was relatively small from deep learning perspective to generalize 
the performance. Harjoko et al. [56] investigated computer vision based 
detection technique for debris flow rate estimation for a use-case. The 
optical flow approach and Lucas-Kanade algorithm were used to detect 
the motion of flood debris and to estimate the speed, respectively. The 
proposed algorithm was validated only for limited scope and no quan
tifiable results were reported. Teng et al. [105] proposed a novel 

Table 2 
Categorization of flood management related functionalities as standard computer vision problem.   

Standard Computer Vision Problem 

Classification Detection/Segmentation Tracking Forecasting 

Functionalities classification of land cover debris recognition hydrological flow 
behavior estimation 

forecasting and prediction 
of future floods 

classification of human 
related activities 

debris blockage 
detection 

debris flow behavior hydrological flow 
behavior estimation 

flood detection total flood damage 
estimation 

change detection in infrastructure development total flood damage 
estimation 

surface water detection victim identification water level variation future blockage 
risk estimation 

victim identification classification of land cover surface water velocity surface water velocity 

Debris blockage detection water level detection – – 

detection of damaged 
infrastructures 

water depth estimation – – 

crowd detection – – –  

Table 3 
Flood management related requirements for each assessment.   

Flood Management Related 
Requirements  

Coverage 
Area 

Visual 
Precision 

Real-Time 
Response 

Assessments in 
Flood 

Management 

Land use 
management 

Large/ 
Global 

Low No 

Baseline data 
collection 

Both Local 
and Global 

Moderate 
to High 

No 

Flood 
monitoring and 
early warning 

Local High Yes 

Flood 
inundation 
mapping 

Large/ 
Global 

Low No 

Flood 
forecasting 

Local High No 

Flood debris 
management 

Local Moderate 
to High 

Yes 

Post flood 
damage 

Both Local 
and Global 

Moderate 
to High 

No 

Search and 
rescue 

Local High Yes  

Table 4 
Relation between computer vision sensing technologies and flood management 
related assessments based on requirements.   

Ground 
Camera 

Airborne Spaceborne 

Land use management × ✓ ✓ 
Baseline data collection ✓ ✓ ✓ 
Flood monitoring and early 

warning 
✓ ✓ ×

Flood inundation mapping × × ✓ 

Flood forecasting ✓ ✓ ×

Flood debris management ✓ ✓ ×

Post flood damage assessment × ✓ ✓ 

Search and rescue × ✓ ✓  
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approach of using semantics and CNN based multi-label classification to 
detect flooding event from images. A three-stage pipeline comprising of 
the semantic model, classification model and event discrimination 
model was used to classify an image as flooded or non-flooded. The 
proposed method was assessed for a custom collected dataset and 
compared with other CNN models with improved performance. 

In 2017, Wang et al. [85] proposed the use of computer vision 
technologies for collecting hyper-resolution data to support urban 
flooding. MyCoast crowdsourcing platform was used to collect flooding 
images from social media. A CNN based image classification algorithm 
was used to detect the flood in a given image. Although promising re
sults were achieved, but the investigation of more state of the art com
puter vision techniques was not done. In the same year, Alam et al. [86] 
proposed an end-to-end system called Image4Act to process social media 
images for disaster response. The system mainly consisted of image 
collector, image filtering, image denoising and finally, image classifi
cation. VGG16 deep architecture was used to classify the collected image 
into one of the defined flood response classes. Encouraging results were 
reported; however, a detailed investigation of the proposed system was 
not performed. Later, Geetha et al. [87] proposed a computer vision 
based approach to automatically estimate the flooding extent from 
random crowdsourced images. Color-based segmentation of the water 
body from the image was used as the main idea in the proposed algo
rithm. The Flood level in the image was estimated by segmenting the 
human body (e.g., face and body regions) and determining the average 
relative height. A reasonable performance was achieved for the concept; 
however, investigation of the state of the art algorithms was not per
formed. Yang and Ng [80] proposed the use of crowdsourcing approach 
as an alternative to conventional sensors towards monitoring urban 
rainfall. Smartphones, surveillance cameras and other mobile devices 
were proposed to be used as precipitation sensors. From the series of 
simulation based experiments, it was reported that rainfall data gener
ated through crowdsourcing lead to better stormwater flow modeling in 
comparison to conventional rain gauge data. However, all the data used 
in the simulations was generated statistically based on assumptions and 
challenges in the development of rainfall reporting/monitoring tools for 
mobile devices were not addressed. 

In 2018, Strobl et al. [81] assessed the accuracy of crowdsourced 
streamflow observations towards using citizen science in water man
agement. Observations from approximately 500 citizens were taken 
using field surveys and virtual-gauge functionality of the CrowdWater 
mobile application for ten streams in Switzerland. From the results, it 
has been reported that stream level observations were more accurate in 
comparison to streamflow estimates. In the same year, Giannakeris et al. 
[88] proposed a warning system to detect the vehicles and people in 
danger during a disaster from crowdsourced images. The proposed 
system consisted of image classification (if there is an emergency situ
ation in the image), emergency localization (identify the region of 
emergency), object detection (detect person and vehicles) and severity 
level estimation. VGG16 was used for classification, DeepLab for local
ization and Faster R–CNN for object segmentation. Encouraging results 
were reported to demonstrate the scope of the proposed approach. 
Witherow et al. [89] proposed an image processing pipeline to detect the 
extent of floodwater on roads from the crowdsourced collected images 
(images from mobile devices). A custom collected dataset from the 
actual flooding event was used to demonstrate functionality of the 
proposed system. Edge detection, Region Based CNN (R–CNN), image 
inpainting and contract correction methods were used towards 
extracting the flood extent information from the crowdsourced images. 
Encouraging results were reported; however, challenges regarding the 
variation of data in terms of image resolution, lighting condition and 
environmental conditions were also highlighted. In 2018, Feng and 
Sester [90] proposed a deep learning based approach to extract flood 
related Volunteered Geographic Information (VGI) from social media 
texts and photos. A dataset of 7600 images was used for the classifier 
training in the pipeline. Logistic regression, random forest, multilayer 

perceptron, gradient boosted trees and XGBoost classifiers were trained 
and compared for their performance. From the analysis, XGBoost was 
reported best in terms of classification accuracy. Later, Krohnert and 
Eltner [91] proposed a low-cost camera based system for hydrological 
measurements. Smartphones were highlighted as the main source of 
data to be processed for hydrology related measurements and observa
tions. Android based application called “Open Water Levels” was used to 
collect the water level information from smartphones. Encouraging re
sults were reported; however, a detailed investigation was not 
performed. 

In 2018, Tauro et al. [38] proposed Optical Tracking Velocimetry 
(OTV) approach to measure the surface water velocity. The proposed 
approach enabled automatic detection of features, tracking in Lucas
Kanade algorithm and Region of Interest (ROI) filtering to discard the 
un-realistic trajectories. The OTV approach was validated for varied 
flow conditions and was found insensitive to image resolution. 
Furthermore, the OTV was reported to be less sensitive to noise and 
surface seeding in comparison to other cross co-relation based veloc
imetry approaches. A significant impact of acquisition frequency was 
reported for the values lower than 7HZ. Furthermore, the performance 
of multiple feature detectors was compared and the Features from 
Accelerated Segment Test (FAST) algorithm was reported best among 
studied. In the same year, Leitao et al. [34] used the Surface Structure 
Image Velocimetry (SSIV) approach for runoff velocity measurements 
using consumer-grade surveillance cameras. The proposed SSIV 
approach was based on the conventional LSPIV with improvements for 
(a) glare and shadows on water surface (b) lack of traceable feature. 
Among other contributions, investigation of the proposed approach for 
variable illumination conditions was most critical from image process
ing perspective. From the results, it was reported that the proposed 
approach accurately measured surface water velocity as low as 0.1ms− 1 

in the day while 0.5ms− 1 at the night. Lin et al. [22] developed a single 
camera based system for detecting water level at a reservoir. Conven
tional image processing techniques including line detection, camera 
transformation and camera calibration were used to identify the water 
level from a water gauge. Although the proposed algorithm efficiently 
compensated for camera movement, camera tilt and noise issues; how
ever, it was not assessed for comprehensive visual data for generalized 
performance. Lohumi and Roy [106] introduced a deep learning based 
approach to estimate flood severity from the video. Gated Recurrent 
Unit (GRU) with VGGNet was used to classify the video sequence. The 
proposed system was tested on a custom collected dataset with consid
erable accuracy. Layek et al. [107] proposed a CNN-based approach to 
detect flood images from social media. CNN classification model and 
color based filtering were used to detect the flooded and non-flooded 
images. Encouraging results were reported when validated for a 
custom collected dataset. 

In 2019, Pouyanfar et al. [108] used an adversarial data augmenta
tion approach to address the problem of real-world weather conditions 
in flood detection. CycleGAN data augmentation approach with the 
ResNet50 CNN model for classification was used to categorize social 
media collected images into flooded and non-flooded. A custom dataset 
of approximately 10,000 images was developed and the performance of 
different algorithm configurations was compared to highlight the 
advantage of the proposed algorithm. Later on, Rubio et al. [109] 
introduced deep learning for accurate state estimation of infrastructure 
damage. Semantic segmentation was used to extract the delamination 
and rebar damage for a custom dataset of approximately 700 images. 
Dataset was relatively small from deep learning perspective to address 
generalization. Ackere et al. [110] emphasized on inclusion of 
flood-prone buildings into socio-economic impact assessment and pro
posed the idea of using computer vision technologies as a potential so
lution. Location and dimension of doors, windows and basement 
ventilation holes were proposed to be detected using some image seg
mentation algorithms towards generating information useful for flood 
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risk management. Zhang et al. [111] proposed a novel approach to 
detect the water level under complex illumination conditions using 
image processing techniques. The water line was detected using the 
position of Maximum Mean Difference (MMD) of horizontal projections. 
The proposed method was evaluated for two sites under a variety of 
natural and artificial illumination conditions with encouraging results. 

In 2019, Etter et al. [83] proposed the use of crowdsourced water 
level class observations towards calibrating the hydrological model. A 
Bucket-Type runoff model (HBV) was calibrated for four catchments in 
Switzerland using crowdsourced water level values collected via virtual 
gauge functionality of CrowdWater mobile application. Effects of tem
poral resolution and magnitudes of errors in the crowdsourced water 
level observations were studied on the validation performance of the 
hydrological model. From the results, it was reported that one obser
vation per week for one year could significantly improve the perfor
mance of the hydrological model. Furthermore, a minimal effect of 
typical citizen science based errors was observed on the performance of 
the hydrological model. In the same year, Seibert et al. [82] proposed 
the use of virtual staff gauge under the CrowdWater mobile application 
platform towards collecting accurate crowdsourced stream water levels. 
Virtual staff gauge allowed to avoid the installation of physical gauges 
and enabled citizens to easily capture the water level data. Although the 
idea was encouraged by the community; however, problems in place
ment, virtual gauge size and unsuited location were highlighted to be 
improved. 

More recently, Meng et al. [112] developed computer vision algo
rithms based pipeline to estimate the flood depth from web images. The 
Mask R–CNN model was used for the semantic segmentation of humans 
from web image and extraction of body key points. Face++ Application 
Programming Interface (API) was used to determine the sex, age and 
ethnicity information. The proposed approach was assessed for a rela
tively small dataset of only 155 web images. In 2020, Mishra et al. [113, 
114] developed a deep learning based pipeline to classify the drains as 
different blockage classes. Semantic segmentation and VGG16 classifi
cation models were used in the pipeline to focus on the drain and classify 
it into one of the defined blockage classes. The proposed methodology 
was evaluated for a custom dataset and admissible results were reported. 
Huang et al. [115] introduced a novel image segmentation based 
approach to estimate the flood water depth from images. The tyre of the 
vehicle was used as a reference object and was segmented from the 
image using the Mask R–CNN model for estimation of water depth. 
Admissible results were reported for the proposed approach when 
validated against a custom collected dataset. Liang et al. [116] devel
oped a novel WaterNet CNN model for segmenting the water body from 
a given image. The volatile and dynamic appearance of water was used 
as a key feature in the developed CNN model. A dataset of 2388 images 
and 20 videos with segmentation labeling named “WaterDataset” was 
developed. A proper evaluation metric was defined and the results of the 
proposed algorithm were compared with existing algorithms in the 
literature for the introduced dataset. 

In one of the most recent publications, Feng et al. [93] proposed a 
three-stage pipeline for mapping flood severity using VGI, also referred 
to as social media information. Flood related images from social media 
were extracted at the first stage, interpreted for flood severity at the 
second stage and a flood severity map was generated based on social 
media post location at the final stage. Mask R–CNN, OpenPose and 
DeepLabv3+ models were used for human detection, body keypoint 
detection and semantic segmentation, respectively, at the second stage. 
A comprehensive analysis of the performance of the proposed method 
was made for a selected use-case. Muhadi et al. [117] performed a 
comparative study of different image segmentation approaches to 
extract water body from a given image to determine the flooding. Image 
segmentation approaches were compared qualitatively and quantita
tively for a custom test case. The hybrid approach was reported as the 
best in comparison to region growing and threshold based approaches. 
Evaluation for a more generalized dataset was not addressed and state of 

the art semantic segmentation algorithms (e.g., Mask R–CNN) were not 
included in the comparative study. 

Pereira et al. [94] used flood related social media images dataset to 
identify the flood and determine its severity. A custom dataset was 
developed taking images from European Flood 2013 dataset and the 
Multimedia Satellite Task from MediaEval. DenseNet and EfficientNet 
CNN models were used with reasonable accuracy to demonstrate the 
potential of using deep learning techniques for flood event detection. 
However, limitations of an extensive dataset and generalized perfor
mance were not discussed. Quan et al. [95] used human pose informa
tion from social media images to determine the flood extent. Pipeline 
included classification of flood related images, detection of humans in 
the image, detection of body key points and determination of flood 
severity based on the extracted information. The proposed approach was 
validated on the MediaEval19 challenge public dataset and was ranked 
first in the competition. Chaudhary et al. [96] proposed a multi-task 
deep learning approach to estimate water depth from the social media 
images for flood mapping. The idea of training the model for a small set 
of annotated water levels (regression task) and a larger set of weak 
annotated dataset (ranking task) was used effectively towards saving 
annotation effort. An annotated dataset named “DeepFlood” was intro
duced with 8145 images. The water level with less than 11 cm Root 
Mean Square (RMS) error was estimated using a multi-task approach 
with the VGG16 CNN model. In a recent research, Tosi et al. [26] 
developed a low-power edge computing hardware for streamflow ve
locity measurement in Situ River. The OTV approach based on the FAST 
features detection and Lucas-Kanade algorithm was used to measure 
surface water velocity. For the deployment on edge computing hardware 
(Raspberry PI 3 B), baseline OTV was optimized for search area, pyramid 
levels, number of tracked features, frame rate and image resolution. 
From the analysis, improved performance for the optimized OTV 
approach was reported; however, dependence on visual quality 
degrading factors (e.g., lighting conditions, extreme weather, lower 
image resolution) was not addressed. 

Most recently, Etter et al. [84] assessed the quality of water level 
class observations collected using the virtual staff gauge functionality of 
CrowdWater mobile application. Crowdsourced observations were 
compared with real surveyed values for 12 different locations under 
different flow conditions. From the results, crowdsourced observations 
were reported better in comparison to the real observations. The use of 
virtual staff gauge and interactive mobile application to record hydrol
ogy related data was encouraged. In 2020, Ning et al. [92] proposed a 
screening system based on deep learning algorithms to identify floods 
related images. The proposed system mainly consisted of image down
loading from social media, detecting flooding in images and finally a 
web based application for human verification. A custom collected 
dataset of 4800 images was used to train the CNNs and classification 
accuracy of 93% was reported for VGG16 among others. 

Fixed ground camera based approaches were reported to be used 
across a variety of flood management related activities including water 
level detection, surface water detection, surface water velocity mea
surement, flood severity determination, socio-economic impact assess
ment, flood early warning systems and flood debris detection. 
Implementation of computer vision technologies evolved over the years 
from conventional image processing techniques (e.g., line detection, 
edge detection, transformations, filters, color transforms, LSPIV, LSPTV, 
SSIV, OTV) towards CNN based approaches (e.g., ResNet50, CycleGAN, 
WaterNet, Mask R–CNN, DenseNet, EfficientNet, VGG16). However, the 
limitation of not having comprehensive visual annotated datasets was 
consistently observed in the presented literature. Furthermore, crowd
sourcing or citizen science has shown significant potential in flood 
management related activities. All the reported solutions were proposed 
for a specific local utility under the limited scope and no generalized 
performance was addressed mainly because of the unavailability of 
standard visual datasets. Furthermore, except for a few use-cases, there 
was no comparison between the proposed approach and existing 
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algorithms made to highlight the scope of the study. Some studies were 
not performed in the direct scope of flood management, such as Rubio 
et al. [109]; however, included in the review because similar approaches 
can potentially be used for flood management in the future. 

4.2. Spaceborne optical imagery approaches 

Spaceborne or satellite images interpreted using computer vision 
algorithms are used in the global scope for flood management. A sum
mary of selected use-cases where satellite optical images are used to 
address flood management activities is presented. 

In 2006, Ip et al. [47] introduced an autonomous spacecraft using 
Autonomous Sciencecraft Experiment (ASE) software for flood moni
toring. On-board capabilities of spacecraft were used to automatically 
detect and react to a flooding event without human intervention. A 
reduced react time of 6 h was achieved from preliminary tests. In 2015, 
Castelluccio et al. [18] performed CNN based classification on satellite 
captured images dataset called “UC Merced Land Use Dataset” to iden
tify the land use based on visual features. GoogleNet and CaffeNet CNN 
models were validated for the UC Merced dataset with 97% and 95% 
classification accuracy, respectively. In 2017, Liu et al. [45] proposed a 
novel spatiotemporal context learning method with a modest AdaBoost 
classifier to automatically generate the flood inundation maps. The 
proposed method was validated on two different flood cases with ad
missible results. Isikdogan et al. [46] developed a novel DeepWaterMap 
CNN model to specifically classify water bodies from satellite images. 
High accuracy was achieved for custom Landsat images; however, 
integration of other sources of information to compensate revisit limi
tations of the satellite was not addressed. Later that year, Helber et al. 
[19] proposed a comprehensive novel land use classification dataset 
called “EuroSAT”. GoogleNet and ResNet50 CNN models were imple
mented for classification and achieved over 98% accuracy. 

In an effort to address flood management using state of the art 
computer vision approaches, MediaEval introduced a challenge in 2017 
called “Multimedia Satellite Task: Emergency Response for Flooding” to 
detect the flood from the social media textual and satellite visual in
formation [118]. Teams from academic institutions around the world 
were invited to propose corresponding solutions. Few highlighted so
lutions [48–55] are presented in this review where CNNs, random forest 
classifier and regression approaches were used. Teams were provided 
with the dataset, and results of the challenge indicated that visual in
formation could be efficiently used for flood detection. Although the 
state of the art vision algorithms were deployed over a relatively small 
but standard satellite images dataset; however, proposed solutions were 
not comprehensively explored for their real-time implementation and 
were not tested in real-world events for more challenging conditions. 

In 2018, Weng et al. [119,120] proposed the combination of CNN 
and Constrained Extreme Learning Machine (CELM) for land use clas
sification. Features were extracted using a pre-trained CNN model, while 
classification at the fully connected layer was done using the CELM 
classifier to improve the performance. The proposed algorithm demon
strated improved performance in comparison to literature when applied 
to standard UC Merced and AID datasets. Yang et al. [121] developed 
CNN models SegNet and LiteNet for the land cover and land use clas
sification, respectively. Different variants of CNN models were used for 
custom-defined satellite dataset and accuracy of around 80% was ach
ieved. However, a more generalized performance of the proposed al
gorithm was not addressed. Nogueira et al. [8] proposed a computer 
vision based solution for threshold and atmospheric variations in 
reflectance based surface water mapping. Existing CNN models were 
used to classify satellite images as flooded or non-flooded. High accuracy 
was achieved over a custom dataset; however, the generalized perfor
mance was not investigated. Zhang et al. [122] developed novel 
multi-scale deep learning models, named ASPP-Unet and ResASPP-Unet 
for urban land cover classification. ASPP-Unet model was introduced to 
extract high-level features while ResASPP-Unet to improve the model 

architecture by replacing layers with residual links. In comparison to 
existing literature, proposed models were reported better when applied 
on a custom dataset collected from a use-case. 

In 2019, Potnis et al. [123] proposed a novel Efficient Residual 
Factorized Convnet (ERFNet) deep learning model to segment the 
flooded regions in the satellite images. The markGT annotation tool was 
developed to facilitate the end-to-end annotation of the custom satellite 
image dataset. The proposed algorithm demonstrated acceptable per
formance for the custom dataset highlighting the future potential of 
deep learning for such applications. In 2020, Weber and Kan [124] 
developed a deep learning based damage detection pipeline for xBD 
satellite dataset [125]. ResNet50 model was used as a backbone, while 
Mask R–CNN semantic segmentation was used at the final step to visu
alize the damage map of a given region. The improved performance was 
reported when compared with the base model proposed in the literature. 
Gupta and Shah [126] proposed a novel RescueNet CNN model for 
building damage assessment from satellite images. Localization aware 
loss function comprising of Binary Classification Loss for building 
detection while Categorical Cross-Entropy Loss for damage detection 
was used to achieve improved results. The proposed algorithm was 
compared with existing literature for a standardized xBD satellite 
dataset [125] and improved results were reported. More recently, Shao 
et al. [127] developed a novel Building Damage Detection Network 
(BDD-Net) to map the post disaster structural damage from satellite 
images. The proposed end-to-end pixel classification model was used to 
classify each pixel of satellite image as damaged, undamaged, or other 
background class. Encouraging results were reported for the proposed 
model when validated on a custom dataset. 

Spaceborne optical images were reported to be used for flood man
agement activities including flood inundation mapping, land use clas
sification, land cover classification, and structural damage assessment. 
Computer vision technologies have emerged from the use of existing pre- 
trained CNN models (e.g., GoogleNet, CaffeNet, ResNet) towards the 
development of problem-specific CNN models (e.g., DeepWaterMap, 
SegNet, LiteNet, ASPP-Unet, ResASPP-Unet, ERFNet, RescueNet, BDD- 
Net) for achieving better performance. For land use classification, land 
cover classification and flood detection, standard visual dataset have 
been developed over the years including UC Merced Land Use Dataset, 
EuroSAT and MediaEval. However, there is potential of incorporating 
UAV captured data for on-demand and quick land use classification. 
Although water mapping and flood inundation mapping using the 
reflectance information from the satellites is a more accessible and ac
curate approach in comparison to vision based mapping [128–130]; 
however, comes with the limitation of cost. 

4.3. Airborne optical imagery approaches 

Airborne images usually captured by UAVs equipped with edge- 
computing hardware are used for addressing flood management activ
ities. Generally, UAVs based setup provides the functionality of on- 
demand analysis and discusses the gaps between the satellite imaging 
and ground imaging by providing better spatial resolution and temporal 
coverage [23,131]. A summary of selected use-cases where airborne 
optical approaches are used for flood management is presented. 

In 2008, Lewis and Rhoads [30] proposed the use of the LSPIV 
approach with Unmanned Aerial System (UAS) for measuring flow 
patterns in rivers. The performance was assessed by comparing the 
LSPIV-UAS results with LSPIV-Stationary and conventionally measured 
velocity values for two case sites. From the results, UAS mounted LSPIV 
was reported more accurate in comparison to LSPIV-Stationary and 
conventional measurements. In 2009, Robertson and Chan [132] used a 
color-based image segmentation approach for flood risk analysis from 
aerial images. Image classification via entropy and image gradients were 
used to differentiate between different land use classes. Admissible ac
curacy for the proposed approach was reported on a custom dataset. In 
2015, Sumalan et al. [133] proposed the use of a computer vision 
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approach to detect the surface water from UAV captured images. Local 
Binary Patterns (LBP) were used to detect the water in images based on 
color variations. A comprehensive evaluation of the proposed algorithm 
in terms of generalization and scope was not presented. In 2015, Tauro 
et al. [39] proposed the use of the LSPIV velocimetry approach for UAVs 
in an effort to increase the measurement area and access to locations. 
Video sequences were captured using a custom developed quadcopter. 
Captured videos were processed using the LSPIV approach to measure 
the surface water velocity. Gimbal setup was used to prevent the image 
orthorectification. The proposed approach was validated for lab sce
narios and real-world sites with encouraging results for velocity 
measurements. 

Feng et al. [2] proposed a vision based algorithm to identify flooded 
areas from airborne images captured using a mini UAV. Grey level 
derived texture features were extracted from aerial images and were 
classified as flooded or non-flooded using random forest classifier. High 
classification accuracy was achieved for a custom and relatively small 
dataset; however, the generalized performance was not addressed. Sul
livan et al. [58] developed a novel approach to detect the cross drainage 
structures more vulnerable to debris blockage from UAV captured im
ages. The proposed idea was to automate the process of detecting the 
large woody piles and classifying into one of three defined categories; 
small pile (1–2 trees), medium pile (3–6 trees), and large pile (more than 
6 trees). No computer vision algorithm was developed or implemented 
for the detection and classification of debris; instead, a manual 
survey-based approach was used to identify the risk. 

In 2016, Perks et al. [134] developed a computer vision based 
approach to track flood related features and determine surface water 
velocity from UAV captured images. Transformations were used to 
compensate for the camera orientations and Kande-Lucas-Tomasi (KLT) 
algorithm was implemented for water surface features tracking. 
Furthermore, velocity vectors were achieved using a vector correction 
method. In the same year, Tauro et al. [35] proposed the use of recre
ational drone and LSPIV approach to precisely measure surface water 
velocities. Natural and artificial tracers were used to enhance the per
formance of the image velocimetry approach. From the results, it was 
reported that the deployed quadcopter platform was able to capture 
stable videos and there was no significant effect on velocity measure
ments. Although encouraging results were reported; however, general
ized performance and dependence on lighting conditions were not 
investigated. 

In 2017, Zhu et al. [135] investigated the significance of data 
collection using UAVs to better monitor and mitigate flood events. It was 
reported that UAV data, in combination with Geographic Information 
System (GIS), provides more accurate and quick information about flood 
events in comparison to conventional approaches. In 2018, Rahne
moonfar et al. [136] introduced the use of densely connected CNN and 
Recurrent Neural Network (RNN) models to accurately segment out the 
flood related regions from aerial images. A custom collected dataset 
from Houston, Texas use-case was used to assess the performance and 
over 90% accuracy was reported for the proposed approach. However, 
details about the dataset were not comprehensively presented and 
generalized performance was not addressed. Kamilaris and 
Prenafeta-Boldu [12] proposed a deep learning based algorithm to 
classify the small dataset of airborne images into disaster and 
non-disaster categories and identified the type of disaster. The proposed 
approach was validated for a custom collected small dataset and ad
missible performance was reported; however, the generalized perfor
mance was not discussed. 

In 2018, Ridolfi [23] used the idea of detecting water level in the 
reservoir from UAV captured images. The conventional edge detection 
approach was used and implemented on use-case with an error of only 
0.02 m. However, no discussion on compensating camera viewpoints, 
vibrations and noise was included. Furthermore, the generalized per
formance was not addressed since the visual dataset was relatively 
small. In 2019, Kyrkou and Theocharides [137] used multiple CNN 

models on a custom developed dataset to classify disaster from aerial 
images. Aerial Image Database for Emergency Response (AIDER) con
taining around 300 flood related images was developed and classified 
using CNN algorithms including MobileNet, ResNet50, VGG16 and 
SCNet. Gao et al. [138] proposed computer vision based water level 
detection from UAV captured images. Conventional image processing 
techniques were used to draw a water line in the image and fluctuations 
were measured using a parametric approach. A correction factor was 
used to compensate for the UAV drift factor and favorable results were 
achieved from preliminary tests for a use-case. Gebrehiwot et al. [139] 
introduced the use of the VGG-based CNN model to extract the flooded 
regions from a UAV captured image. A custom dataset of only 100 im
ages was used to train the CNN model and highlighted as an advantage 
of the proposed approach; however, justification of the claim was not 
provided. The proposed algorithm might drastically fail for more 
generalized datasets as the learning curve indicated the overfitting. 

In 2019, Yang and Cervone [140] developed a deep learning and 
machine learning based pipeline to automatically classify a given aerial 
image as flooded or non-flooded. For training the CNN model, manually 
annotated 1000 images were used. A max voting classifier was used to 
classify the extracted features and performance of approximately 90% 
accurate classification was reported. However, the potential of more 
advanced CNN models with generalized performance was not explored. 
Stulic et al. [141] proposed a novel visual attention based approach to 
detect a person from aerial images. The idea of reducing the search space 
by training a CNN based visual attention algorithm was used. A database 
of around 70,000 images called “HERIDAL” was used and the accuracy 
of 88.9% was achieved for the proposed algorithm. Reported results 
were compared with the existing literature and found improved in terms 
of performance. Lygouras et al. [142] used an unsupervised deep 
learning-based human detection algorithm to facilitate the search and 
rescue operations. A CNN model pre-trained on the COCO dataset was 
fine-tuned and transfer learned using a custom swimmers dataset. The 
proposed algorithm was also implemented on hardware and admissible 
accuracy was achieved from preliminary tests. Ichim and Popescu [143] 
developed a UAV to map the flooded region by using the CNN model. 
The idea of splitting the images into small patches and classifying each 
patch as flooded or non-flooded was used for flood mapping. The pro
posed approach was tested on a custom dataset and admissible results 
were achieved. 

In 2019, Pi et al. [144] proposed the use of CNN algorithms on im
ages captured by UAV for identifying flood related damages. You Only 
Look Once (YOLO) object detection model-based algorithms were used 
for the detection of damage in the images. A detailed comparison of 
different models was carried out for a custom annotated dataset. In the 
same year, Koutalakis et al. [29] performed a comparative study to 
investigate the performance of three commonly used image velocimetry 
approaches (i.e., PIVlab, PTVlab, KU-STIV) on drone captured videos of 
Aggitis River. Comparable results were reported for all three approaches 
with the capability of measuring surface water velocity within the 
0.02–3.99 ms− 1 range. However, performance for diverse flow condi
tions and variable lighting conditions was not studied. In 2020, Mishra 
et al. [145] introduced a visual dataset for search and rescue purposes to 
facilitate the implementation of deep learning based algorithms. The 
proposed detection and action recognition dataset consisted of around 
2000 images with 30,000 human instances of different actions. A deep 
CNN model was proposed for detection purposes and performance was 
compared with R–CNN and R–FCN models from literature to demon
strate the advantage. More recently, Fung et al. [146] used a deep 
learning based object detection and segmentation approach to detect the 
disaster victims in a cluttered urban environment. 

In a recent publication, Pearce et al. [27] performed comparative 
sensitivity analysis for five common image velocimetry approaches on 
UAS captured videos of Kolubara River under low river flow conditions. 
Artificial seeding material was distributed homogeneously across the 
river to improve the performance of image velocimetry approaches. 
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Sensitivity analyses were performed mainly for particle identification 
area and feature extraction rate parameters. From the analysis, it was 
observed that KLT and SSIV approaches were sensitive to change in 
feature extraction rate while the change in particle identification area 
had a negligible impact. Converse behavior was observed for the OTV 
and LSPTV approaches. LSPIV approach was reported sensitive to 
change in any of both features. From the results, it was reported that 
optical image velocimetry approaches were able to measure surface 
water velocity of as low as 0.12 ms− 1. However, dependence on lighting 
conditions and flow variations was not comprehensively investigated. 

Airborne optical images captured using UAV and interpreted by 
computer vision algorithms were reported in the literature to address 
flood management activities including flood detection, water level 
detection, surface water velocity measurement, baseline data collection, 
flood debris detection, flood damage assessment and search and rescue 
missions. Computer vision technologies in this domain have emerged 
over the years from conventional techniques (e.g., LBP, random forest 
classifier, KLT, Image transformations, line detection, LSPIV, LSPTV, 
SSIV, OTV) towards deep learning based techniques (e.g., densely con
nected CNN and RNN, VGG-based CNN, max voting classifier, YOLO). 
Although the magnitude of research has been observed as increased after 
2015; however, lack of comprehensive datasets, investigation of 
generalized performance and comparison with existing literature were 
found consistent limitations of presented literature. Studies performed 
by Stulic et al. [141], Mishra et al. [145] and Fung et al. [146] were not 
in the direct scope of floods, however, a similar approach can be used for 
flood management using UAVs in future. 

4.4. Hybrid approaches 

Hybrid approaches (i.e., a combination of two or more visual sensing 
techniques) were used to compensate for the limitations of a single vi
sual platform. A summary of selected use-cases where a hybrid approach 
was used to address flood management is presented as follows. 

In 2002, Zhang et al. [147] highlighted the use of both spaceborne 
and airborne sensing to monitor floods in China. A system called 
“NPOIS” was proposed to effectively monitor and evaluate the flooding 
events in China. Although the system is claimed to be already functional; 
however, no information about the evaluation metric or performance of 
the proposed system was presented. In 2015, Balkaya et al. [59] pro
posed an open access vision tool based analysis of the spaceborne optical 
image to detect the damages caused by the floods. To overcome the 
limitation of the only top view, a multiview camera was integrated along 
with the satellite captured images. In 2017, Popescu et al. [148] 
developed a flood estimation system using a combination of ground 
visual sensors and UAV captured airborne images. Deep neural networks 
were used for feature extraction and identification of flooded regions. 
High classification accuracy was achieved for the proposed algorithm; 
however, the generalized performance was not studied. In 2019, 
Munawar et al. [149] proposed a machine learning and image pro
cessing based flood detection pipeline to classify a given image as 
flooded or non-flooded. Conventional image processing approaches 
including edge detection, image transformations and landmark detec
tion were used as pre-processing before training a Support Vector Ma
chine (SVM) classifier. Both satellite and aerial visual data were used to 
train the classifier. Accuracy of 90% was achieved for the proposed 
approach; however, there was no standard dataset used to assess the 
generalized performance. 

In 2019, Bhola et al. [150] introduced the idea of using visual data as 
validation for the inundation maps. Determination of water levels using 
state of the art image processing algorithms can provide a forecast for 
flood inundation. In 2020, Lin et al. [151] proposed the idea of using 
VGI for flood detection. Image processing and photogrammetric method 
were used collectively for water level determination. Random forest 
classification and Canny edge detector were used for flood level detec
tion from images. The proposed algorithm was applied on a use-case and 

admissible results were reported. In 2020, Jimenez-Jimenez et al. [152] 
proposed the use of satellite images and aerial images along with Digital 
Elevation Model (DEM) and object-based image analysis to determine 
the damage caused to structures by the floods. Image segmentation 
analysis was used to classify houses from satellite images while vege
tation and houses from UAV images. The difference between house 
objects detected from satellite images and aerial images was used to 
determine the washed away houses by floods. In general, satellite im
ages were used as ground truth or reference. No comprehensive analysis 
and details on the detection of houses using UAV and dealing with 
challenges related to UAV data were addressed. 

Hybrid approaches were reported to be used for addressing flood 
management related activities including flood monitoring, flood dam
age assessments, flood inundation mapping and water level detection. 
Although the trend of incorporating UAV images into ground and sat
ellite images is increasing; however, a more comprehensive investiga
tion is found consistently missing in the reported literature. 

5. Need-based analysis 

Need-based analysis of the literature is propounded to highlight the 
contributions in the flood management domain from the slant of a so
lution provider. As proposed by Iqbal et al. [17], a need-oriented anal
ysis of literature renders an intact picture regarding technologies being 
used for specific assessments at each phase of flood management. 
Moreover, it underlines the trends and distribution of efforts being made 
for certain assessments. In addition to need-based analysis, the pre
sented literature is subjectively assessed for consideration of flood 
management related requirements as proposed by Iqbal et al. [17]. Each 
flood management phase and assessment involves a number of con
straints and a set of requirements to be addressed for providing effective 
solutions. Presented literature is evaluated for comprehensiveness to 
which common flood management related requirements (accuracy, 
responsiveness, generalization) are considered. Assessment criteria is 
defined as follows:  

• Accuracy determines the extent of precision to which the proposed 
method addressed one of the flood management related problems. 
For this review, the following scoring criteria is used to assess the 
accuracy:  
– (+) if the authors minimally evaluated the proposed method for 

accuracy by using at least one standard measure.  
– (++) if the authors extensively evaluated the proposed method 

for accuracy by using multiple measures.  
– (+++) if the authors extensively evaluated the proposed method 

and compared it with existing literature to highlight the scope.  
• Responsiveness determines the response times of the proposed 

approach to address one of flood management related problems. The 
following criteria is used in this review score to the literature:  
– (+) if the authors minimally evaluated the proposed method for 

response time and processing speed using at least one standard 
measure.  

– (++) if the authors extensively investigated the proposed 
approach for responsiveness using more than one standard 
measure.  

– (+++) if the authors extensively evaluated the proposed method 
and compared it with existing literature to highlight the scope.  

• Generalization determines the extent of variability to which the 
proposed approach is assessed to address one of the flood manage
ment related problems. Following scoring criteria is used for this 
review to evaluate literature:  
– (+) if the authors validated the proposed method for a relatively 

small dataset collected from at least two different sites.  
– (++) if the authors validated the proposed method for a 

comprehensive and diverse custom collected dataset. 
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– (+++) if the authors validated the proposed method for a 
benchmark dataset and compared it with existing literature. 

Tables 5–9 provide the need-based analysis of literature for ground 
camera, airborne, spaceborne and hybrid approaches, respectively. 
From the analysis, the following important observations can be 
evidently reported:  

(1) Assessments at the response phase of flood management are 
targeted the most while the recovery phase is completely 
neglected. Most aided assessments reported include water level 
detection, surface water detection, structural damage assessment 
and flood depth estimation. 

(2) Use of computer vision technologies has emerged from conven
tional techniques (line detection, edge detection, filtering, 
transformations, LSPIV, LSPTV, SSIV, OTV) to existing CNN 
models (ResNet50, VGG16, GoogleNet, CaffeNet, Faster R–CNN, 
Mask R–CNN) to assessment specific designed CNN models 
(RescueNet, DeepWaterMap, WaterNet, SegNet, BDD-Net).  

(3) Availability of benchmark visual datasets is found lacking and 
mostly case-based solutions are provided. For the same reason, 
the generalized performance of proposed approaches is not 
addressed comprehensively.  

(4) Flood management related requirements are found not to be 
comprehensively addressed in most of the presented literature. 
This might be because of a lack of proper requirement 

formulation and lack of collaboration among the flood manage
ment officials and technology providers. 

6. Future applications and challenges 

The presented systematic review demonstrates the potential of visual 
information and computer vision technologies within the flood man
agement domain. Our critical analysis of literature reported various 
limitations of existing approaches and highlighted the future scope of 
computer vision technologies. A brief summary of future applications of 
computer vision technologies and corresponding challenges in flood 
management is presented. 

Lack of proper requirement formulation and unavailability of 
comprehensive visual datasets are major limitations observed univer
sally from reported computer vision based solutions. For land use clas
sification task at the prevention stage of flood management, computer 
vision approaches using CNN have already achieved success at satellite 
images dataset [18,19]. To achieve real-time on-demand classification 
maps for local regions, UAVs can be utilized; however, edge computing, 
image stitching and camera viewpoints are the challenging factors. 
Monitoring the performance of flood prevention structures (e.g., dams) 
can utilize computer vision technologies in damage detection and water 
level measurement [23] activities. A combination of classical image 
processing techniques (e.g., edge detection) and learning-based ap
proaches (e.g., deep learning) can prove helpful. Howbeit, dealing with 
variable lighting conditions, on-board processing and generalization are 

Table 5 
Need-based analysis of literature for ground camera approaches in flood management – part a.  

Article Phase Assessment Proposed Technology Scope Addressed Requirements 

Accuracy Responsiveness Generalization 

Fujita et al. [36] Preparedness Surface Water Velocity LSPIV Real-World + Not Addressed +

Udomsiri and 
Iwahashi [20] 

Preparedness Water Level Detection horizontal edge detector 
and FIR filter 

In-Lab 
Experiment 

+ + Not Addressed Not Addressed 

Yu and Hahn [102] Preparedness Water Level Detection image subtraction, registration 
and edge detection 

Real-World + + + Not Addressed 

Park et al. [21] Response Water Depth Detection accumulated histogram and 
bandpass filter 

In-Lab 
Experiment 

Not 
Addressed 

Not Addressed Not Addressed 

Rankin and Mathies 
[43] 

Response Surface Water 
Detection 

saturation-to-brightness and color 
information 

Real-World + + + Not Addressed 

Kao et al. [57] Response Flood Debris Detection background subtraction and spatial 
filtering 

Real-World + + + + +

Li et al. [37] Preparedness Surface Water Velocity multi-channel LSPTV Real-World + Not Addressed +

Lo et al. [7] Preparedness Water Level Detection conventional image 
segmentation 

Real-World Not 
Addressed 

+ + Not Addressed 

San Miguel et al. [42] Response Surface Water 
Detection 

background subtraction and 
histogram equalization 

Real-World Not 
Addressed 

Not Addressed Not Addressed 

Hiroi and Kawaguchi 
[103] 

Preparedness Water Level 
Measurement 

conventional image processing Real-World + Not Addressed Not Addressed 

Yeum [104] Response Structural Damage 
Assessment 

CNN based classification and 
detection algorithms 

Real-World + + + + +

Tauro et al. [25] Preparedness Surface Water Velocity LSPIV Real-World + + Not Addressed +

Tauro et al. [31] Preparedness Surface Water Velocity LSPIV, PTV Real-World + + + Not Addressed + +

Lopez-Fuentes et al. 
[44] 

Response Surface Water 
Detection 

CNN based semantic segmentation 
algorithms 

Real-World + + Not Addressed +

Harjoko et al. [56] Response Flood Debris Detection optical flow and edge detection Real-World Not 
Addressed 

Not Addressed Not Addressed 

Teng et al. [105] Response Flood Detection semantic mode, multilabel 
classification 

and discrimination model 

Real-World + + Not Addressed + +

Wang et al. [85] Response Flood Monitoring MyCoast, CNN Real-World + + Not Addressed +

Alam et al. [86] Response Flood Detection VGG16 Real-World + Not Addressed +

Geetha et al. [87] Response Flood Detection color segmentation 
and face detection 

Real-World + Not Addressed +

Yang and Ng [80] Preparedness Rainfall Monitoring crowdsourced data Real-World + + Not Addressed +

Strobl et al. [81] Preparedness Streamflow Monitoring crowdsourced Observations Real-World + + Not Addressed + +

Giannakeris et al. 
[88] 

Response Flood Detection VGG16, DeepLab and Faster R–CNN Real-World + + + Not Addressed +

(+) = Minimally Addressed, (++) = Moderately Addressed, (+++) = Comprehensively Addressed. 
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the possible research domains. 
In early flood warning systems, conventionally, water level mea

surements from multiple gauge stations are used as core information. 
But, water level sensors are expensive to install and maintain. Water 
level measurement using computer vision approaches is propounded as 
a potential solution to this shortcoming [7,20–22]; however, a 
comprehensive and accurate solution is yet to be developed. Variable 
lighting conditions, time-series monitoring and on-board processing are 
some strenuous tasks to be addressed. Image velocimetry approaches to 
measure surface water velocity have already demonstrated their ability 
to precisely measure the velocity in real-world scenarios. However, it is 
still an active area of research where the potential of machine learning, 
advanced computer vision and AI algorithms is yet to be explored. In 
flood forecasting, neural networks based learning algorithms are already 
used to interpret the time-series rainfall data to predict future floods. 
Howbeit, the idea of using visual data for forecasting future floods and 
correcting the existing numerical models is yet to be explored. Collection 
of extensive visual data from floods and incorporation of self-correcting 
functionality in existing flood forecasting models are the capable future 
areas for research. Gaming technology and gaming physics engines (e.g., 
Unity, Unreal Engine, Voxel) are interesting areas to explore as a 

potential tool in investigating flood dynamics (modeling, monitoring 
and mapping) given the implementation of precise physics based water 
simulations [153–155]. Furthermore, customized and realistic 3D ap
plications can be developed to generate synthetic visual (image and 
video) datasets for flood related assessments [156]. 

Flood inundation mapping at the early response phase predomi
nantly comprises the detection of water flooded areas and depth of 
water. The use of computer vision to detect water bodies from satellite 
images has already been promulgated with admissible accuracy [8, 
45–55]. Having said that, the use of the airborne platform for real-time 
and on-demand inundation maps for local regions is not comprehen
sively investigated. Segmentation of water bodies from aerial images 
and the distinction between normal and flooded water are demanding 
tasks. Furthermore, the capacity of a hybrid model including space
borne, airborne and ground sensors is not scrutinized. Victim identifi
cation during the search and rescue phase can be addressed using a UAV 
equipped with state of the art object detection algorithm. However, 
detecting victims under shelters from the air is a challenging task from 
computer vision perspective. Structural damage assessment at the late 
response phase is an encyclopedic procedure and involves enormous 
technical resources. Computer vision technologies can be efficiently 

Table 6 
Need-based analysis of literature for ground camera approaches in flood management – part B.  

Article Phase Assessment Proposed Technology Scope Addressed Requirements 

Accuracy Responsiveness Generalization 

Witherow et al. [89] Response Flood Detection R–CNN, image inpainting and 
contrast correction 

Real-World + + Not Addressed + +

Feng and Sester 
[90] 

Response Flood Information 
Extraction 

XGBoost Real-World + + + + +

Krohnert and Eltner 
[91] 

Preparedness Hydrological 
Measurements 

crowdsourcing Real-World + Not Addressed +

Tauro et al. [38] Preparedness Surface Water Velocity OTV Real-World + + + + + + +

Leitao et al. [34] Preparedness Surface Water Velocity SSIV In-Lab 
Experiment 

+ + Not Addressed + +

Lin et al. [22] Prevention Water Level Detection line detection and image 
transformation 

In-Lab 
Experiment 

+ Not Addressed Not Addressed 

Lohumi and Roy 
[106] 

Response Flood Severity 
Estimation 

GRU and VGGNet Real-World + + Not Addressed + +

Layek et al. [107] Response Flood Detection CNN model and color filtering Real-World + + Not Addressed + +

Pouyanfar et al. 
[108] 

Response Flood Detection CycleGAN and ResNet50 CNN Real-World + + + Not Addressed + +

Rubio et al. [109] Response Structural Damage 
Detection 

VGG16 based FCN model Real-World + + Not Addressed + +

Ackere et al. [110] Prevention Flood Impact 
Assessment 

segmentation and detection 
algorithms 

Real-World Not 
Addressed 

Not Addressed Not Addressed 

Zhang et al. [111] Preparedness Water Level Detection Maximum Mean Difference (MMD) Real-World + + Not Addressed + +

Etter et al. [83] Preparedness Water Level Detection crowdsourcing Real-World + + Not Addressed + +

Seibert et al. [82] Preparedness Water Level Detection virtual staff gauge Real-World Not 
Adressed 

Not Addressed + +

Meng et al. [112] Response Flood Depth Estimation Mask R–CNN and Fcae++ API Real-World + Not Addressed Not Addressed 
Mishra et al. [113, 

114] 
Response Drain Blockage 

Detection 
segmentation and VGG16 Real-World + + Not Addressed + +

Huang et al. [115] Response Water Depth 
Estimation 

MasK R–CNN Real-World + + Not Addressed + +

Liang et al. [116] Response Surface Water 
Detection 

WaterNet CNN Real-World + + + Not Addressed + +

Feng et al. [93] Response Flood Severity 
Estimation 

Mask R–CNN, OpenPose and 
DeepLabv3+

Real-World + + + Not Addressed + + +

Muhadi et al. [117] Response Surface Water 
Detection 

region growing and threshold Real-World + Not Addressed Not Addressed 

Pereira et al. [94] Response Flood Severity 
Estimation 

DenseNet and EfficientNet Real-World + + Not Addressed + + +

Quan et al. [95] Response Flood Severity 
Estimation 

Mask R–CNN, OpenPose 
Resnet50 and Faster R–CNN 

Real-World + + + Not Addressed + +

Chaudhary et al. 
[96] 

Response Flood Mapping VGG16 CNN Real-World + + Not Addressed + +

Tosi et al. [26] Preparedness Surface Water Velocity optimized OTV Real-World + + + + +

Etter et al. [84] Preparedness Water Level Detection virtual staff gauge Real-World + + Not Addressed + +

Ning et al. [92] Response Flood Detection VGG16, CNN Real-World + + Not Addressed + +

(+) = Minimally Addressed, (++) = Moderately Addressed, (+++) = Comprehensively Addressed. 

U. Iqbal et al.                                                                                                                                                                                                                                    



International Journal of Disaster Risk Reduction 53 (2021) 102030

13

used to accommodate experts in remotely accessing hazardous regions 
and explicate damage of structures. But, the collaboration between 
damage assessment experts and computer vision technology developers 
is lacking. The blockage of cross drainage structures by debris is 
customary in urban areas and originates flooding in the region. 
Real-time monitoring of hydraulic structures and interpretation of 
blockage is a potential future computer vision utility. Having said that, 
the unforeseeable and erratic nature of debris accumulation at hydraulic 
structures makes it an arduous task to accurately interpret the blockage 
of hydraulic structures. Finally, at the recovery phase, computer vision 
technologies can be used for reconstruction monitoring, debris removal 
monitoring, historic structures restoration monitoring and vegetation 
growth monitoring in the same scope as for structural damage assess
ment at the response phase. 

Based on observation (4) in the need-based analysis section, a 
detailed qualitative case study can be planned to bring the opinion of 
flood management officials into the loop and highlight what is essential 
from the flood management perspective. 

7. Conclusion 

Presented systematic review highlighted the use of various computer 
vision technologies across variety of flood management related activities 
including land use classification, water level measurement, surface 
water detection, water depth estimation, victim identification, struc
tural damage assessment and early flood warning system. Review in this 
paper established the link between flood management and computer 
vision by proposing a common taxonomy for mapping flood manage
ment activities as computer vision problem in a systematic way. The 
need-based analysis of selected literature underlined some important 
trends. The use of computer vision technologies has evolved from con
ventional techniques towards CNN based approaches significantly from 
2015 onward. However, the availability of benchmark visual datasets 
have been consistently found lacking. In addition, selected literature 
failed to comprehensively formulate and address flood management 
related requirements while proposing solutions, which suggests a lack of 
collaboration among flood management officials and technology pro
viders. Finally, future applications of computer vision technologies 
across different phases of flood management and corresponding real- 

Table 7 
Need-based analysis of literature for airborne approaches in flood management.  

Article Phase Assessment Proposed Technology Scope Addressed Requirements 

Accuracy Responsiveness Generalization 

Lewis and Rhoads [30] Preparedness Surface Water 
Velocity 

LSPIV Real-World + + + Not Addressed +

Robertson and Chan 
[132] 

Prevention Flood Risk 
Analysis 

color based segmentation Real-World + Not Addressed +

Sumalan et al. [133] Response Surface Water 
Detection 

Local Binary Patterns (LBP) and 
color variations 

Real-World + Not Addressed Not Addressed 

Tauro et al. [39] Preparedness Surface Water 
Velocity 

LSPIV Real-World + + Not Addressed + +

Feng et al. [2] Response Flood Detection grey level texture features and 
random forest classifier 

Real-World + + Not Addressed +

Sullivan et al. [58] Response Flood Debris 
Detection 

manual Surveys Real-World Not 
Addressed 

Not Addressed Not Addressed 

Perks et al. [134] Response Flood Detection image transformations and Kande- 
Lucas-Tomasi (KLT) 

Real-World + + Not Addressed Not Addressed 

Tauro et al. [35] Preparedness Surface Water 
Velocity 

LSPIV Real-World + + + Not Addressed +

Zhu et al. [135] Prevention Baseline Data 
Collection 

UAV equipped with camera Real-World Not 
Addressed 

Not Addressed Not Addressed 

Rahnemoonfar et al. 
[136] 

Response Surface Water 
Detection 

densely connected CNN and RNN Real-World + Not Addressed Not Addressed 

Kamilaris and Prenafeta- 
Boldu [12] 

Response Flood Detection VGG CNN model Real-World + Not Addressed +

Ridolfi [23] Response Water Level 
Detection 

edge detection Real-World + Not Addressed Not Addressed 

Kyrkou and Theocharides 
[137] 

Response Flood Detection MobileNet, ResNet50, VGG16 and 
SCNet CNN models 

Real-World + + + + + + + + +

Gao et al. [138] Preparedness Water Level 
Detection 

line detection and parametric 
approach 

Real-World + + Not Addressed Not Addressed 

Gebrehiwot et al. [139] Response Surface Water 
Detection 

VGG-based CNN model Real-World + + Not Addressed +

Yang and Cervone [140] Response Flood Detection CNN and max voting classifier Real-World + + + + +

Stulic et al. [141] Response Search and 
Rescue 

CNN-based visual attention 
algorithm 

Real-World + + + + + +

Lygouras et al. [142] Response Search and 
Rescue 

DarkNet and SSDMobileNet Real-World + + + + +

Ichim and Popescu [143] Response Flood Mapping CNN model Real-World + Not Addressed Not Addressed 
Pi et al. [144] Response Flood Damage 

Detection 
DarkNet, YOLO Real-World + + + + + +

Koutalakis et al. [29] Preparedness Surface Water 
Velocity 

PIVlab, PTVlab 
KU-STIV 

Real-World + Not Addressed +

Mishra et al. [145] Response Search and 
Rescue 

SSD-based CNN model Real-World + + + Not Addressed + +

Fung et al. [146] Response Search and 
Rescue 

detection and segmentation CNN Real-World + + + Not Addressed + +

Pearce et al. [27] Preparedness Surface Water 
Velocity 

LSPIV, LSPTV, OTV 
KLT, SSIV 

Real-World + + + + +

(+) = Minimally Addressed, (++) = Moderately Addressed, (+++) = Comprehensively Addressed. 
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world challenges have been presented in detail. Debris management, 
citizen science, synthetic data generation, search and rescue, and 
reconstruction monitoring are some highlighted flood management as
sessments where computer vision technologies can efficiently be used in 
the future. 
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[27] S. Pearce, R. Ljubičić, S. Peña-Haro, M. Perks, F. Tauro, A. Pizarro, S.F. Dal Sasso, 
D. Strelnikova, S. Grimaldi, I. Maddock, et al., An evaluation of image 
velocimetry techniques under low flow conditions and high seeding densities 
using unmanned aerial systems, Rem. Sens. 12 (2) (2020) 232. 

[28] F. Tauro, J. Selker, N. Van De Giesen, T. Abrate, R. Uijlenhoet, M. Porfiri, 
S. Manfreda, K. Caylor, T. Moramarco, J. Benveniste, et al., Measurements and 
observations in the xxi century (moxxi): innovation and multi-disciplinarity to 
sense the hydrological cycle, Hydrol. Sci. J. 63 (2) (2018) 169–196. 

[29] P. Koutalakis, O. Tzoraki, G. Zaimes, Uavs for hydrologic scopes: application of a 
low-cost uav to estimate surface water velocity by using three different image- 
based methods, Drones 3 (1) (2019) 14. 

[30] Q.W. Lewis, B.L. Rhoads, Lspiv measurements of two-dimensional flow structure 
in streams using small unmanned aerial systems: 1. accuracy assessment based on 
comparison with stationary camera platforms and in-stream velocity 
measurements, Water Resour. Res. 54 (10) (2018) 8000–8018. 

[31] F. Tauro, R. Piscopia, S. Grimaldi, Streamflow observations from cameras: large- 
scale particle image velocimetry or particle tracking velocimetry? Water Resour. 
Res. 53 (12) (2017), 10 374–10 394. 

[32] H.M. Fritz, J.C. Borrero, C.E. Synolakis, J. Yoo, 2004 indian ocean tsunami flow 
velocity measurements from survivor videos, Geophys. Res. Lett. 33 (24) (2006). 

[33] A.A. Bradley, A. Kruger, E.A. Meselhe, M.V. Muste, Flow measurement in streams 
using video imagery, Water Resour. Res. 38 (12) (2002) 1–51. 

[34] J.P. Leitão, S. Peña-Haro, B. Lüthi, A. Scheidegger, M.M. de Vitry, Urban overland 
runoff velocity measurement with consumer-grade surveillance cameras and 
surface structure image velocimetry, J. Hydrol. 565 (2018) 791–804. 

[35] F. Tauro, M. Porfiri, S. Grimaldi, Surface flow measurements from drones, 
J. Hydrol. 540 (2016) 240–245. 

[36] I. Fujita, M. Muste, A. Kruger, Large-scale particle image velocimetry for flow 
analysis in hydraulic engineering applications, J. Hydraul. Res. 36 (3) (1998) 
397–414. 

[37] D.-x. Li, Q. Zhong, M.-z. Yu, X.-k. Wang, Large-scale particle tracking velocimetry 
with multi-channel ccd cameras, Int. J. Sediment Res. 28 (1) (2013) 103–110. 

[38] F. Tauro, F. Tosi, S. Mattoccia, E. Toth, R. Piscopia, S. Grimaldi, Optical tracking 
velocimetry (otv): leveraging optical flow and trajectory-based filtering for 
surface streamflow observations, Rem. Sens. 10 (12) (2018) 2010. 

[39] F. Tauro, C. Pagano, P. Phamduy, S. Grimaldi, M. Porfiri, Large-scale particle 
image velocimetry from an unmanned aerial vehicle, IEEE ASME Trans. 
Mechatron. 20 (6) (2015) 3269–3275. 
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