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A B S T R A C T

Parkinson’s disease is a neurogenerative disorder that occurs due to the loss of dopamine-producing cells.
Till now, there is no cure for this disease but correct medications can slow down the progression. Therefore,
early diagnosis of this disease is very important to improve the quality of life of Parkinson patients. This paper
provides a comparative analysis of computer-assisted technologies for classification, prediction, and monitoring
of Parkinson patients. The articles are selected based on the type, source of data, and symptoms to diagnose
Parkinson’s disease. Our contribution in this paper includes the study of recent articles from the year 2017,
2018, and 2019 and some other articles to consolidate some of the previous work as well. Research articles
are chosen based on symptoms, type, and source of data to cover each aspect of Parkinson’s disease. There is
a great potential for early diagnosis as well as improving the quality of life with the help of computer-assisted
rehabilitation techniques. We have divided our analysis into six sub-categories. A detailed analysis has been
done on each sub-category. Information about some tools, software, and libraries are provided for the use of
researchers. A comparison has also been done on different feature extraction and classification techniques so
that researchers can further explore these techniques. Research gaps and future directions are also discussed
along with challenges related to each gap for researchers to work on.
. Introduction

Parkinson’s Disease (PD) is a progressive neurological disorder that
ffects the nerve cells in the brain which are responsible for producing
opamine. It is the second most common neurological condition (Leroy
t al., 1998). Dopamine producing cells (in Substantia Nigra part of
he brain) start to die which otherwise acts as a messenger to control
ody movements. When dopamine-producing cells become prominently
ow, then there is a problem in controlling the body movements and
ymptoms start to appear. There is no known cause as to what causes
he death of these cells. Many scientists think that genes and the
nvironment play an important role in the degradation of these cells.
actors that increase the risk of Parkinson’s disease include people with
he age of 60 or above (Prusiner, 2001), family history, type of job
nvironment, serious head injury. Symptoms of Parkinson’s disease are
ot visible abruptly. It starts with mild early symptoms and progresses
lowly. Common symptoms of Parkinson’s disease include:

• Stiff muscles: It becomes hard to move parts of the body as
muscles are not able to relax normally.

• Tremor: There is uncontrolled shaking in hands and arms. It may
start on one side of the body and may spread to both sides.

✩ Survey Article.
∗ Corresponding author.
E-mail addresses: jinee.goyal@gmail.com (J. Goyal), padmavati@pec.ac.in (P. Khandnor), trilokchand@pec.ac.in (T.C. Aseri).

• Bradykinesia: Slowness occurs while walking, getting out of the
bed, talking, etc.

• Gait: There starts trouble while walking. Steps might become
short and freezing may also occur.

• Other symptoms may include non-motor symptoms like loss of
sense of smell, hallucinations, sleep disorders, dementia.

The above-listed symptoms may vary from person to person, one person
might have tremors but no other symptoms, other might not have
tremors at all. This disease progresses with time. Symptoms may get
worse and new symptoms may occur with time. There are five stages
of Parkinson’s disease which are measured using Hoehn and Yahr Scale
(HY) (Jankovic, 2008).

• Stage 1: This is the mildest stage where there may even be a case
that the symptoms may go unnoticed.

• Stage 2: The progression to this stage can take several months,
there are symptoms such as muscle stiffness, tremors, change in
facial expressions, etc. Changes in gait and posture also become
noticeable.

• Stage 3: Symptoms start to interfere with your daily activities.
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• Stage 4: Assistance is needed in this stage to perform daily
activities.

• Stage 5: Patients become totally bedridden in this stage.

HY rating is solely based on current observation of Parkinson’s patient,
so, another way to measure Parkinson’s disease is Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) (Goetz
et al., 2007, 2008). It consists of a detailed analysis of PD symptoms
divided into four sections consisting of sixty-five items. This rating scale
provides the Unified Parkinson’s Disease Rating Scale (UPDRS) scores
and each sub-scale has ratings from 0–4 (0 means normal and 4 means
severe).

The PD patients are treated with medicines such that they stimu-
late remaining dopamine-producing cells to produce more dopamine.
This treatment is based on individual and goes lifelong. The ma-
jor medications include Levodopa, Syndopa, Dopamine Agonists like
Bromocriptive to play the role of chemical messengers. For many
patients, medications improve quality of life but for some patients,
motor fluctuations become more prominent. In these cases, surgery is
suggested by doctors considering risks involved.

As the cause of Parkinson’s disease is unknown, prevention is not
possible but early diagnosis of Parkinson’s disease can slow down
the progression with the help of the right quantity of medication.
Therefore, Parkinson’s disease must be diagnosed at an early stage so
that the quality of life can be improved. As symptoms are analyzed
based on individual judgment, UPDRS scores suffer from a problem
of inter-rater inconsistency. Moreover, UPDRS scores are calculated
whenever patients visit health care centers but symptoms vary with
time of the day. A short visit to the clinic is not sufficient for monitoring
the symptoms and effects of medications accurately. So, there is a
need for remote monitoring of Parkinson’s patients to check symptoms
consistently to analyze the patient’s condition more efficiently. A lot of
research is going on in this field with computer-assisted technologies
to assist the doctors in diagnosing the PD, provide individualized
treatments to each patient, and supports remote monitoring.

This paper provides a comparative analysis of work done in clas-
sification, prediction, and monitoring of Parkinson’s disease using the
machine and deep learning techniques. The common machine learning
and deep learning techniques include algorithms like Logistic Regres-
sion (LR), Decision Trees (DT), Naive Bayes (NB), Random Forest (RF),
Support Vector Regression (SVR), Support Vector Machine (SVM), Lin-
ear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Extreme
Learning Machine (ELM), Optimum Path Forest (OPF), Mahalanobis
Distance Classifier (MDC), Neural Networks (NN), Deep Neural Net-
works (DNN), Single Layer Neural Network (SLNN), MultiLayer Percep-
tron (MLP), Convolution Neural Network (CNN), Recurrent Neural Net-
work (RNN), Long Short Term Memory (LSTM), GRU (Gaited Recurrent
Unit), Probabilistic Neural Networks (PNN), Probabilistic Generative
Model (PGM), Stacked AutoEncoders (SAE), Restricted Boltzmann Ma-
chine (RBM), Gaussian Mixture Model (GMM)-Universal Background
Model (UBM) and others. The related articles have been chosen from
IEEE, ACM, Elsevier, Springer, Hindawi, Science Direct, Nature, MDPI,
and other important publications from the year 2017, 2018, and 2019.

The rest of the paper is organized as follows. Section 2 presents
review methodology, Section 3 presents the review of already reviewed
articles before the year 2017 to cover previous years’ articles as well.
Section 4 provides classification, prediction, and monitoring technolo-
gies, and this section is further divided into subcategories based on the
symptoms, source, and type of data. Section 5 presents the work done
in the rehabilitation of Parkinson patients. Section 6 provides infor-
mation on some Tools, Softwares, libraries to use. Section 7 presents
a comparative analysis of subcategories as well as the comparison of
feature extraction and the classification techniques. Section 8 provides
research gaps and future directions for the researchers to work upon.
Finally, Section 9 concludes the paper.
2

2. Review Methodology

The symptoms of Parkinson’s disease can be majorly divided into
motor and non-motor symptoms. The motor symptoms include tremor,
gait, Freezing of Gait (FoG), dysphonia (also known as voice disor-
der), micrographia (also known as handwriting disorder), bradykine-
sia, and others. The non-motor symptoms are cognitive parameters
which can be measured using ElectroEncephaloGram (EEG), Magnetic
Resonance Imaging (MRI), Dopamine Transporter SCAN (DATSCAN),
functional MRI (f-MRI), Single Photon Emission Computerized Tomog-
raphy (SPECT) images or signals. Parkinson patients also have blank
facial expressions, a lot less blinking. Other symptoms include memory
disorders, olfactory disorder, sleep disorder, and many more. The data
of these symptoms is collected either in the form of signals, images,
videos, or clinical measures.

Based on the above-mentioned symptoms, type, and source of data,
we have divided our analysis into six subcategories which are most
researched by researchers. These subcategories include voice-based
symptoms that contain data of voice patterns from Parkinson patients.
The second and third sub-category includes data from wearable and
non-wearable devices which further contains tremor, Gait, FoG, Fear
of Falling (FoF), facial expressions, and other motor data. The fourth
sub-category includes handwriting data to analyze the exam templates
for classification purposes. The fifth sub-category collects data in the
form of EEG signals. The final sub-category includes clinical data
which further includes olfactory scores, sleep scores, MRI images,
DATSCAN images, UPDRS scores, and many other forms of data. The
above-mentioned methodology is shown in Fig. 1.

To find articles based on each symptom, different keywords were
searched in Google Scholar like Parkinson’s disease, Parkinson’s disease
+ voice, Parkinson’s disease + machine learning, Parkinson’s disease +
tremor, Parkinson’s disease + accelerometer, and many more.

The inclusion criteria of research papers are as follows:

• The articles should be from the year 2017, 2018, and 2019.
• The research articles belonged to journals and conferences from

ACM, IEEE, Springer, Elsevier, Hindawi, Nature, MDPI, and other
important publications.

• First, the research articles were scanned by reading title, then
included articles’ abstracts were read, and finally articles were
selected after reading the full text.

3. Review Articles

Some review papers related to Parkinson’s disease have also been
considered in this analysis so as to include previous literature as well.
The authors in De Lima et al. (2017) have reviewed 27 articles until the
year 2016 based on FoG and fall detection in Parkinson patients using
wearable technology. The authors found that shin is the most efficient
position to detect FoG with a single accelerometer sensor. According
to the authors, less work has been done in fall detection as it may be
difficult to monitor falls in real scenarios and this process cannot be
simulated accurately.

The authors in Pereira et al. (2019) have surveyed 84 articles from
the year 2015–2016 and categorized the diagnosis of Parkinson’s dis-
ease based on the type of processing done i.e. web applications, sensors,
virtual and augmented reality, smart-phone devices, signal analysis,
image processing, and machine learning. The authors concluded that
almost all the articles used machine learning technology for diagnosis
and maximum work has been done in signal processing using sensors.

Authors in Son et al. (2018) have reviewed 31 articles from the year
2010–2016, which did research on remote monitoring of Parkinson
patients using wearable sensors, smartphones, web-based technologies,
and ambient sensors. The authors concluded that there has been less
work in remote monitoring in a real-life environment. Most of the
current work has been performed in controlled conditions. There is
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Fig. 1. Review Methodology.
lot of potential to check for system validity, maintenance cost, and
easibility in a free-living environment.

Authors in Ramdhani et al. (2018) have reviewed the articles based
n the type of sensors and devices used with respect to symptoms like
ait, tremor, dyskinesia, and bradykinesia. The authors also categorized
rticles based on machine learning algorithms like DT, RF, NB, SVM,
R, NN, and unsupervised learning. They concluded that a lot of work
as been done in this area but there is a need for standardization so as
o apply the proposed techniques in real-life scenarios.

There was another kind of survey called the methodological review
n which authors surveyed different nature-inspired feature selection
echniques on two different public datasets to identify Parkinson’s
isease (Shrivastava et al., 2017). The first dataset is the Telemon-
toring dataset, the details of which are mentioned in Table 1. The
econd one is the gait dataset, the details of which are mentioned
n Table 3. The different nature-inspired feature selection techniques
nclude Particle Swarm Optimization (PSO), Genetic Algorithm (GA),
odified Cuckoo Search (MCS), and Binary Bat Algorithm (BBA). These

eature selection techniques were able to reduce the dimensionality of
he dataset considerably and BBA outperforms all other nature-inspired
eature selection techniques using NN.

. Classification, Prediction, and Monitoring of Parkinson’s dis-
ase

.1. Voice-based Classification, Prediction, and Monitoring

Dysphonia or voice disorder is one of the first symptoms to appear
n Parkinson patients. Approximately 70%–90% of people are believed
o have dysphonia in Parkinson’s disease (Rusz et al., 2011). A person
ith PD has a low-volume voice with expressionless quality. It becomes
ifficult to understand due to tremous voice, a sudden burst, long
auses, and many more problems (Schulz and Grant, 2000).

Machine learning classification techniques based on voice patterns
an help in early diagnosis of Parkinson’s disease as it is one of the first
ymptoms to appear in PD patients. Moreover, it provides a low-cost,
on-invasive solution of diagnosis as data can be easily collected using
microphone (smartphone-based/headset-based). Therefore, a lot of
ork has been done based on voice patterns.

Many datasets are available for researchers to work upon. Some
f them are public, some are private. The details of the voice-based
atasets are given in Table 1. It contains information like dataset de-
cription which provides details of the dataset. It also contains a device
3

description which includes the name of the device used and sampling
rate. The last column of the table contains information on extracted
features and number of features (mentioned in braces). The most
common voice features that are extracted by researchers include Jit-
ter, Shimmer, Harmonicity, Pitch, Mel-Frequency Cepstral Coefficients
(MFCC), Recurrence Period Density Entropy (RPDE), Detrended Fluc-
tuation Analysis (DFA), Pitch Period Entropy (PPE), Glottal to Noise
Excitation (GNE), Vocal Fold Excitation Ratio (VFER), and Empirical
Mode Decomposition (EMD).

The methodology for voice-based classification, prediction, and
monitoring followed by different researchers are provided in Table 2.
The table includes work done in a particular study, signal processing
techniques, classification techniques, and performance of the system.
The signal processing techniques further consist of Pre-Processing (Pre-
P), Feature Extraction (FE), Feature Selection (FS), and Post-Processing
(PP) techniques. Feature Selection is very important to reduce the
dimensionality of the dataset as well as improve the performance of
the system. Some of the most common FS techniques include Prin-
cipal Component Analysis (PCA), minimum Redundancy Maximum
Relevance (mRMR), Correlation-based FS (CFS), Information Gain (IG),
Gain Ratio (GR), Genetic Algorithm (GA), Fuzzy Mutual Information
(FMI), Recursive Feature Elimination (RFE) with Correlation Bias Re-
duction (CBR), Chi-Square (CS), ANalysis Of VAriance (ANOVA) test,
and others. The most common classification techniques used for voice-
based diagnosis of PD include DT, RF, SVM, LSVM (Linear SVM), RSVM
(Radial Basis Function (RBF) SVM), KNN, MLP, NB, LR, and NN. The
performance of the system is measured mostly in terms of Accuracy
(Acc), Sensitivity (Se), Specificity (Sp), F1-Score (F1), Precision (P), G-
Mean (G), Receiver Operating Characteristic curve (ROC), Area Under
ROC Curve (AUC), Matthew’s Correlation Coefficient (MCC), Detection
Rate (DR) (Sharma et al., 2019), False Alarm Rate (FAR) (Sharma
et al., 2019), Equal Error Rate (EER) (Almeida et al., 2019) and Mean
Absolute Error (MAE) (Nilashi et al., 2018).

4.2. Wearable Devices based Classification, Prediction, and Monitoring

Parkinson patients suffer from various motor symptoms like tremors
(in different body parts), bradykinesia, dyskinesia, Stooped Posture
(SP), imbalanced gait, FoG, Fear of Falling (FoF), stiffness, and many
more (Salarian et al., 2007). Doctors\Clinicians measure these symp-
toms subjectively with the help of HY Scale and UPDRS scale. HY scale
performs staging of PD patients whereas the UPDRS scale gives ratings



J. Goyal, P. Khandnor and T.C. Aseri Engineering Applications of Artificial Intelligence 96 (2020) 103955
Table 1
Voice-based datasets for Classification, Prediction, and Monitoring of PD.

Reference Dataset description Device description (Sampling Rate) Features (Size)

Braga et al. (2019) (Proença et al., 2014) 22 PD (12 F +
10 M), Age: 44–79, 1002 speech
lines/88.8 min

Plantronics table Microphone,
EMU4040, Olympud WS memo
Recorder (44.1 KHz)

Formant, Vocal Space Area (VSA), Vowel
Articulatory Index (VAI), MFCC, GMM supervector
(2652)

Braga et al. (2019) 30 Healthy Control (HC) (21 F + 9
M), Age: 20–71, 785 speech
lines/28.2 min

Steel Series Siberia V3 Prism Device
(44.1 KHz)

Jitter, Shimmer, Harmonicity, Pitch, Gender (19)

Braga et al. (2019), Parisi et al.
(2018), Sharma et al. (2019), Cai
et al. (2018), Zhang (2017)

20 PD (6 F + 14 M), 20 HC (10 F +
10 M), Age: 43–77, 116 Sustained
vowels (/o/, /a/) (Dua and Graff,
2017; Sakar et al., 0000a)

Trust MC-1500 Microphone (Sakar
et al., 2013)

Jitter, Shimmer, Pulse, Voicing, Pitch, Harmonicity
(26)

Sakar et al. (2019), Tuncer and
Dogan (2019)

188 PD (107 M + 81 F) + 64 HC (23
M + 41 F), Age: 33–87, sustained
phonation /a/ (Sakar et al., 0000b)

Microphone (44.1 KHz) Jitter, Shimmer, Fundamental frequency,
Harmonicity, RPDE, DFA, PPE, Intensity, Formant,
Bandwidth,MFCC, wavelet, Glottis Quotient (GQ),
GNE, VFER, EMD, TQWT (754)

Lahmiri et al. (2018), Avci and
Dogantekin (2016), Lahmiri and
Shmuel (2019), Sharma et al.
(2019), Kadam and Jadhav
(2019), Yoon and Li (2018),
Mostafa et al. (2019), Rajagopal
et al. (2019), Cai et al. (2018),
Haq et al. (2018), Zhang (2017),
Nilashi et al. (2018), Li et al.
(2017a), Haq et al. (2019),
Shrivastava et al. (2017)

42 PD (28 M + 14 F), Age: 36–85,
5875 recordings (Tsanas and Little,
0000; Little, 0000; Little et al., 2008;
Tsanas et al., 2009; Little et al.,
2007)

Head mounted microphone
(AKGC420)

Jitter, Relative Amplitude Perturbation (RAP),
Period Perturbation Quotient (PPQ), Shimmer,
APQ, Harmonicity, DFA, PPE, Correlation
Dimension, motor_UPDRS, total_UPDRS (26)

Shukla et al. (2019) 14 PD (8 M + 6 F), Age: 51–69,
(Tsanas, 0000; Tsanas et al., 2013)

Head mounted microphone Jitter, Shimmer, vocal-fold, RPDE, PPE, GQ,
Harmonicity, DFA, GNE, VFER, EMD-Excitation
Ratio, EMD, MFCC (309)

Oung et al. (2018b) 65 subjects (31 M + 34 F), 15, 20,
20, 15 – rated 0, 1, 2, 3 based on
HY scale

Sennheiser DW Pro2 headset Wavelet Energy, Wavelet Entropy (Shannon, Renyi,
Tsallis, Permutation, Fuzzy) (214)

Zhang (2017) HC speech signal sent over
browser/server system

Smartphone’s Microphone not given

Tuncer et al. (2019) 756 signals from 252 subjects, /a/
three times

Microphone (44.1 KHz) Maximum singular value from each block (122)

Almeida et al. (2019) 99 subjects with Phonation and
speech recordings (Vaiciukynas et al.,
2017)

Acoustic cardioid (AKG Perception
220, frequency range 20–20,000 Hz),
Smartphone (44.1 KHz)

avec2011 (1941), avec2013 (2268), emo_large
(6552), emobase (988), emobase2010 (1582),
IS09_emotion (384), IS10_paraling (1582),
IS10_paraling_compat (1582), IS11_speaker_state
(4368), IS12_speaker_trait (5757),
IS12_speaker_trait_compat (6125), IS13_ComParE
(6373), Essentia descriptors (1915), MPEG7
descriptors (527), KTU features (1267), jAudio
features (1794), YAAFE features (1885), Tsanas
features (339)

Moro-Velázquez et al. (2018)

The Albayzin database: Phonetically
balanced dataset utterances in
Spanish (Moreno Bilbao et al., 1993)

(16 KHz quantized with 16 bits) not mentioned

GITA database: 50 PD patients, 50
HC (Orozco-Arroyave et al., 2014)

DDK, Sentences, Sustained vowel /a/
(44.1 KHz)

MFCC (20), Perception Linear Predictive coefficient
(PLP) (20), Linear Prediction Coefficient (LPC) (20)

APQ-Amplitude Perturbation Quotient; DDK-DiaDchoKinetic rate; TQWT-Tunable-Q factor Wavelet Transform.
of pertinent features. But both these scales are based on the ‘‘rate as you
see’’ basis, which suffers from the problem of inter-rater inconsistency.

These symptoms can be measured accurately with the help of some
wearable devices embedded with different sensors like Accelerometer
(Accl) (Weiss et al., 2010), Gyroscope (Gyro) (Salarian et al., 2009),
Magnetometer (Mag) (Casamassima et al., 2014), Goniometer (Li et al.,
2017b), Telemeters (Saad et al., 2017) and many more. The measure-
ment based on these sensors is more precise as compared to subjective
clinical based evaluation with UPDRS scores.

Therefore, a lot of work has been done by researchers in estimating
tremor severity, estimating three different types of tremors including
Rest Tremor (RT), Postural Tremor (PT), and Kinetic Tremor (KT).
Work has also been done to estimate bradykinesia, dyskinesia, FoG,
FoF using gait patterns. Work has also been done to estimate Stooped
Posture which is considered a major problem in PD patients. The
authors in Dang et al. (2019) have proposed a method to estimate
4

stooped posture in Parkinson patients using accelerometer data and
comparing it with C7-SAR distance as ground truth. It has been found
that a single sensor on the back is sufficient to measure stooped posture
in PD patients. These devices can also provide remote monitoring of
Parkinson patients which can assist doctors in providing personalized
treatment.

The details of the dataset based on wearable devices based classi-
fication, prediction, and monitoring of PD is given in Table 3 which
includes information of the dataset used, device description i.e. type of
sensor, description of the sensor, and its sampling rate. It also shows
different activities understudy to estimate motor symptoms and their
recording time. It can be observed from the table that most of the work
has been done on Accelerometers, Gyroscopes, and Magnetometers.
These sensors are embedded in the Inertial Measurement Unit (IMU)
of different configurations. Very little work is done on other sensors
like Telemeters and Goniometers. The potential of these sensors is still
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Table 2
Classification, Prediction, and Monitoring of PD using Voice features.

Study Proposed work Signal Processing Classification Performance

Braga et al.
(2019)

Early detection of PD with optimized
ML algorithms

(Pre-P) Standardization,(FE) Pratt
Script,(PP) PCA and LR for Pattern
Analysis, Kruskal’s, Levene’s

RF, SVM, NN Acc- 99.94%

Sakar et al.
(2019)

Effectiveness of TQWT features
compared with state of art features

(Pre-P) Standardization, (FE) MFCC,
TQWT, EMD, WT, RPDE, DFA, Basic,
(FS) mRMR, (PP) Mc Nemar’s

LSVM, RSVM, MLP, NB,
LR, RF, KNN, Ensemble

Acc-85%, F1–84%, MCC-57%

Lahmiri et al.
(2018)

Comparison of ML classifiers (PP) t-test LDA, KNN, NB, RT,
RBF-NN, MDC

SVM, Acc-92%, Se-95%, Sp-91%,
F1–90%, P-77% G-87%, AUC-89%

Avci and
Dogantekin
(2016)

Proposed GA-WK-ELM based
diagnosis system

publicly available features GA-WK-ELM, Single Layer
Neural Network

Acc-96.81%

Lahmiri and
Shmuel (2019)

Access the performance of FS
techniques

(FS) t-test, entropy, Bhattacharyya
statistic, ROC, Wilcoxon Statistic,
FMI, GA, RFE-CBR

RSVM Acc-Wilcoxon based (92.21%), Se-ROC
based (99.63%), Sp-ROC based (82.79%)

Parisi et al.
(2018)

Hybrid artificial intelligence based
classifier (MLP-LSVM)

(Pre-P) Normalization,
Standardization, (FS) MLP, (PP) t-test
— statistical significance of gender

LSVM Acc, Se, Sp of 100% with faster
convergence

Sharma et al.
(2019)

Modified Gray Wolf Optimization
(MGWO) as a search strategy for FS

(FS) MGWO KNN, RF, DT outperformed OCFA with Acc-94.83%,
DR-98.28%, FAR-16.03%

Kadam and
Jadhav (2019)

Proposed feature ensemble based SAE (FE) SAE DNN (SoftMax Regression) outperforms DNN with Acc-92.19%,
Se-97.28%, Sp-90%

Yoon and Li
(2018)

Proposed PTL approach using AHTD
measurements to predict UPDRS
scores

publicly available features Positive Transfer Learning
(PTL)

PTL outperforms Transfer Learning (TL)
with lower negative transfer

Shukla et al.
(2019)

Proposed Multiple Pre-Processing
technique for early detection of PD

(Pre-P) Discretization, (FS) CFS,
ReliefF, IG, CS, PCA

J48, NB, SVM, RF, KNN,
MLP, DT, NB Tree

Best-RF, Acc-94.98%, Se-93.18%,
F1-94.7%, P-94.96%

Mostafa et al.
(2019)

Proposed multiple feature evaluation
- a multiagent approach

autocorrelation, CFS, GR, IG, SVM
evaluator

ZeroR, DT, NB, NN, RF,
SVM (RBF, SMO)

Increase in Acc by 10.51%, 15.22%,
9.19%, 12.75%, 9.13% in DT, NB, NN,
RF, SVM

Cai et al. (2018) Chaotic Bacterial Foraging
Optimization (CBFO) for tuning of
Fuzzy KNN

CBFO to optimize number of
neighbors (K) and Fuzzy Strength (m)

Fuzzy KNN Gender does not affect much the
diagnosis process, Acc-96.97% (Oxford
dataset), 83.63% (Istanbul dataset)

Oung et al.
(2018b)

Multiclass classification with
integration of voice and motion data

(Pre-P) Segmentation, (FE) EWT,
EWPT, Hilbert, (PP) ANOVA

KNN, PNN, ELM Acc-90% (Single data), 95% (Integrated
data)

Zhang (2017) Potential of smartphones in low-cost
PD diagnosis

(FE) SAE KELM, SVM (MultiLayer,
Linear, RBF), CART, KNN,
LDA, NB

Acc-94%–98%

Li et al. (2017a) Improved Gray Wolf Optimization
(IGWO) to find optimal feature
sub-set

(Pre-P) Normalization, (FS) IGWO IGWO-KELM, GWO-KELM,
GA-KELM

Acc-96.97%, Se-98.16%, Sp-94.99%,
P-97.99%, G-96.57%, F1-98.08%

Tuncer et al.
(2019)

Find most distinctive features from 3
vowels

(Pre-P) 3 level-MAMa tree, (FE) SVD,
(FS) ReliefF, (PP) 2 vowels are PD
then resultant is PD

LDA, SVM (Linear, RBF,
Cubic), LR, KNN, BT

KNN-Acc-92.46%, 96.83% (with PP)

Tuncer and
Dogan (2019)

Eight-pooling Octopus based FE
network

(Pre-P) Octopus method-minimum,
maximum, range, average, variance,
median, kurtosis and skewness, (FE)
SVD, (FS) NCA, (PP) Mode based

SVM (Linear, RBF, Cubic),
KNN, LR, DT

Acc-99.21% (Gender), 98.4% (PD),
97.62% (PD & Gender)

Almeida et al.
(2019)

Evaluation of various feature
extractors and classifiers

(Pre-P) Separate voiced and unvoiced
parts, (FE) 18 different feature sets,
(FS) t-SNE, (PP) N-way ANOVA,
Friedman/Kruskal–Wallis, Nemeyi

KNN, MLP, OPF, SVM AC channel-Acc-94.55%, AUC-0.87,
EER-19.01%, SP channel-Acc-92.94%,
AUC-0.92, EER-14.15%

Haq et al.
(2019)

ML based prediction system to fill
the gap between FS and classification

(Pre-P) Removing missing values,
Standardization, Normalization, (FS)
L1-Norm SVM

SVM Acc-99%, Se-100%, Sp-99%

Nilashi et al.
(2018)

Incremental update of data to predict
UPDRS scores

(Pre-P) Self Organizing Maps for
clusters (9), (FS) Non-linear Iterative
Partial Least Squares

Incremental SVR, NN,
ANFIS, MLR, SVR

reduces computational time, MAE-0.4656
(Total UPDRS), 0.4967 (Motor UPDRS)

Moro-Velázquez
et al. (2018)

Influence of kinetic changes for
automatic PD diagnosis

(Pre-P) Filtering, Downsampling
(16 KHz), Normalization, Hamming
windowing (10-40 ms), (FE) PLP,
MFCC, LPC, (PP) RASTA for PLP

GMM-UBM (Reynolds
et al., 2000),
i-vector-GPLDA (Dehak
et al., 2010)

Acc-87%, AUC-0.93

AHTD-At-Home Testing Device ANFIS—Adaptive Neuro-Fuzzy Inference System BT—Bagged Tree CART—Classification And Regression Tree EWPT—Empirical
Wavelet Packet Transform EWT—Empirical Wavelet Transform i-vector GPLDA-Gaussian Probability Linear Discriminant Analysis KELM—Kernel Extreme Learning
Machine MAMa-Minimum Average Maximum MLR—Multiple Linear Regression NCA—Neighborhood Component Analysis OCFA—Optimized Cut-
tlefish Algorithm RASTA—RelAtive SpecTral Analysis RT—Regression Trees SMO—Sequential Minimal Optimization SVD—Singular Value
Decomposition t-SNE—t-distributed Stochastic Neighbor Embedding WK—Wavelet Kernel WT—Wavelet Transform
5
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Table 3
Datasets based on Wearable devices for Classification, Prediction, and Monitoring of PD.

Study Dataset Device description (Sampling Rate) Sensor placement (Number) Activities (Recording time)

Abdulhay et al.
(2018), Shrivastava
et al. (2017)

Goldberger et al.
(2000), (2008)

Force Sensor measures Vertical Ground
Reaction force (100 Hz)

8 underneath each foot (16) Walking (2 min)

Abdulhay et al.
(2018), Pedrosa
et al. (2018)

Goldberger et al.
(2000), (2001)

Low-intensity velocity-transducing laser
measures Velocity (100 Hz)

Index Finger tip (1) RT (60 s)

Kim et al. (2018) Kim et al. (2018) Custom wearable device, SNUMAP,
Accl- LIS3DSH, Gyro- L3G4200D, ST
microelectronics, Switzerland (125 Hz),
FHD video camera

1 Accl + 1 Gyro each for wrist and
finger (4)

RT (60 s)

McKay et al. (2019) McKay et al. (2019) ADXL335BCPZ-analog devices,
Norwood, MA, Tri-axial Accl mounted
on three-axis Accl evaluation board,
video recoder

Upper Extremities — each index
finger, each wrist joint, Lower
Extremities — each big toe, leg
above ankle joint (4)

RT (3 min), PT (10 s), FT (10 times), HM (10
times), PSH (10 times), Arising from chair, RT
while counting backwards (30 counts), TT (10
times), Leg agility (10 times)

Camps et al. (2018) Camps et al. (2018) IMU, 99 × 53 × 19 mm3, 3-axis Accl,
Gyro, Mag, video recorder (200 Hz)

Left side of the waist (1) Moving and showing around the house, walking
outside the house, standing up, walking 6 m
straight, turning 180 degree, walking 6 m
back, sitting down, cleaning a cup, carrying a
glass of water, typing in a computer, brushing
one’s teeth, drawing, erasing (18.64 h)

Rovini et al. (2018) Rovini et al. (2018) IMU based SensFootV2, iNEMO-MI
board, based on MEMS contains 3-axis
Gyro L344200D, six-axis geomagnetic
module LSM303DLHC and arm based
32-bit microcontroller STM32F103RE
(100 Hz)

Each foot (1) TT with heel pin (10 s), Heel Tapping (10 s),
GAIT (15 m), Rotation (360◦)

Stack et al. (2018) Stack et al. (2018) Tripod mounted video camera, Battery
powered, non-commercial, tri-axial
Accl and Gyro

Waist, Each Ankle, Each wrist (5) Sit-to stand (3 times), Stand-to-sit (3 times),
180◦ turn (1 time), Walk (3 m), Tandem walk
(3 m), Rising to walk (3 times), Reaching high
& low (3 times)

Pham et al. (2017),
Oung et al. (2018a)

Dua and Graff
(2017), Roggen
et al. (0000),
Bachlin et al. (2009)

Tri-axial Accl, video camera (64 Hz) Shank, Thigh, Lower Back (3) Walking in straight line, Walking with
numerous turns, Fetching coffee, Opening doors
(10–15 min each)

Pham et al. (2017) Shine et al. (2012),
Moore et al. (2013)

Accl, IMU-XSensMTx 38 × 53 × 21 mm,
30 g, video camera (50 Hz)

Back (1), Foot (2), Thigh (2), Knee
(2)

TUG Test (5 m)

Zhang et al. (2018) Zhang et al. (2018) Accl, video camera Wrist (1) Daily living activities

Daneault et al.
(2017)

Daneault et al.
(2017)

Accl Upper arm, Forearm, Thigh, Shank
(8)

HM, Heel Tapping (4 times each)

Tahavori et al.
(2017)

Tahavori et al.
(2017)

Accl, Gyro, video camera (50 Hz) Lumber Spine (near Center of Mass
(COM) of the body) (1)

Tandem Walk, Stand to sit, sit to stand,
standing, backwards walking, 3 m- walk (3
times each

Oung et al. (2018b) Oung et al. (2018b) Motion Node Bus, IMU (35 × 35 × 15),
10 g, having tri-axial Accl, Gyro, Mag
(100 Hz)

each wrist, each limb (4) Arising from chair, PSH, HM, FT, TT, LM

Zhang et al. (2017) Zhang et al. (2017) Axivity AX3 Accl, video camera (100
Hz)

Wrist (2) Sit and Walk (5 min), RT (3 min), PT (6 min),
KT (2 min), FT (1 min), OCH (1 min), Writing
(4 min), Typing (4 min), Playing chess (10
min), Playing cards (10 min), Making a
sandwich (5 min), Eating a sandwich (10 min),
Drinking from a cup (1 min), Walking (2 min),
PSH (1 min)

Samà et al. (2018) Samà et al. (2018) IMU, 9 × 2 and 78 g, small, light
(77 × 37 × 21 mm3), Accl, video recorder
(40 Hz)

Left side of Waist (1) Part 1: before medication-Showing patient’s
home, go through a narrow space, turning
back, going outdoors for short walk, reading
something while carrying an object, Part
2-Brushing teeth, painting, erasing (20 min
each part)

Chomiak et al.
(2018)

Chomiak et al.
(2018)

Ambulosono Sensor system, Accl, Gyro (1) Using sensors-Walking Test,Clinical
Data-Alternating trail making,
visuoconstructional cube, clock, attention
processing, short term memory retrieval
(delayed word recall), FES-1 scale with 16
items, UPDRS-III activities

(continued on next page)
to be explored by researchers. It can also be observed that the common
activities to measure motor symptoms include Finger Tapping (FT),
Opening and Closing of Hands (OCH), Pronation and Supination of
6

Hands (PSH), Toe Tapping (TT), Leg Movements (LM), and Timed Up

and Go (TUG) test.
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Table 3 (continued).
Study Dataset Device description (Sampling Rate) Sensor placement (Number) Activities (Recording time)

Hssayeni et al.
(2018)

Hssayeni et al.
(2018)

Tri-axial Gyro sensor (128 Hz) Back of most affected Ankle (1) OFF and ON state: Ambulation, sitting,
drinking, dressing, unpacking groceries, cutting
food, hair brushing (15-60 s each)

Hssayeni et al.
(2018)

Pulliam et al.
(2017)

Tri-axial Gyro sensor (64 Hz) Most affected Ankle (1) OFF and ON state: Cycle through six stations:
Hygiene, laundry, entertainment, snack, desk
work

di Biase et al.
(2018)

di Biase et al.
(2018)

Magneto-inertial units containing Accl,
Gyro, Mag, camera GoPro Hero4

Index finger, Thumb, Wrist, Arm,
Metacarpus (5)

OFF and ON state: Rigidity, FT, PSH (15 times
each)

Prateek et al. (2017) Prateek et al. (2017) MEMS-based IMU consists of 3-axis
Accl, Gyro, video camera (1000 Hz)

Heel of left foot (1) Walk backwards and turn (3 m), Walk again (3
m), Walk along a narrow path (3 m), Walk
between cones over the block (3 m), Walk by
following eight figure trajectory, 180◦ turn

Lonini et al. (2018) Lonini et al. (2018) MC10 BioStampRC (soft wearable
sensor that adhere to skin) consists of
3-axis Accl, Gyro (62.5 Hz)

Hands, Arms, Thigh (6) Walking, Walking while counting, Finger to
nose, Alternating hand movements, Sit to
stand, Sitting, Standing, Drawing on paper,
Typing on computer keyboard, Nuts and bolts,
Pouring water from a bottle and drinking,
Organizing set of folders, Folding towels

Nguyen et al.
(2017)

Nguyen et al.
(2017)

IGS-180 motion capture suit consists of
17 IMU’s, each having Accl, Gyro, Mag
(60 Hz)

Full body 3D movements (17) Two TUG test (3 trial of 10 & 5 m each)

Dang et al. (2019) Dang et al. (2019) OptiTrack camera system contains
Infrared Cameras (100 FPS), XSensM1
sensors with Accl (100 Hz)

Neck, Upper back (2,6) Slow gait with SP & tremor, Fast gait with SP
& tremor, Slow gait with changing SP &
tremor, Fast gait with changing SP & tremor (4
m each)

Saad et al. (2017) Saad et al. (2017) NIDAQ PCI-6259 with 3 sensors,
ADXL330 3-axis Accl (28.3 × 18.5 mm),
Telemeters infrared proximity sensors
GP2Y0A21K, Goniometer (360◦ Smart
Sensor Model 601 HE), Video recorder
(100 Hz)

Shin (1), Foot (1), Far from foot
(1), Near foot (1), Thigh (1), Shin
(1)

Simulation-Walking with normal steps (15 s),
Walking with short steps (15 s), Walking with
FoG (15 s), Walking normal + FoG + normal
(10+5+5 s),Testing-Straight walk with turns (6
m), Straight walks above cones with turns (6
m), Clinical tour

Delrobaei et al.
(2018)

Delrobaei et al.
(2018)

17 IMU-based Wearable Motion
Capture System (IGS-180) consists of
Accl, Gyro, Mag (60 Hz)

Head, Trunk, each arm, each Leg
(17 × 3)

ON and OFF State-RT (20 s), PT (20 s)

FES-I-Falls Efficacy Scale-International MEMS-Micro Electro Mechanical System
The methodology used for classification, prediction, and monitoring
of PD is provided in Table 4. It includes proposed work by different
authors, signal processing techniques, classification methods, and fea-
tures. Signal Processing further contains information about different
Pre-Processing techniques (Pre-P), Feature Extraction methods (FE),
Feature Selection methods (FS), Post-Processing techniques (PP). It can
be observed from the table that most of the work has been done on
tremor and FoG symptoms. Other symptoms like bradykinesia, rigidity,
dyskinesia are yet to be explored properly. The most common pre-
processing techniques include data filtering. This can be done with the
help of High Pass Filter (HPF), Low Pass Filter (LPF), Band Pass Filter
(BPF), and Butterworth Filter (BF). Windowing of the data is mostly
done using Hanning Window (HW) and Spectral Window Stacking
(SWS). The feature extraction plays a very important role in estimating
the robustness of the system. It can be observed that most common FE
techniques include Fast Fourier Transform (FFT), and PCA. The Post
Processing is done to find the statistical significance of the data and
features. The common methods include ANOVA, Kolmogorov–Smirnov
(KS), t-test, Shapiro–Wilk, Mann–Whitney Wilcoxon (MWW) and oth-
ers. Features directly influence the system’s performance. The most
common features related to gait include stance time, swing time, stride
time, tapping frequency, Freeze Index (FI), Integrated FoG (IFoG).
There are some important statistical features which include Mean (M),
Standard Deviation (SD), Variance (V), Correlation Coefficient (CC),
Root Mean Square (RMS), Mean Absolute Value (MAV). The time–
frequency based features are also considered which include Power
Spectral Density (PSD), Power Index (PI), ENTropy (ENT), and Energy.

It can be observed that the combination of sensors like Accelerom-
eter and Gyroscope can produce better results as compared to a single
sensor. It also came to the knowledge that the location and number
7

of sensors plays an utmost important role in diagnosing the symptoms
correctly and more accurately. One sensor per limb is sufficient to
estimate a symptom correctly, therefore accuracy can be improved
with minimum invasion. Moreover, the wearable devices which have
been used are lightweight, low-cost, and do not require a technological
expert to collect data.

4.3. Non-Wearable devices based Classification, Prediction, and Monitoring

There has been a lot of technological advancement in the medical
field. Initially, 3D depth infrared cameras were used for video analysis,
force plates were used for gait and freezing analysis. But these devices
were large, invasive, and costly. With the new techniques, wearable
technologies came into being which were small, low-cost and easy
to handle. Despite the many advantages offered by wearable devices,
there was a drawback of the invasive nature of these devices. To solve
this problem, low-cost non-wearable devices offer potential solutions to
diagnose PD patients with little or no invasion. These devices include
video cameras, smartphones, Kinect Sensors, Leap Motion Controller
(LMC), and others. Video recordings can capture motor movements like
FT, PSH, HM without any extra burden. Cameras can capture facial
expressions such as blank expression with less blinking and smiling.
Smartphones can capture data from inbuilt sensors like accelerometer,
gyroscope, and others. Kinect Sensor has also shown great potential in
3D data capturing. These devices can help PD patients to improve their
physical and cognitive capabilities. Remote monitoring is also possible
with the help of these non-invasive non-wearable devices. The process
of calculation of UPDRS-III scores can be automated with the help of
these devices.

The detailed information about the datasets related to non-wearable
devices based classification, prediction and monitoring of PD are shown



J. Goyal, P. Khandnor and T.C. Aseri Engineering Applications of Artificial Intelligence 96 (2020) 103955
Table 4
Classification, Prediction, and Monitoring of PD using Wearable Devices.

Study Proposed work Signal Processing Classification Features

Abdulhay et al.
(2018)

PD severity using gait and
tremor analysis

(Pre-P) Chebyshev type 2 HPF,BF of
order 2, HW, (FE) FFT

Medium Gaussian SVM,
LSVM

Stance time, Swing time, Stride time,
Foot Strike profile, PSD

Kim et al.
(2018)

Assessment of tremor
severity based on CNN

(Pre-P) HPF (1 Hz), FFT signals under
20 Hz, middle 50 s, (FE) CNN, FFT

CNN, RF, MLP, DT,
RSVM, NB, Linear
Regression

weights of CNN as features,
time–frequency features

Camps et al.
(2018)

Deep learning method to
access FoG

(Pre-P) Removing missing values,
downsampling (50 Hz), 8th order LPF
(20 Hz), Normalization, windowing, data
augmentation, shifting, rotating, (FE)
FFT, SWS (window size=2.56 s), labeled
FoG if at least 50% data is FoG

Covnet, tree bagging,
AdaBoost, LogitBoost,
RUSBoost, RobustBoost,
RSVM

Automatically extracted features from
Covnet, FI (Bächlin et al., 2009), PI
(Bächlin et al., 2009), M (Mazilu et al.,
2012; Samà et al., 2018), SD (Mazilu
et al., 2012; Samà et al., 2018), V
(Mazilu et al., 2012), ENT (Tripoliti
et al., 2013), skewness (Samà et al.,
2018), frequency (Samà et al., 2018),
CC (Samà et al., 2018)

Rovini et al.
(2018)

Differentiate between PD
and Idiopathic Hyposmia
(IH) to investigate early
onset of PD

(Pre-P) Fourth order LPF with digital BF
(5 Hz cutoff, 3 Hz for gait), (FE) M and
SD of features, (FS) p-values, (PP) KS,
Kruskal–Wallis, Wilcoxon, spearman’s
correlation coefficients

SVM (Linear, quadratic,
RBF, Polynomial), RF,
NB

Gait time & frequency, No. of strides,
stride, swing & stance time, relative
stance, Dorsiflexion angular excursion of
the foot, Rotation time & frequency,
tapping frequency, no. of taps, toe
angle, Coefficient of variation of tapping
frequency & toe angle, Energy, M power,
fundamental frequency, Max peak

Pham et al.
(2017)

Subject-independent
automated FoG detector

(FS) Saliency (Mutual Information),
separability calculated using Euclidean
Distance, Variance Ratio of clusters,
Robustness, accuracy

Anomaly Score Detector Max Peak, number of peaks in spectral
coherence, FI (koopman operator,
multiple channels), M, SD, V, median,
ENT, energy, power

Zhang et al.
(2018)

Several feature sets for
tremor detection

(FE) MFCC, CNN RF, MLP MFCC, CNN (tremor/Activity Spectra),
baseline

Daneault et al.
(2017)

Minimum no. of sensors
required to estimate full
body bradykinesia

(Pre-P) Data filtering (0.5–12 Hz), Data
segmentation (30 overlapping epochs of
5 s), (FS) ReliefF, Davies–Boulden Index,
(PP) ANOVA

SVM (Pearson Universal
Kernel)

RMS, peak frequency, energy in peak
frequency:total energy, range of
auto-covariance, correlation between
upper and lower limbs, ENT, range,
variability, Min, sum:length.

Oung et al.
(2018a)

Robust FE to improve FoG
detection

(FE) Spectral analysis (117 — time and
126 — frequency), (FS) t-test

SVM, PNN M, V, SD, IFoG, MAV, SSI, RMS, v-order
2 & 3, WL, AAC, DASDV, MFL, FI, ENT,
power, frequency, FR, PSR, 1st, 2nd, 3rd
spectral moments

Tahavori et al.
(2017)

Activity recognition of PD
patients using wearable
sensor data

(Pre-P) Sliding window (2 s), Activity
segmentation with ELAN annotation
software, (FE) Spectral analysis, (FS)
CFS, forward, backward & wrapper

RF, NB, LogitBoost,
SVM

M, autocorrelation, PSD, spectral power,
ENT, Sum Power Determinant
Coefficient, spectral variance, Inter
Quartile range, frequency, intensity,
Zero Crossing Rate (ZCR), skewness, CC

Zhang et al.
(2017)

Stratified weakly
supervised algorithms to
know approximate amount
of tremor

Windowing, Consecutive windows are
combined to form segments (30 s-10
min), (FE) Sensor data and video are
labeled for tremor events, (PP) Segments
are labeled as standard, stratified

Multiple Instance SVM
& NN, ID-APR, EM-DD

not extracted

Samà et al.
(2018)

New set of features to
detect FoG in real
environment

Second order LPF, BF,window size-64
samples, (FE) FFT (CETpD features),
PCA, (FS) Directed graph for sub set
along with Leave One Patient Out, (PP)
t-test

KNN, RF, LR, NB, MLP,
SVM (Linear, Poly,
RBF)

M, Difference among M values, SD,
frequency, highest harmonics and center
of mass, skewness, kurtosis, Integrals,
auto-regression coefficients, principal
components, correlation

Chomiak et al.
(2018)

Cognitive, motor
boundaries of self-efficacy
& FoF

(Pre-P) Linear Regression, (FE) PCA,
(PP)- LR, t-test

SVM principal components as features

Hssayeni et al.
(2018)

LSTM to identify motor
fluctuations

(Pre-P) BFS (FIR) (3 dB, 0.5-15 Hz),
(FE) automatic FE from LSTM

LSTM (Hssayeni et al., 2016; Pulliam et al.,
2017)

di Biase et al.
(2018)

Locate sensor placement to
monitor bradykinesia and
rigidity

(Pre-P) HPF (1 Hz), BPF (tremor — 4-8
Hz, bradykinesia — 1-4 Hz), (FE) FFT,
(PP) Shapiro–Wilk, ANOVA, Bonferroni
correction, p-values, Post hoc

preliminary analysis Movement time, Peak-to-Peak Velocity,
Fatigability, Total power, Smoothness

Prateek et al.
(2017)

Automatic detection of
onset & duration of FoG in
real-time

(Pre-P) Downsampling, Gaussian
autoregressive model, (FE) GLRT
framework, Dead reckoning, Conditional
intensity function

preliminary analysis Zero Velocity Event Intervals, Trembling
Event Intervals, Position, Velocity,
Orientation, Probability of FoG

(continued on next page)
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Table 4 (continued).
Study Proposed work Signal Processing Classification Features

Lonini et al.
(2018)

No. of sensors, amount of
labeled data to estimate
bradykinesia, tremor

(Pre-P) Segmentation (5 s clips with
50% overlap, total 41802 clips), 4th
order BF, HPF (0.5 Hz), LPF (3 Hz)

RF, CNN Range, Skew, Kurtosis, Cross-correlation
peak, Cross-correlation lag, Dominant
frequency, Relative magnitude, PSD,
Movements of jerk magnitude, ENT

Pedrosa et al.
(2018)

Differentiate low and high
frequency RT

(Pre-P) Normalization, (FE) FFT KNN, LSVM Signal peak, PSD, SD of power spectrum

Nguyen et al.
(2017)

Detection and
segmentation of TUG test
activities

(Pre-P) Detrented, Normalization, BPF
(Nguyen et al., 2015)

preliminary analysis Trunk acceleration, Thigh acceleration,
Angle of hip, Shin acceleration

Saad et al.
(2017)

Detect FoG with
multisensor device and
GNN

(Pre-P) 2 s window (step size-0.2 s),
(FE) time–frequency analysis, (FS) PCA

Gaussian Neural
Network (GNN)
(Barakat et al., 2011)

M, SD, PSD, Power, frequency, FI

Delrobaei et al.
(2018)

Estimate full body tremor
and differentiate tremor
and non-tremor dominant
PD patients

(Pre-P) BPF (2-20 Hz), (PP)
Shapiro–Wilks, Pearson Product Moment,
Spearman Rank-order Correlation

preliminary analysis RMS

AAC—Average Amplitude Change DASDV—Difference Absolute Standard Deviation Value EM-DD—Expectation Maximization-Diverse Density FIR—Finite Im-
pulse Response FR—Frequency Ratio GLRT—Generalized Likelihood Ratio Test ID-APR—Iterative Discriminative-Axis Parallel Rectangle MFL—Maximum Fractal
Length PSR—Power Spectral Ratio SSI—Simple Square Interval WL—Waveform Length
Table 5
Datasets based on Non-Wearable devices for Classification, Prediction, and Monitoring of PD.

Study Description Device description Activities

Li et al. (2018) 24 PD with Deep Brain Simulation
(DBS), 4-6 TUG test before and after
surgery (127 videos)

2-D Video Camera with 25 frames per
second

5 m TUG Test with 6 sub-task: Sit, Sit-to-Stand, Walk,
Turn, Walk-back, Sit-back

Khan et al. (2014) 13 PD (387 videos) + 6 HC (84 videos),
Labeled 0-3 based on severity level
(Nyholm et al., 2005)

Pivoted camera with 25 frames per second
and frame resolution 352 × 288 pixels

Rapid Finger Tapping for 10 s

Bandini et al.
(2017)

RaFD database (for pretraining): 57
adults + 10 children (Langner et al.,
2010)

Camera: Each expression was shown with
eyes directed straight ahead, averted to the
left, and averted to the right

8 facial expressions (neutral, anger, sadness, fear,
disgust, surprise, happiness and contempt)

Bandini et al.
(2017)

CK+ Database (for pretraining): 210
adults (327 image sequences) (Lucey
et al., 2010)

Panasonic AG-7500 cameras 8 facial expressions (neutral, anger, sadness, fear,
disgust, surprise, happiness and contempt)

Bandini et al.
(2017)

17 PD + 17 HC, 1 neutral + 8
expressive video (4 posed, 4 imitated)

Microsoft Kinect (at distance between
0.5-0.7 m from mouth), 640 × 480 pixels at
30 frames per second

Neutral expression (10 s), Basic expressions like
happiness, anger, disgust, sadness, Basic expressions
by imitating emotive faces shown on the screen

Butt et al. (2018) 16 PD + 12 HC LMC:motion & position of hand in 3D. 3
infrared transmitters, 2 infrared depth data
capture cameras (at 20 mm), 35 Hz

PSH, OCH, FT, PT (3 times each)

Joshi et al. (2018) 117 PD (772 video samples)
(Tickle-Degnen et al., 2010)

Camera (audio and video) (frontal face
view)

Patient speaking about positive or negative experience
(20 s clips)

Eltoukhy et al.
(2017)

9 PD 2 floor embedded force plates (Type
9286AA, Kristler instrument AG, Winterhur,
Switzerland), 1000 Hz, Kinect V2, 30 Hz

Stance phase of gait cycle when foot was in contact
with the force plate

Tan et al. (2019) 62 PD Kinect V2 / Kinect Xbox One: Video and
depth sensing, infrared cameras

Habitual Gait Speed (HGS): Walk at comfortable speed
to other end without stopping & talking (4 m),
Modified TUG (MTUG): TUG test with turn at 2 m
in Table 5 which includes a description of the dataset, devices, and
different activities that were performed to measure various symptoms.
It can be observed that the most commonly used non-wearable device
includes Kinect V2. It is easily available, low cost, and does not require
any expert to collect data. It can also be observed that the TUG test is
the most common activity to consider FoG and bradykinesia symptoms.

The detailed methodology followed by researchers is shown in
Table 6. It includes proposed work, signal processing techniques, clas-
sification techniques, and extracted features. The signal processing
techniques further contain information about Pre-Processing (Pre-P),
Feature Extraction (FE), Feature Selection (FS), and Post Processing
(PP) techniques. It can be observed from the table that non-wearable
devices provide a non-invasive diagnosis process with low-cost instru-
ments like a camera, video recorders, Kinect, and LMC. The data from
these instruments can be collected by common individuals and does not

require technical experts. Some of these devices can also help in remote

9

monitoring of PD patients which would help them to get personalized
treatment without going to clinicians frequently.

4.4. Handwriting based Classification, Prediction, and Monitoring

Apart from motor symptoms, there is another problem of handwrit-
ing abnormality commonly known as Micrographia (McLennan et al.,
1972) i.e. small, cramped handwriting, progressing to smaller hand-
writing with time. Handwriting also becomes crooked due to tremors in
hands. So, tremors can also be estimated from handwriting templates.
Diagnosis based on Handwriting Exam (HE) is one of the easy and
non-invasive ways for early diagnosis of PD patients.

The details of the dataset for classification, prediction, and moni-
toring of PD with handwriting template are mentioned in Table 7. The
Table contains details of the dataset, activities performed, and device
used for various handwriting templates. It can be observed from the
table that most common handwriting templates include Archimedes
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Table 6
Classification, Prediction, and Monitoring of PD using Non-Wearable devices.

Study Proposed work Signal Processing Classification Features

Li et al. (2018) Automatic sub-task
segmentation from video
recordings

(Pre-P) Sliding window,ground truth- 2
experts (0.99 Intra-Class Correlation
coefficient), (FE) Human Pose Estimator
(IEF & OpenPose (OP)), (FS) Faster Regions
with CNN, (PP) DTW

IEF+(SVM/LSTM),
OP+(SVM/LSTM)

6 Sub-task

Khan et al.
(2014)

PD severity based on
Rapid Finger Tapping
(RFT) features from video
recordings

(Pre-P) OpenCV & Haar Cascade classifier
for face detection, frame is divided into
ROIs, moving average, filtered using 3-SD
rule, (FE) Peak finder Algorithm, (FS)
Jackknifing estimates precision of guttman
monotonicity coefficient, CS, (PP) Spearman
pair-wise correlation, guttman correlation
model

SVM no., acceleration, diff of FT, M & V
coefficient of FT speed and diff between
max amplitude of FT, M open and close
velocity of index finger, average ZCR,
𝑇𝐸 , 𝐴𝑣𝑔𝐶𝐶𝑁𝑃 , 𝐴𝑣𝑔𝐶𝐶𝑁𝑉 , SFT

Bandini et al.
(2017)

Automatic method to study
facial bradykinesia

(Pre-P) Facial landmark aligned to template
(rotations, translations, scaling, and
skewing) Euclidean distance for each video
frame, (FE) Intraface tracking algorithm,
(PP) Two-tailed t -test, Procrustes analysis

Multi-class RSVM 49 facial landmarks, 20 geometric
features (4 eyebrows, 10 eye, 6 mouth),
Mean, SD, Max, Min, range

Butt et al.
(2018)

Potential of LMC to assess
motor dysfunction

(Pre-P) Signals were reconstructed using
Linear interpolation method (50 Hz), LPF,
BF (14 Hz), (FE) LMC-SDK (Palm Angle,
Fingertip distance, Thumb forefinger
distance, Fingertip velocity index), Burg’s
Method, Peak finder Algorithm, (FS) PCA,
SVM, Consistency, J48, Filtered subset
evaluation, IG, GR, CS, attribute evaluation,
(PP) Spearman’s correlation,MWW, ANOVA

SVM (SMO, Poly),
LR, NB

Number of rotational movement, OCH
movement, FT, PSH speed, OCH speed,
Variability of frequency, amplitude,
Signal strength of movements, PSD

Joshi et al.
(2018)

Predict facial expressivity
score

(FE) Video: Open Face, Audio: MFCC
(Librosa Library), (PP) F1-scores before and
after randomly permuting the values of the
features while training

HBNN(C/R), RF
(Regression)

Video: 18 Action Units (AU) presence,
17 AU intensity values, Audio: M, SD,
Min, Max

Eltoukhy et al.
(2017)

Potential of kinect to
predict 3D Ground
Reaction Forces (GRF)

(Pre-P) GRFs were normalized w.r.t
subject’s body weight, (FE) GRFs (Vertical
and Horizontal), (PP) t-test

preliminary analysis 2 features from each GRFs i.e. braking
and propulsive peak points

Tan et al. (2019) Potential of kinect to
provide incremental value
by evaluating MDS-UPDRS
and PIGD sub-scales

(PP) Association between Kinect V2 and
MDS-UPDRS and Postural Instability and
Gait Difficulty (PIGD) scale

Linear &
proportional odds
regression

HGS: Gait speed, Gait speed variability,
Step length, Step time, Vertical pelvic
displacement, MTUG: MTUG time, First
step length, Time to turn

𝐴𝑣𝑔𝐶𝐶𝑁𝑃 —Mean of Cross-Correlation between the Normalized Peaks 𝐴𝑣𝑔𝐶𝐶𝑁𝑉 —Mean of Cross-Correlation between the Normalized Valleys DTW—Dynamic Time
Wrapping HBNN(C/R)—Hierarchical Bayesian Neural Network (Classification/Regression) IEF—Iterative Error Feedback SFT—Standard deviation of Face-rectangle
centroid during Tapping ROI—Regions of Interest SDK—Software Development Kit 𝑇𝐸 -Signal Energy
t
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piral, meanders, and alphabets. Data can also be taken in the form
f signals from the smartpen. Most of the work that has been done
s on images. Two datasets MNSIT (LeCun et al., 0000) and Ima-
eNet (0000b) can be used for pre-training models to overcome the
roblem of overfitting and underfitting. The fine-tuned models perform
etter as compared to traditional classification models.

The details of the methodology followed by researchers is explained
n Table 8. It contains information about proposed work, Signal pro-
essing, classification, and extracted features. It can be observed from
he table that most of the handwriting related work is done on images.
ery few researchers have done work based on signals. There is still
lot of potential in analyzing signals for classification purposes based

n handwriting templates. New handwriting templates are also being
nalyzed to find new discriminative properties. It is found that drawing
pirals gave the best results which maybe because of the coordination
equired to perform this activity. Deep learning models have also been
xplored to extract distinctive features to improve the accuracy of the
lassification of PD.

.5. EEG based Classification, Prediction, and Monitoring

Apart from motor and non-motor symptoms, PD patients also suffer
rom cognitive impairments. These cognitive impairments can provide

great deal of information as to how the disease develops, how
edications are affecting patients. EEG signals can serve as an essential

iomarker to distinguish PD patients from HC. It has been observed
10
hat PD patients show different EEG patterns as compared to HC.
oreover, EEG signals can also serve as objective biomarkers to predict

he onset of PD, years before the actual development of PD. This can
e done by analyzing Rapid eye movement Behavior Disorder (RBD)
nd IH patients. RBD is known as an early stage of PD. Analyzing
EG signals of RBD may have the potential in preventing this disease.
o. it is important to study EEG signals. The details of the device
sed to capture data and the description of the datasets are discussed
n Table 9. It can be observed from the table that EEG data can be
ollected using headsets with different number of channels. Data is
ostly collected in the resting state for a time ranging from 5 min to
0 min. Work can be done on channel optimization to find the optimal
umber of channels for the diagnosis of PD.

The details of the methodology followed by researchers is discussed
n Table 10. It can be observed from the table that there is a lot of
otential in analyzing EEG signals for Parkinson’s disease diagnosis. It
rovides the cognitive biomarkers to study and analyze the PD symp-
oms. RBD analysis using EEG signals has great potential in slowing
own the progression or may even prevent the development of PD.
hough limited studies have been found on EEG, most of the feature
xtraction is done with FFT. Other feature extraction techniques need
o be explored to further enhance the system’s performance.

.6. Clinical data based Classification, Prediction, and Monitoring

Clinical measures of Parkinson’s disease include demographics data,
RI, f-MRI, SPECT, DATSCAN, Positron Emission Tomography (PET),
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Table 7
Handwriting-based datasets for Classification, Prediction, and Monitoring of PD.

Reference Dataset description Activities Device description (Sampling Rate)

de Souza et al. (2018),
Sharma et al. (2019),
Passos et al. (2018),
Pereira et al. (2017), Ali
et al. (2019)

(0000a): 18 HC + 74 PD a total
of (144+592=736 images) (368
spirals + 368 meanders) (Pereira
et al., 2016a)

Drawing of: 2 Spirals, 2 Meanders pen-paper

Afonso et al. (2019),
Pereira et al. (2018)

(0000a): 35 HC + 31 PD a total
of 9 images and 12 signals from
each subject (Pereira et al.,
2016b)

4 spirals, 4 meanders, 1 circle on paper, 1
circle in air, Left and Right DDK

Biometric Smart Pen with 6 sensors-tilt,
acceleration, refill, grip, writing pressure

Kotsavasiloglou et al.
(2017)

59 subjects (20 HC + 24 PD + 15
young HC)

10 lines left to right, 10 lines right to left
with each hand, A total of 40 drawings
from each patient

Wacom pen-tablet device, model Bamboo CTE-450,
Active surface of 147.6 × 92.3 mm having resolution
of 100 dots per mm (60 Hz)

Naseer et al. (2019) (LeCun et al., 0000): Public
database for handwritten digits
with 60,000 training and 10,000
testing examples. Used for
pre-training

✗ ✗

Naseer et al. (2019) (0000b): Contains 10,000 images
divided into synonym set or
synset, Used for pre-training

✗ ✗

Naseer et al. (2019),
Moetesum et al. (2019),
Impedovo et al. (2018)

(Drotar et al., 2014) PaHaW
Dataset: 37 PD + 38 HC

Archimedes Spiral, Repeated cursive letter I,
The bigram le, The trigram les, Cursive
words lektorka, porovnat, nepopadnout,
Cursive sentence Tramvaj dnes uz nepojede

Intuos 4M digitizing tablet (Wacom), Features
extracted from (x, y) coordinates of pen trajectory
and pen status (whether in air or touching the
writing surface) (200 Hz)

Rios-Urrego et al. (2019) 39 PD + 39 elderly HC, 40 young
HC, Different and separate
Validation set: 6 HC + 6 PD

Draw spiral between the lines of the
template and avoiding to cross them, Wrote
sentence El abecedario es a,b,c,. . . .,z

Wacom Clintiq 13 HD tablet with visual
feedback,Captures six signals—horizontal & vertical
position, azimuth & altitude angle, distance to the
tablet surface & pressure of the pen (180 Hz)

Bernardo et al. (2019) 10 PD + 10 HC Three different drawing patterns i.e.
triangle, cube and Archimedean spiral

Desktop software: loads the image and collect the
drawings. Computer monitor was attached to the
notebook responsible for taking data, Mindwave
EEG with two channels
Local Field Potential (LFP) images, UPDRS scale, HY scale, Mini-Mental
State Examination, sleep scores from Epworth Sleepiness Scale (ESS),
olfactory scores from the University of Pennsylvania Smell Identifica-
tion Test (UPSIT) and many more. Different types of images like MRI,
f-MRI, SPECT can serve as biomarkers to find cognitive impairments in
Parkinson patients. Clinical measures combined with different scales
can serve as a method to predict UPDRS scores, remote monitoring
of PD patients, and finding the severity of the motor and non-motor
symptoms. It contains multivariate and multimodal data that can help
to slow down the progression. Parkinson’s Progression Markers Ini-
tiative (PPMI) database serves as a standard database which contains
multivariate data which can be used to find the relationship among
symptoms for robust classification of Parkinson’s disease.

The details of the datasets and collected multivariate data are
discussed in Table 11. It can be observed from the table that PPMI is the
main database that contains clinical data which includes data from PD
with and without Mild Cognitive Impairment (MCI), HC, SCANs with-
out Evidence of Dopamine Deficit (SWEDD) subjects. It contains MRI,
f-MRI, SPECT, Fluid Attenuation Inversion Recovery (FLAIR) images in
Digital Imaging and COmmunications in Medicine (DICOM) format. It
contains multivariate data that can help the researchers in a wide range
of symptoms. It can also serve as a measure to find relationship of the
symptoms with various types of clinical scores.

The details of the methodology followed by the researchers is
discussed in Table 12. It can be observed from the table that clinical
measures have a lot of potential in the diagnosis of Parkinson’s dis-
ease. Different types of brain images can provide important cognitive
biomarkers. It can also be observed that pre-processing of the clinical
data is a very important process that includes resampling, reorientation,
filtering, binarization, data correction, and others. The clinical mea-
sures can be combined with UPDRS, sleep, olfactory scores, and help to
estimate the severity of the disease. The UPDRS can be combined with

the HY scale to combine the scoring and staging process.

11
5. Rehabilitation of Parkinson patients

Till now, there is no cure for this disease to the best of our knowl-
edge. Medicines can only help to slow down the progression. There
is another non-invasive way to help Parkinson patients by providing
them rehabilitation facilities to perform the daily routine tasks ef-
ficiently like walking, cooking, taking groceries, cleaning, shopping,
etc. The rehabilitation tasks include physical therapy that can help
improve coordination, stooped posture, balance, and strength. The
same daily exercise routine becomes boring for the patients and they
are least motivated to perform these exercises. So, researchers are using
computer-assisted technologies to help Parkinson’s patients in different
ways.

The authors in Pachoulakis et al. (2018) proposed Kinect sensor
based 3-D games (The Balloon Goon, The slope Creep Game) to improve
decision making, cognitive reactions, postural stability, reflexes, and
mobility of PD patients.

There can be another form of rehabilitation to help Parkinson’s
patients by providing some external aid to perform daily tasks. Authors
in Punin et al. (2019) provide external stimuli to decrease the FoG
time with the help of wearable and non-wearable external stimuli
devices. The devices used for this purpose include the Arduino Pro Mini
Module with an Accelerometer, ATmega328 microcontroller, Bluetooth
Module, Radio Frequency emitter, On–off switch, LED Indicator, and
Vibratory Module. The authors collected real-time data of walking,
turning, and climbing steps through a mobile app. The important
features are extracted with Discrete Wavelet Transform (DWT) in real-
time. The signals are analyzed and checked for freezing. If there is any
freezing, vibration stimuli is given to the left leg sufficient enough to
help the patients walk again.

Therefore, wearable and non-wearable devices can help the PD
patients to perform the daily activities more efficiently in an interesting
and non-invasive way.
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Table 8
Classification, Prediction, and Monitoring of PD using Handwriting features.

Study Proposed work Signal Processing Classification Features

de Souza et al.
(2018)

Measures the similarity
between Exam
Template (ET) &
Handwriting Trace (HT)
with SCM

(Pre-P) Median filter (5 × 5), Erosion (9 × 9
ellipse structure), Otsu threshold, (FE)
Structural Co-occurrence Matrix (SCM)-3
divisions: Handwriting Exam (HE) & HT, HE &
ET, HT & ET

RSVM, OPF
(Euclidian Distance),
NB

correlation, Inverse Difference Moment,
ENT, CS distance, CS distance ratio,
Mean absolute difference ratio,
Divergence of Kullback Leibler,
Complimentary absolute difference

Afonso et al.
(2019)

Application of
Recurrence plots to
map signal into images

(Pre-P) Recurrence Plots, Normalization, (FE) 6
channel data

3 architectures of
CNN:
CIFAR10_quick,
ImageNet, LeNet,
OPF

Images(64 × 64, 128 × 128)

Kotsavasiloglou
et al. (2017)

Potential of simple and
objective metric of
drawing horizontal
lines

(FE) Pen’s Horizontal velocity, (FS) Correlation,
Consistency, J48, Wrapper, Variation,
clustering, GR, IG, One-R, Relief, SVM,
Symmetrical, Uncertainty, (PP) Jarque–Berra,
Liliefors, Levene, Brown Forsythe, t-test, MWW,
Pearson product-moment correlation coefficient

NB, AdaBoost, LR,
SVM, RF, J48

Mean, Normalized Velocity Variability,
SD, 𝐸𝑁𝑇𝑋 , 𝐸𝑁𝑇𝑌 , mean over lowest &
highest scoring hand & movement
Direction

Passos et al.
(2018)

ResNet-50 to learn
patterns

(FE) ResNet-50, (FS) 100 dimensional –PCA RSVM, OPF, NB,
ResNet50

weights of ResNet50 as features

Naseer et al.
(2019)

Early detection of PD
with transfer learning

(Pre-P) Signals to images, Removal of in-air
movements, Median filter, Gray scale
transformation, Data Augmentation, (FE)
AlexNet on MNIST & ImageNet with freeze &
fine tuning

SVM on PaHaW
dataset

weights of AlexNet as features

Pereira et al.
(2017)

RBM for unsupervised
feature learning

(Pre-P) Otsu threshold, (FE) RBM, (PP) Mean
Square Error (MSE) during learning process

OPF, NB, RSVM weights of RBM as features

Moetesum et al.
(2019)

Visual attributes to
extract discriminating
features

(Pre-P) Early fusion Technique: Raw data,
median filter residual data, Edge Data, (FE)
CNN (AlexNet), (FS) Late fusion Technique,
(PP) Friedman, post-hoc Nemenyi test

SVM weights of CNN as features

Impedovo et al.
(2018)

Early detection of PD
with dynamic features

(FE) EMD, (FS) Filter Method KNN, LSVM, RSVM,
NB, LDA, RF,
AdaBoost, Ensemble

M, median, SD, 1st, 99th, 99th-1st
percentile of Stroke no., size, duration,
speed, height, width, Displacement,
Velocity, Acceleration, NCA, NCV, On
surface, In-air & total time, Pressure,
NCP, Shannon & Renyi ENT,
Signal:Noise

Ali et al. (2019) Alleviate the class
imbalance problem

(Pre-P) Filled form was segmented into 8 parts,
Automated method to separate HT from ET,
(FE) Statistical features by comparing ET and
HT, (FS) CS, (PP) Undersampling, Oversampling

LDA, KNN, Gaussian
NB, DT, AdaBoost,
LSVM, RSVM

RMS, Max, Min, SD of difference
between ET and HT, Min, Max, SD of
ET, Number of times the difference
between HT and ET, radius changes
from negative to positive and vice versa,
Mean Relative Tremor

Pereira et al.
(2018)

Features from
hand-written dynamics

(Pre-P) Rescaling, Normalization, Images of
64 × 64 and 128 × 128, (FE) Time series data in
the form of images, Gray Level Co-occurrence
Matrices (GLCM), Local Binary Patterns (LBP),
(PP) Wilcoxon signed rank test with
significance of 0.05

OPF, RSVM, NB,
CNN (ImageNet &
Cifar-10)

Energy, ENT, Contrast, Homogeneity,
correlation for (𝜃 as 0◦, 45◦, 90◦, 135◦),
Recaps local structure by comparing
each pixel with its neighbors

Rios-Urrego
et al. (2019)

Kinematic, geometric
and Non-Linear
Dynamics (NLD)
features to discriminate
between PD and HC

(FE) x, y, z coordinates, FFT, Trajectories of
the spiral, (FS) PCA, (PP) Kruskal–Wallis test

KNN, RSVM, RF Speed, Acceleration, Pressure, 1st, 2nd
derivative, Distance from tablet surface,
1st derivative of z(t) with six functions
i.e. mean, SD, Max, Min, skewness &
kurtosis, MSE, Coefficients of 3rd order
polynomial, amplitude of 1st five
spectral components, slope, ApEn,
SampEn, ApEn & SampEn with Gaussian
kernel, CD, Hex, LLE, LZC

Bernardo et al.
(2019)

Develop software to
select drawing patterns
and collect data

(Pre-P) Grayscale conversion, Skeletonization
process, (FE) Extraction from images, (PP)
Mindwave EEG is used to detect attention,
meditation and eye blink

OPF, SVM, NB Euclidean, relative, circular, Manhattan
distance, Mouse pointer speed, Similarity
between pixels, design speed & time

ApEN—Approximate ENtropy CD—Correlation Dimension Hex—Hurst Exponent LLE—Largest Lyapunav Exponent LZC—Lempel–Ziv Complexity NCA—Number of
Changes of Acceleration NCP—mean Number of local extrema of Pressure NCV—Number of Changes of Velocity SampEN—Sample ENtropy
6. Software, Tools, and Libraries used in Parkinson’s disease diag-
nosis research

Machine learning and deep learning-based diagnosis of Parkinson’s
disease involves Pre-Processing, Feature Extraction, Feature Selection,
Post-Processing, and Classification with or without cross-validation.
12
Each step involves the processing of data which can be done through
some programming or automated software, tools, and libraries. The
software like MATLAB, Python, Weka can provide a platform for feature
extraction and classification purpose. Some libraries and toolboxes can
be integrated with these softwares to increase the functionality of these
softwares.
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Table 9
EEG-based datasets for Classification, Prediction, and Monitoring of PD.

Reference Description Device used Sampling Rate

Oh et al. (2018) 20 PD + 20 HC Emotive EPOC neuro headset of 14 channels 128 Hz

Betrouni et al. (2019) 118 PD (Dujardin et al., 2015) Waveguard, ANT software BV (Enschede, Netherlands),
high resolution, 128 channels, resting state protocol

512 Hz

Ruffini et al. (2019b) 114 RBD + 83 HC, Out of 114 RBD within 10
years 19 developed PD and 12 Lewy Body
Dementia (DLB) (Brazète et al., 2016)

Full EEG montage for Resting state EEG. Collected data
within 30 min of waking up using 14 scalp electrodes

256 Hz

Ruffini et al. (2019a) 121 RBD + 91 HC, Out of 121 after 10 years 14
developed PD and 13 developed DLB

Resting state EEG collected from awake subjects using 14
scalp electrodes, Contains period of eyes open followed
by eyes closed digitized with 16 bit resolution

256 Hz

Yuvaraj et al. (2018) 20 PD + 20 HC Emotiv EPOC neuroheadset, Wireless, 2.4 GHz band,
14-channels, eyes-closed state EEG for 5 min

128 Hz
Table 10
Classification, Prediction, and Monitoring of PD using EEG signals.

Study Proposed work Signal Processing Classification Features

Oh et al. (2018) Deep learning based early
diagnosis

(Pre-P) Segmentation (2 s window), 6th
order BPF, BF (1-49 Hz)

CNN weights of CNN as features

Betrouni et al.
(2019)

Differentiate between
severity of cognitive
impairments in PD patients

Brain Analyzer software, Gratton & Coles
method, 50-Hz filter — remove residual
noise, segmentation (4 s), (FE) FFT (2 s,
50% overlap, (FS) CFS (Pearson
correlation), (PP) ANOVA

RSVM, KNN Absolute power, Relative power, Peak
frequency

Ruffini et al.
(2019b)

RBD analysis for prediction
of PD

BPF (0.3-100 Hz), line-noise notch filter (60
Hz), Sliding window (1 s), HW (50%
overlap), Data Flattening, Binarization, (FE)
FFT (1-50 Hz), (FS) Lempel–Ziv–Welch
Complexity, ENT Rate, (PP) Kruskal–Wallis
test, Wilkoxon ranksum statistic test, Mutual
Algorithmic Information

RF Average PSD

Ruffini et al.
(2019a)

Deep learning to find
clinically relevant
biomarkers

(Pre-P) BPF (0.3-100 Hz), Notch filter (60
Hz), HW (1 s), (FE) FFT (4-44 Hz)

CNN, RNN with
stacked LSTM, GRU,
SVM

Images of spectrograms

Yuvaraj et al.
(2018)

Higher Order Spectra
(HOS) for automatic
diagnosis of PD

(Pre-P) Discarding amplitudes more than 80
𝜇V, Forward and reverse 6th order BF, BPF
(1-49 Hz), Segmentation (2 s, HW with 50%
overlap), (FE) HOS, (FS) Student’s t-test

DT, KNN, NB,
Fuzzy-KNN, PNN,
SVM (RBF, Poly)

Mean, bispectral & Phase ENT,
Bispectral Moments, Sum of logarithmic
amplitude, 1st & 2nd order spectral
moment, Weighted center, Absolute
weighted center
Table 11
Clinical data based datasets for Classification, Prediction, and Monitoring of PD.

Reference Description Type of Clinical data

Gao et al. (2018) Michigan Data: 148 PD + 77 HC, 207 variables Demographics, PET, Behavioral and sensory assessments, Mattis Dementia
Rating scale, Sleep questionnaire, Genetics, Number of falls, Clinical
measures, MRI

Gao et al. (2018) Tel-aviv data: 110 PD Demographic, Clinical, Gait, Balance, Imaging data

Peng et al. (2017), Sivaranjini
and Sujatha (2019), Oliveira
et al. (2018), Lei et al. (2018),
Prashanth and Roy (2018), Lei
et al. (2017)

PPMI database: (0000c; Marek et al., 2011)
(Peng et al., 2017): 69 PD + 103 HC
(Sivaranjini and Sujatha, 2019): 82 HC + 100 PD
(Oliveira et al., 2018): 209 HC + 443 PD
(Lei et al., 2018): 238 baseline subjects (62 HC, 142 PD,
34 SWEDD), 186 subjects (12 months) (54 HC, 123 PD, 9
SWEDD), 127 subjects (24 months) (7 HC, 88 PD, 22
SWEDD)
(Lei et al., 2017): 208 subjects (56 HC + 123 PD + 29
SWEDD)
(Prashanth and Roy, 2018): 197 HC + 434 PD (1025 +
3020 observations)

(Peng et al., 2017; Sivaranjini and Sujatha, 2019; Lei et al., 2018, 2017):
T1 weighted brain MRI images are acquired by a 3T SIMENS MEDICAL
SYSTEM with 2300 ms repetition time, 2.98 ms echo time, 9◦ flip angle,
1 mm slice thickness, 256 mm field of view and 240 × 256 matrix size
(Oliveira et al., 2018): SPECT scan images lasted for 30 to 45 min, saved
in DICOM format using 91 × 109 × 91 cubic voxels with 2mm wide
(Prashanth and Roy, 2018): MDS-UPDRS scores from 59 activities from
different parts of MDS-UPDRS scale
(Lei et al., 2017): Sleep scores from ESS, olfactory scores from UPSIT

Yao et al. (2018) 12 PD 16 LFPs (1.5-10 min) from 7 channels (4 Monopolar & 3 bipolar) (2048
Hz)

Abós et al. (2017) Training: 38 HC + 70 PD (27 PD-MCI and 43
PD-Non-MCI)
Validation: 25 PD (8 PD-MCI and 17 PD-Non-MCI)

Three-dimensional structural T1-weighted images, functional resting state
images (Training: 10 min duration, 300 volumes, Validation: 6 min, 180
volumes) and FLAIR images were acquired from 3T Siemens MRI Scanner
Pre-processing of the data is a very important step as it directly

nfluences the performance of the system. It involves the processing of

rain images, filtering signals, noise removal, motion analysis. Motion
13
data analysis includes gait events, FoG, bradykinesia, activity segmen-
tation, balance analysis, and others. Some of the related softwares and
tools to measure and pre-process the motion-related data include ELAN
Annotation software (Tahavori et al., 2017), OpenSim (McKay et al.,
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Table 12
Classification, Prediction, and Monitoring of PD using Clinical data.

Study Proposed work Signal Processing Classification Features

Gao et al. (2018) Investigate falls using
clinical, demographics and
neuroimaging data

(Pre-P) Data Aggregation, q-values
(Benjamin/Hochberg False Discovery Rate
adjusted 𝑝-value), Normalization,
Harmonization, MultiDimensional Scaling,
t-SNE, (FS) RF, Least Absolute Shrinkage and
Selection Operator (LASSO), KnockOff, (PP)
t-test, MWW, KS

LR, RF, RSVM, NN,
Ada & Gradient
Boost, super learner

Clinical data features

Peng et al.
(2017)

Multi-level ROI features to
detect sensitive biomarkers

(Pre-P) Resampling, reorientation, intensity
correction, brain label & extraction (scalp, skull
& dura), tissue segmentation (Gray Matter
(GM), White Matter (WM), CSF), cortical
surface reconstruction, (FE) ROI features
(BrainLab software), (FS) t-test, mRMR, RFE

Multi-kernel SVM GM, WM, CerebroSpinal Fluid (CSF),
cortical thickness & surface area (78
each), 78 × 78 correlative matrix on
cortical thickness values

Sivaranjini and
Sujatha (2019)

Deep learning based
classification of MR images

(Pre-P) Normalization, 2D Gaussian filter (size
5 × 5 & SD 0.8)

CNN AlexNet weights of AlexNet as features

Oliveira et al.
(2018)

Potential of [123I] FP-CIT
SPECT brain images

(Pre-P) Registration Algorithm (Powell’s and
Brunt’s Method), Resampling (2.2 mm),
Gaussian filter (16 mm), Binarization
(threshold level 25%), Morphological erosion,
(FE) 7 ROI’s, (PP) t-test, Cochran’s Q test, Post
hoc Dunn’s Test with Boniferroni correction

SVM, KNN, LR Specific Binding Ratio, Caudate,
Putamen & Striatal Binding Potential,
Putamen-to-Caudate Ratio, Volume,
Length

Yao et al. (2018) LFP based biomarkers to
detect tremor

(Pre-P) Notch filter (50 Hz), 2nd order BF BPF
(2 Hz), Segmentation (2s), 2nd order Kalman
filtering, (FE) FFT (1-10 Hz), Hilbert transform,
Hjorth, Threshold, (PP) Biserial correlation
coefficient, ANOVA, Post hoc

LDA, KNN, LR,
LSVM, RSVM, MLP,
RF, eXtreme
Gradient (XG)

phase–amplitude coupling, high
frequency oscillations ratio & Power,
Tremor, Power (M, Max, Gamma,
Beta), Wavelet, ENT, Hjorth
(Activity, mobility, complexity)

Lei et al. (2018) Un-supervised FS based on
joint embedding & sparse
regression

(Pre-P) Anterior Commissure-Posterior
Commissure reorientation (ACPC), FSL toolbox,
(FE) Voxel-Based Morphometry toolbox- GM
features, (FS) joint embedding learning &
sparse regression

SVR, SVM 116 dimensional features

Prashanth and
Roy (2018)

Staging of PD with
MDS-UPDRS and HY scale

(FS) Filter method, (PP) Kruskal–Wallis,
Wilcoxon rank sum tests, Spearman’s rank
correlation coefficient, GA, boxplots

NN, Ordinal LR
(OLR), SVM, PGM,
KNN, RF, AdaBoost,
DNN, RUSBoost, NB

UPDRS scores of 59 features from
different sections of MDS-UPDRS
scale

Abós et al.
(2017)

Connection-wise patterns
of functional connectivity
to find cognitive status
(with/without MCI)

(Pre-P) Anatomical component-based noise
correction, stabilization, De-spiking,
motion-correction, grand-mean scaling,
detrending, BPF (0.01-0.1 Hz), (FE) principal
components from CSF and WM time series & 6
motion parameters from motion correction step
to find 246 nodes & 30135 edges, (FS)
Randomized LR, (PP) z-score, regularization,
Network based statics, Monte Carlo,
F-thresholds

LSVM 21 edges connected with 34 nodes
were used as features

Lei et al. (2017) Multi-modal neuroimaging
data to classify and predict
PD

(Pre-P) ACPC correction using COM algorithm,
Resampling, Normalization, Segmentation, (FE)
116 ROIs, (FS) Novel Objective function
(𝑙2,1-norm using LASSO), (PP) Pearson
Correlation Coefficient

SVM, SVR GM ,CSF, Fractional Anisotropy
2019), Mobility Lab systems (Ramdhani et al., 2018), IGS bio and
motion capture software (Delrobaei et al., 2018; Nguyen et al., 2017),
Motion Studio (di Biase et al., 2018), Motive Tracker (Dang et al.,
2019), Tech MCS software (Caramia et al., 2018), Faceshift (Bandini
et al., 2017), LMC-SDK (Butt et al., 2018). Processing brain images
include template matching, find ROI’s de-noising, filtering surface re-
construction rendering, and others. Some of the tools to process brain
images include MRICon software (Peng et al., 2017), BrainLab soft-
ware (Peng et al., 2017), Insight toolkit (Oliveira et al., 2018), CImg
library (Oliveira et al., 2018), Visualization toolkit (Oliveira et al.,
2018), VBM (Voxel-Based Morphometry) toolkit (Lei et al., 2018), AAL
atlas (Lei et al., 2018), FSL toolbox (Lei et al., 2018; Abós et al., 2017),
brainnetome atlas (Abós et al., 2017), SPM, FLIRT, brainnet viewer (Lei
et al., 2017), brain analyzer software (Betrouni et al., 2019).

Feature extraction is also very important to extract discriminative
features for robust classification. There are various feature extraction
techniques and different toolboxes that are available to decrease the
manual process of extraction. Some of them are openSmile (Braga et al.,
14
2019), Voice analysis toolbox (Sakar et al., 2019), Praat (Braga et al.,
2019; Sakar et al., 2019; Almeida et al., 2019; Haq et al., 2019),
OpenPose (Li et al., 2018), OpenCV (Khan et al., 2014; Almeida et al.,
2019), OPENNI (Bandini et al., 2017), OpenFace, Librosa (Joshi et al.,
2018).

Post Processing includes statistical analysis of data and features to
understand the statistical significance of features. Some of the post-
processing tools include SPSS software (Delrobaei et al., 2018), t-
SNE (Almeida et al., 2019), Circos (Peng et al., 2017), TEEM tools (Lei
et al., 2017).

Classification involves the implementation of different algorithms
of the machine and deep learning and analyzing the results and fea-
tures through some visualization tools. Some of the related tools in-
clude Statistics and Machine Learning Toolbox (Camps et al., 2018;
Prashanth and Roy, 2018; Caramia et al., 2018), classification Learner
toolbox (Tuncer et al., 2019; Tuncer and Dogan, 2019; Betrouni et al.,
2019), Alyuda NeuroIntelligence (Parisi et al., 2018), Caffe library
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Table 13
Comparative Analysis.

Feature Voice Wearable Non-Wearable Handwriting EEG Clinical

Description Voice becomes
slurry, blurry and
monotonous

tremor, FoG,
bradykinesia, motor
impairments can be
captured

motor impairments and
facial expressions can be
captured

Handwriting
becomes smaller,
crooked due to
tremor

cognitive
impairments can be
captured

Images from MRI, PET,
DATSCAN, f-MRI can
capture cognitive
impairment, automating
UPDRS scores from Part I,
II, IV

Type of Data Signals, Images
(from signal)

Signals, Images
(from signal)

Images, Video Recordings Images, Signals Signals, Images
(from signal)

Images, Clinical Scores

Sensor Type Microphone
(Headmounted/
smartphone)

Force,
Accelerometer,
Gyroscope,
Magnetometer,
Geomagnetic,
Telemeter,
Goniometer

Laser, Camera, Video
Recorder, Infrared
Cameras, Microsoft Kinect,
LMC, Force Plates

Tilt, Acceleration,
Refill, Grip, Pressure

✗ ✗

No. of
Studies

Motor Fluctuations -
2
Tremor - 7 MRI - 3
FoG - 7 Facial Expressions - 2 Signal - 3 f-MRI - 1

Signal - 21 Bradykinesia - 3 Motor Fluctuations - 2 Images - 6 Signal - 2 FP-CIT-SPECT - 1
Images - 0 Gait - 1 Activity Segmentation - 2 Signal to Image - 3 Images - 3 Clinical Scores - 3

Rigidity - 1 Gait - 1 UPDRS Scores - 1
Activity Recognition
- 2
Activity
Segmentation - 1

Prediction
UPDRS-
(Nilashi et al., 2018;
Yoon and Li, 2018)

✗ ✗ ✗ ✗

Fall - (Gao et al., 2018)
Depression, Sleep,
Olfactory Scores - (Lei
et al., 2018)
Sleep, Olfactory Scores -
(Lei et al., 2017)

Monitoring (Zhang, 2017; Yoon
and Li, 2018)

(Camps et al., 2018;
Samà et al., 2018)

✗ ✗ ✗ ✗

Stage
Estimation

(Oung et al., 2018b) (Kim et al., 2018) ✗ (Rios-Urrego et al.,
2019)

(Betrouni et al.,
2019)

(Prashanth and Roy, 2018)

Public
Dataset

19 6 1 8 ✗ 6

Private
Dataset

3 20 5 3 3 3

Other
Datasets

3 2 2 3 2 ✗
(Afonso et al., 2019; Naseer et al., 2019; Pereira et al., 2018), LIBSVM,
LIBOPF (Pereira et al., 2018), LIBLinear (Abós et al., 2017).

7. Comparative Analysis

Parkinson’s Disease is a combination of multiple symptoms that
can be broadly divided into motor and non-motor symptoms. These
symptoms vary from patient to patient. Based on the symptom, type
of data, and source of data, we have divided our analysis into six sub-
categories including voice-based analysis, wearable, and non-wearable
devices-based analysis, handwriting based analysis, EEG signals-based,
and Clinical data-based analysis. All the work collected is from recent
years basically from 2017, 2018, and some work of 2019. Apart from
these six sub-categories, some review articles are also included to
collaborate the research work done before 2017. Some of the work
done for the rehabilitation of Parkinson patients is also included in
the survey. As there is no cure for this disease, rehabilitation is very
important to improve the quality of life of Parkinson patients.

The voice-based analysis provides the measure for early diagnosis
as most of the Parkinson patients have a voice disorder. Wearable and
non-wearable devices can measure motor symptoms like tremor, FoG,
bradykinesia, dyskinesia, and body movements. Handwriting provides
the diagnosis process as well as the measure of tremors in patients.

EEG signal data provides cognitive biomarkers to check the progression
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of the disease. Clinical measures provide clinical data, sleep scores,
olfactory scores, brain images from MRI, f-MRI, PET, etc.

The comparative analysis of the work done in each of the sub-
categories is provided in Table 13. It contains a description of each
sub-category, type of data used, type of sensors, number of studies
based on public datasets, private datasets or datasets taken from other
studies. The number of studies shows the sub-division under each cate-
gory. It can be observed that in the voice-based sub-category, no work
has been found using images to the best of our knowledge. Signal-based
images can provide rich information for the diagnosis process and can
also reduce the time of the feature extraction as the feature extraction
process will become automatic. From the wearable category, less work
has been done to access gait. Gait is also one of the major symptoms
in Parkinson patients which needs more attention. The activity seg-
mentation process is very important to measure gait, FoG, turning and
this process should be automatic to reduce the manual work and very
little work has been done in this field. Prediction of UPDRS scores,
falls, clinical scores can help to quantify severity in Parkinson patients.
Only work in this area has been done using voice signals and clinical
data. There is a lot of potential in this area as prediction can be done
using wearable and non-wearable devices as well as from EEG signals.
Wearable devices with the help of accelerometer, gyroscope can predict
falls and helps to stop them. Remote monitoring of patients is a very
trivial task as symptoms vary with the time of the day. 15–20 min
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Table 14
Comparison of Feature Extraction methods.

Method Description/ Pros Challenges/ Cons Voice Wearable Non-Wearable Handwriting EEG Clinical

Spectral
Analysis

• Transform a time-series data into its
coordinates in the space of frequencies,
and then analyze its characteristics in
this space.
• Capture local temporal effects
• Discover periodicities in the data

• Correlated features
• Good only for stationary signals
• Concept of windowing is needed

✗ ✓ ✗ ✓ ✗ ✗

EMD • Works in temporal rather than
frequency space
• Can decompose any complex dataset
into finite and complete small number
of components
• Good for natural signals (Non-Linear &
Non-Stationary)
• Can separate stationary and
non-stationary components from a signal

• Self-adapting according to the input
signal i.e. basic functions are derived
from the signal itself
• Highly efficient

• Difficult to interpret and
understand the output
• Lack of mathematical theory i.e.
mathematically difficult to model
• Less robust
• Sensitive to noise
• Give error points at the end of
the signals which gives a wrong
interpretation of the signal

✓ ✗ ✗ ✓ ✗ ✗

FFT • Process stationary signals i.e.
combination of sine and cosine signals
• Localized in the frequency domain
• Can convert discrete data into
continuous data at various frequencies
• Efficient matrix–vector multiplication
• Achieves high-frequency resolution

• Discontinuous signals cannot be
represented properly
• The problem of power leakage
• Large bias or variance in
estimates
• Unable to process non-stationary
signals
• Has zero temporal resolution

✗ ✓ ✗ ✓ ✓ ✓

WT • Provides multiple levels of details and
approximations in time–frequency
domain so that transient features of the
data series can be retained.
• Uses functions that are localized in
real and Fourier space
• No redundant information
• Fast computation
• Non-stationary dynamic signals
• De-noise a signal without appreciable
degradation.

• The issue with the
self-adaptability of wavelet
transform due to the presence of
wavelet function
• Leakage problem
• Low-frequency components are
smeared
• Computationally intensive for
fine analysis

✓ ✗ ✗ ✗ ✗ ✗

DWT • Time and frequency analysis
• Flexibility
• Easier to filter in and filter out
non-stationary waveform
• More levels of decomposition provide
more detailed depictions
• Common mother wavelets: Haar,
Daubechies, biorthogonal, coiflets,
symlets, discrete Meyer
• resolution of time and frequency can
be adapted to the frequency content of
the examined patterns, leading to an
optimal time–frequency resolution across
all frequency ranges (Chen et al., 2017)
• Can be used to denoise the real signal

• Greater complexity
• More difficult to understand
• Difficult to choose appropriate
wavelet
• Very sensitive to the alignment
of the signal in time
• More levels of decomposition
can lead to feature redundancy
leading to accuracy reduction and
computational cost increasing
(Chen et al., 2017)
• Optimization of mother wavelet
is very difficult

✗ ✗ ✗ ✗ ✗ ✗

EWT • Combination of EMD and wavelet
theory
• First extracts frequency components
and then extract oscillatory components
from boundaries
• Works in frequency space
• More consistent decomposition than
EMD
• Adaptable wavelet filters to extract
components
• Strong mathematical background
• Simple and fast
• Good for non-linear and non-stationary
signal

• Cannot separate two signals if
they overlap in time and
frequency domains
• Difficult to find boundary for
Fourier segments in a noisy
environment
• Slow computation
• Decomposition into too many
invalid components
• Parameter setting is difficult
• Decomposition is done only on
approximate coefficients

✓ ✗ ✗ ✗ ✗ ✗

(continued on next page)
of the clinical visit is not sufficient to measure symptoms accurately.
Moreover, the effect of the medicines can be monitored remotely as
effect depends on the time of the day. Only work in monitoring has
16
been done using voice signals and wearable devices. Non-wearable
devices can also provide a non-invasive way of monitoring which is
yet to be explored. Symptoms of Parkinson’s disease worsen with time.
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Table 14 (continued).
Method Description/ Pros Challenges/ Cons Voice Wearable Non-Wearable Handwriting EEG Clinical

EWPT • Extension of EWT
• Decomposition is done on both
detailed and approximate coefficients
giving rich signal analysis
• Reduces computational overhead in
terms of reducing the number of wavelet
decomposition levels

• Lacks improved directionality
• Sensitive to location
• Involves complex data structures

✓ ✗ ✗ ✗ ✗ ✗

LPC • Efficient computational model of
speech
• Provides an accurate estimate of
speech parameters known as cepstral
coefficients
• Spectral coefficients are represented
with low dimensional feature vectors
• Good source-to-vocal tract separation
• Simple to implement
• Mathematically precise

• Features vectors are highly
correlated
• Does not link speech
information with former speech
in time

✓ ✗ ✗ ✗ ✗ ✗

PLP • Combination of spectral and linear
prediction analysis
• Effectively compress high frequencies
into a narrow band
• Reconstructs the autoregressive noise
component accurately (Thomas et al.,
2008)
• More consistent with human hearing
• Low dimensional representation of a
signal

• Sensitive to any change in the
formant frequency.
• Feature vectors are dependent
on spectral balance of formant
amplitudes.
• The formant amplitudes are
easily affected by factors such as
the recording equipment,
communication channel and
additive noise (Hermansky, 1990)

• Sensitive to noise and variations
in the channels

✓ ✗ ✗ ✗ ✗ ✗

MFCC • Robust due to its accurate estimate of
the speech parameters and efficient
computational model of speech
• Discrete Fourier Transform (DFT) is
used to calculate the magnitude of
spectra.
• Approximates the human system
response more accurately
• Gives good discrimination
• Less correlation between cepstral
coefficients

• Phase information is not
present. Both phase and
magnitude are complementary to
each other and one of two should
not be ignored.
• The performance is not superior
in noisy environments
• Selecting the filter shape at
every step with the changing
environment is very difficult.
• Does not work well in
continuous speech environments
• Not flexible

✓ ✓ ✓ ✗ ✗ ✗

DFA • Random and non-stationary time-series
data
• Can detect the long-range correlations
embedded in data
• Avoid the spurious detection of the
apparent long-range correlations which
are an artifact of non-stationary data
(Wang et al., 2016)
• Simple and utilizes fewer parameters

• Discontinuities between trends
of two neighboring data segments

• Practically difficult to find the
type of fitting polynomial
• Difficult to determine
appropriate data size for DFA.
Small data size lead to poor
results and large data size
increases the time cost (Lin and
Chen, 2014)

✓ ✗ ✗ ✗ ✗ ✗

TQWT • Fully discrete, over-complete, modestly
oversampled
• Three input parameters: Q (quality
factor), r(redundancy), J (Number of
levels)
• Formulas for calculating sub-bands
provide deep information
• Higher frequency resolution than DWT
• Can be implemented efficiently with
FFTs
• Faster implementation using radix-2
FFTs
• Q-factor and redundancy can be easily
tuned.
• Easily invertible

• It is very difficult to find the
appropriate value of J. Higher
value of J may result in difficult
analysis and poor computational
efficiency

✓ ✗ ✗ ✗ ✗ ✗

(continued on next page)
Stage estimation is an important aspect to measure the progression of
the disease. Less work has been done to estimate the stage in each
category. No work has been found to estimate stage using non-wearable
17
devices as per the best of our knowledge. Non-wearable devices can
serve as an important biomarker to estimate the stage in a non-invasive
way.
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Table 14 (continued).
Method Description/ Pros Challenges/ Cons Voice Wearable Non-Wearable Handwriting EEG Clinical

RPDE • Determine the periodicity or
repetitiveness of a signal.
• Does not require the assumptions of
linearity, Gaussian or dynamical
determinism
• Can detect subtle changes in the
time-series, non-linear, non-stationary
data
• Reliable

• Ineffective in longer time-series
data

✓ ✗ ✗ ✗ ✗ ✗

Hilbert
Transform • Takes a function X(t) and transforms

into H(X(t)) in the same domain
• Non-parametric spectral estimation
method
• Eliminate the negative frequency part
and double the magnitude of positive
frequency part
• Time-domain analysis i.e. preserve
temporal characteristics of a signal
• Process non-linear, non-stationary and
narrow band signals

• Unable to decompose signals
with closely spaced frequency
components
• Unable to separate small
fluctuations
• Unable to track the time-varying
change between two modes of
vibration

✓ ✗ ✗ ✗ ✗ ✓

Hjorth Pa-
rameters

• Serve as a bridge between a physical
time domain interpretation and the
conventional frequency domain
description
• Analyze signals in the time domain but
also contain information about the
frequency spectrum
• Three parameters: activity, mobility,
complexity
• Low computational cost, simple
processing
• High accuracy parameters

• Lack of clarity if the input
signal has more of a peak in the
power spectrum.
• Suspectable to noise
• Requires signal segmentation

✗ ✗ ✗ ✗ ✗ ✓

GLCM • Extract second-order statistical texture
features
• Show good results for easily separable
textures
• Easy implementation
• Less processing time and complexity
• Provides spatial information from
pixels

• The high dimensionality of the
matrix
• The high correlation between
features
• Consumes high amount of
memory
• Sensitive to the size of textures
(Mohanaiah et al., 2013)

✗ ✗ ✗ ✓ ✗ ✗

SCM • Identify multiple patterns
simultaneously using image as input
• More useful for image synthesis
• Rotation invariant
• Can find structural differences between
two input images easily
• Ability to detect details

• Not appropriate for natural
textures because of the variability
of micro-texture and
macro-texture
• Finding the appropriate filter is
difficult

✗ ✗ ✗ ✓ ✗ ✗

LBP • Combine structural and statistical
methods for texture analysis
• Resistant to light variations
• Simplicity in computation
• Low computation cost
• Invariant to monotonic illumination
changes (Humeau-Heurtier, 2019)

• Sensitive to image rotation
• Large memory requirement
• Highly sensitive to noise and
blurring

✗ ✗ ✗ ✓ ✗ ✗

HOS • Analysis of non-linear vibrations where
the generation and interactions of
non-linear resonance modes are of major
concern (Rivola, 2000)
• Retain both amplitude and phase
information
• High noise immunity
• Yields good results for weak signals
also
• Very limited correlation between
features
• Translation invariant (Chua et al.,
2010)

• Choosing data length is a major
problem (Rivola, 2000)
• Over-parametrized

✗ ✗ ✗ ✗ ✓ ✗

(continued on next page)
The work that is considered in this analysis is based on machine
learning and deep learning. Machine learning based diagnosis includes
pre-processing, feature extraction, feature selection, post-processing,
18
and classification task. The details of the methodology of each sub-
category are mentioned in Tables 2, 4, 6, 8, 10, and 12. Pre-Processing
is a very important process to remove noise from the dataset, remove
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Table 14 (continued).
Method Description/ Pros Challenges/ Cons Voice Wearable Non-Wearable Handwriting EEG Clinical

SAE • Axisymmetric single hidden layer
neural network
• More robust data features
• Reduce the effect of overfitting in
feature learning
• Easily reconstruct input data with high
precision
• Encodes the input sensor data and
approximates the minimum error
features
• Sparsity constraint improves the
generalizability of features
• Minimum loss of data when converting
original data to its decoded form

• Does not consider the
relationship of data samples
• Computational complexity is
higher than PCA
• Longer time to train
• Not sensitive to slight variations

✓ ✗ ✗ ✗ ✗ ✗

PCA • An unsupervised method which
converts original data into principal
directions by maximizing the variance
• Transforms data linearly into new
properties that are not correlated with
each other
• Reduce storage space needed to store
data as dimensionality is reduced
• Speeds up the learning process
• Address the multicollinearity issue

• Projects data in linear fashion
only
• Skips less significant
components which may be useful
in some applications
• Hard to maintain the
relationship among data samples
• Less efficient than SVD

✗ ✓ ✗ ✗ ✗ ✗

SVD • Time-frequency analysis
• Efficient (can be applied to a big
matrix of feature set)
• Hierarchical based on the relevance of
features
• Works well with images (provides
optimal representation with few
coefficients)
• More robust to numerical errors
• Singular Values (SVs) are highly stable,
rotation and ratio invariant (Zhang and
Wang, 2016)

• Non-linear data does not work
well
• Strongly based on variance and
can discard other useful
information
• Difficult to interpret
• Difficult to choose
reconstruction parameters
• Computationally expensive
• The appropriate number of SV
are difficult to find (Gan et al.,
2015)

✓ ✗ ✗ ✗ ✗ ✗

RBM • The strong power of representation
• Consist of a visible and hidden layer
without connecting units within the
same layer
• Extract discriminating features from
complex dataset
• Extracted features from one RBM can
be used as input to train another RBM
to capture higher-order abstract features
(could be repeated multiple times to
build a deeper network) (Cai et al.,
2012)
• Ability to reconstruct images
• Global gradient-based optimization

• Complex computation
• Less efficient for full size
natural images
• The spatial relationship between
different image patches are not
considered (input image is treated
as a vector) (Gao et al., 2016)
• Tricky to train well, as
algorithm Contrastive Divergence
requires sampling from a Monte
Carlo Markov Chain, which
requires care to get things right

✗ ✗ ✗ ✓ ✗ ✗

CNN • Automatic feature extraction
• Does not require any expert
background knowledge of features
• Handcrafted features are limited by
human time constraint and imagination
but CNN is not
• No human Biasing
• Optimally tuned features

• Time Consuming
• Requires a lot of training data
• High Cost
• Weight initialization is difficult

✗ ✓ ✗ ✓ ✗ ✗

Pre-
Trained
Models

• Fast training
• Require lower training data
• No need for labeling data to increase
the size of the dataset
• Avoids overfitting
• Adaptable to the existing pipeline
• Useful in imbalanced data distribution
• Examples: ResNet-50, AlexNet,
VGGNet, MobileNet, GoogleNet

• Reduces flexibility for the new
dataset
• The problem of negative
transfer
• Cannot remove layers with
confidence to reduce the number
of parameters.

✗ ✗ ✗ ✓ ✗ ✗
unwanted signals, peaks, and frequency for robust diagnosis. Some of
the important frequency ranges for this process are mentioned below.

• Rest tremor frequency ranges from 4–6 Hz (Abdulhay et al., 2018;
Kim et al., 2018).
19
• The ratio of Stance time: Swing time is 3:2 for a healthy person,
which is not the same for Parkinson patients (Abdulhay et al.,
2018).

• Gait patterns have a frequency lower than 20 Hz (Camps et al.,
2018).



J. Goyal, P. Khandnor and T.C. Aseri Engineering Applications of Artificial Intelligence 96 (2020) 103955
Table 15
Comparison of Classification techniques.

Classifier Description/Pros Challenges/Cons Applications

Traditional Machine Learning Techniques

SVM • Non-Parametric, Linear and Non-Linear
• Effective in high dimensional data
• Capable of evading local minima (Lahmiri et al., 2018)
• High generalizability (Khan et al., 2014)
• computationally efficient (Parisi et al., 2018), fast
• Less prone to class imbalance problem (Prashanth and Roy, 2018)

• Performance reduction if data is not scaled
• Poor performance if attributes are greater than
the sample size
• Difficult to estimate kernel function & penalty
constant (Avci and Dogantekin, 2016)

KNN • Non-Parametric, Non-Linear
• Data-driven learning
• Fully based on memory, without model usage indicates good
performance in short training time (Oung et al., 2018b)
• No training period (learns at the time of predictions)
• New data can be added seamlessly, easy to implement

• Does not work well with large datasets
• Does not work well with high dimensions
• Sensitive to noisy data, missing values, and
outliers
• Need feature scaling

LR • Parametric, Linear
• Does not require too many computation resources
• Highly interpretable, easy to regularize
• Does not require feature scaling
• easy to implement, fast

• Highly reliance on proper presentation of data
• Prone to overfitting (if the number of
observations are less than features)
• Can only predict discrete functions

NB • Parametric, Linear
• Requires one iteration to learn (simple) (Lahmiri et al., 2018)
• Strong independent assumptions about predictors (de Souza et al.,
2018)
• Does not require much training data
• Fast and make real-time predictions
• Handles both continuous and discrete data

• Assumes all attributes are mutually dependent
(almost impossible practically)
• Zero frequency problem: If there is unseen
testing data, it assigns a probability of zero

DT • J48 (C4.5): algorithm to generate DT
• Non-Parametric, Non-Linear
• Less effort for data pre-processing
• Does not require feature scaling
• Robust to outliers, missing data
• Transparent, clear visualization

• Unstable-Small change in data leads to a large
change in structure
• Complex calculations, high training time
• Prone to overfitting, high variance
• Sensitive to noise, relatively inaccurate
• Not suitable for larger datasets

CART/ RT • Non-Parametric, Non-Linear
• Does not require assumptions regarding the distribution of predictors
(Lahmiri et al., 2018)
• Can grip skewed numerical, categorical & missing data
• Fast prediction, Easy to understand which variables are important

• Overfilling
• High variance, low bias
• Lack of locality, discontinuity

LDA • Parametric, Linear
• Simplicity, interpretability
• Also a dimensionality reduction technique
• Fast, portable
• Extensions: Quadratic, Flexible and Regularized Discriminant Analysis

• Only for binary classification
• Unstable when there are few examples to
estimate the parameters

OPF • Non-Parametric
• Fast, simple, real-time detection
• Does not make any assumptions about the shape of the class
• Can handle some degree of overlapping
• Intrinsically multi-class

• Number of clusters should be known in advance
which is practically not always feasible

OLR • Required when there are ordered multiclass variables
• Ease of collation and categorization

• Strong assumptions that may lead to incorrect
interpretations if assumptions are violated
• Large bias

MDC • Based on Probability statistics
• Fast as it assumes all classes have the same co-variance
• Works well with highly imbalanced datasets
• More accurate, simple, suitable to detect outliers (Lahmiri et al.,
2018)

• Does not work well with highly correlated data
• Computationally restrictive as it required
inversion of the co-variance matrix

PGM • Describes the probability distribution of random variables
• Fewer Parameters (can be estimated with less data)
• Reduced computation cost
• Less memory to store model
• Works well with missing data
• Two types: Directed, Undirected

• Lacks flexibility
• Not good with large scale high dimensional data
• Less accurate
• Biased (make strong assumptions)

GMM-UBM • Parametric
• Smooth approximation to arbitrarily shaped distributions
• Fast (less time for recognition)
• Can be scaled

• Requires large training data

(continued on next page)
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Table 15 (continued).
Classifier Description/Pros Challenges/Cons Applications

i-vector
GPLDA

• Low-dimensional representation of speech segment
• Assumes gaussian distribution of data
• Use of large amount of data to attenuate the effect of adverse
conditions

• Sensitive to noise, content, and number of
features
• Less reliable in case of short utterances

Deep Learning Techniques

NN/ ANN/
DNN/ MLP/
SLNN

• Can perform learning in real-time (Braga et al., 2019)
• Exceptional generalizing capability (Sivaranjini and Sujatha, 2019)
• feature extraction without the need of pre-processing (Kadam and
Jadhav, 2019)
• Data-driven
• Robust to noise (Lahmiri et al., 2018)

• A large number of hyperparameters makes
optimization time-consuming
• Several local minima due to several hidden
layers having non-convex loss function (Braga
et al., 2019)
• Long training time
• Uncertainty in choosing activation function,
number of hidden layers and number of neurons

CNN • Can perform complex classification task (Kim et al., 2018)
• Automatically extract discriminative features
• Adam optimizer has fast convergence, adaptive learning rate requires
less tuning
• Not constrained by engineering ability of handcrafted features (Camps
et al., 2018)

• Data hungry (does not perform well with small
datasets) (Camps et al., 2018)
• A large number of hyperparameters
• Non-deterministic
• Laborious architecture, time-consuming
(Sivaranjini and Sujatha, 2019)

LeNet • Low memory requirement
• OCR and character recognition

• Sensitive to image resolution due to shallow
architecture

AlexNet • Fast training time as it uses ReLU activation function
• Allows Multi-GPU training
• Overlapping pooling

• Overfitting due to a large number of parameters
• Data duplication, more memory required

VGGNet • Small-sized kernels to learn more complex features at lower cost • Huge computation requirement (both time and
memory)

✗

GoogleNet • Sparse CNN
• New BottleNeck Layer: reduces the computational requirement and
number of parameters

• Tedious parameter customization ✗

ResNet • Solves degradation problem in optimization
• Decreased error rate

• More training time
• Complex architecture

ZFNet Deconvolution: Allows to go from output to input dimension • Extra information processing is required for
Visualization

✗

RNN • Model Sequence of data in which each sample can be assumed to be
dependent on the previous one
• Potentially turing complete (Ruffini et al., 2019a)

• Difficult to train
• Vanishing and exploding gradient problem

LSTM • Solves vanishing gradient problem (Hssayeni et al., 2018)
• Efficiently handle dependencies, distributed representations
• Can handle noise, continuous values

• Complex structure
• Requires a lot of resources and time to get
trained
• Prone to Overfitting
• Get affected by random weight initialization

GRU • Less training parameters, fast
• Uses Less memory

Less accurate on longer sequences

ELM • Linear
• A training algorithm for SLNN (Li et al., 2017a)
• Fast learning capability, a single iteration
• Solves the problem of over-fitting (Oung et al., 2018b)
• solves the problem of trapping in local optima
• Types: Online, Pruned

• No rule in the determination of the number of
hidden neurons and activation function (Avci and
Dogantekin, 2016)
• Slow evaluation (faster in training but slow in
interpolation)
• Cannot go deep (cannot encode more than one
layer of abstraction)

PNN • Non-Parametric, Non-Linear
• Derived from the Bayesian model (Oung et al., 2018b)
• Fast training as compared to other neural networks (MLP)
• Confirmed to converge to an optimal classifier (Oung et al., 2018a)
• Samples can be added or removed without re-training

• Accuracy depends on smoothening
parameter/spread factor
• More memory space to store model
• Requires a representative training set

GNN • Automatically adjusts the number of neurons to reflect the complexity
of data (Saad et al., 2017)
• Easily generate non-linear separators
• Fast learning ability
• Requires fewer weights
• Can build small networks
• Autonomous adaptation process

✗

HBNN • Can detect subtle variations (Joshi et al., 2018)
• Works well even with small datasets
• Works well even if prior knowledge of classes is vague

• Sensitive to prior assumptions

(continued on next page)
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Table 15 (continued).
Classifier Description/Pros Challenges/Cons Applications

ANFIS • Parametric, Non-Linear
• Adaption capability due to NN, smoothness due to Fuzzy nature
• High precision
• Rapid learning capacity

• Output depends on type and parameters of
membership function
• Computation and spacial complexity
• Sensitive to initial number of partitions
• Partial loss of locality

Ensemble Methods

RF • Non-Parametric, Non-Linear
• Extension over bagging technique
• Do not need pruning to avoid overfitting (Braga et al., 2019)
• Fewer hyperparameters to optimize (Braga et al., 2019)
• Insensitive to outliers and noise

• Overfitting with datasets having fewer training
examples
• Does not perform well in regression
• Likely to have elbow point-steep drop in slope
with increase in number of trees

AdaBoost • Convert weak classifiers or estimators into strong one (Ali et al.,
2019)
• Tackles class imbalance problem (Prashanth and Roy, 2018)
• A high degree of Precision
• Fully considers the weight of each classifier

• Number of iterations poorly set
• Time-consuming training
• Sensitive to noise and outliers

LogitBoost • High Performance in poorly separable data (Camps et al., 2018)
• Address multi-class classification problems
• Smaller variance

• Overfitting problem

RUSBoost • Eliminate the data distribution imbalance and improve the
performance of the weak classifiers
• Reduced training time
• Avoids biasing

• Random undersampling to reach the desired
balance
• Loss of information

RobustBoost • Insensitive to outliers, noise
• Non-convex loss function
• Better average classification accuracy

• Computation overhead
• Depends upon external parameters like target
classification error, maximal classification margin
which should be known beforehand

Gradient-
Boost

• Little training time, parameter tuning
• Works well with limited data (Yao et al., 2018)
• No data processing required
• Handles missing data, flexible

• Less interpretative
• Prone to overfitting
• Computationally expensive
• Tuning requires larger grid search

XG Boost • High computation speed and performance
• Parallelization, Cache optimization
• Distributed computing, Out of core computing (for very large datasets)

• Relatively slow
• Lacks scalability
• Sensitive to outliers

— Voice — Wearable — Non-Wearble — Handwriting — EEG — Clinical
• Tremor frequency bands range between 3.5 Hz – 7.5 Hz (Rovini
et al., 2018).

• Free Walking frequency bands ranges between 1 Hz-2 Hz (Rovini
et al., 2018).

• Normal Gait has a frequency near 2 Hz (Han et al., 2003).
• Freezing of Gait has a frequency near 6–8 Hz (Han et al., 2003).
• Power in the locomotor band is between 0.5–3 Hz (Moore et al.,

2008)
• The frequency of Freezing of Gait occurs in bandwidth 3–8 Hz

(Punin et al., 2017; Moore et al., 2008).

Feature extraction is an extremely important process in the machine
earning-based diagnosis. The choice of feature extraction method gives
obust features that directly influence the classification and prediction
ccuracy. Some of the feature extraction techniques mentioned in the
esearch articles are explored in Table 14. It gives the pros and cons of
ach feature extraction technique along with, whether its potential has
een explored in a certain category or not. Different feature extraction
echniques can be explored depending upon the type of requirement
f the system like if the data signals are stationary or non-stationary,
inear, or non-linear. They can also be explored based on which type of
nalysis will be useful like if the time-based analysis is required then
MD is a better option, if time–frequency based analysis is required
avelet analysis like DWT, EWT, EWPT is a good choice.
Classification is the last and very important step in processing. After

obust feature extraction, the performance of the system depends upon
he choice of the classifier. Some of the classifiers that have been
overed under the review are explored in detail in Table 15. The table
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contains the name, pros, and cons of the classifier. It also contains
the applications in which a particular classifier has been explored.
Applications are color-coded and explained as footnotes in the table.

It can be observed from the table that there is no single best
classifier. The choice of the classifier depends upon the type of data that
the researcher is working on, a tradeoff between the accuracy and time
complexity of the classifier. The comparison of classification techniques
is divided into three sub-categories which include traditional machine
learning techniques, deep learning techniques, and Ensemble methods.
The choice of the classifier can first be done by checking if the data is
linearly separable or not. If data is linearly separable then algorithms
like SVM, LR, and NB are better choices. Most of the practical datasets
are non-linear then SVM, KNN, all deep learning classifiers are better
choices. The choice of classifier also depends upon the tradeoff between
good accuracy and computational complexity. If the system require-
ments are sensitive to accuracy, then deep learning methods are a good
choice. If the system requires a balance between both, them ensemble
methods are a great choice as some of them are fast and accurate.
The choice of the classifier also depends on whether the data is noisy,
missing, or consists of outliers. For example, if the data is noisy then
KNN should not be applied as it is sensitive to noisy data. Similarly,
if the data contains missing values then GradientBoost and PGM are
better choices.

The pros and cons of each classifier are therefore discussed to make
a clear and informed choice of the classifier. Some of the classifiers are
still to be explored in different applications as shown in the last column
of the table. Researchers can explore these classifiers in a particular
application area as their future work.
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Table 16
Research Gaps and Future Directions.

Research Gap/Future Direction Explanation/Challenges

UPDRS Score Prediction • Help in the automating the long and lengthy process of UPDRS prediction.
• Predict the scores of PD patients using TQWT features (Sakar et al., 2019).
• Different feature extraction techniques as shown in Table 14 can also be tested for better prediction
results and to find the best feature extraction method.

The potential of feature selection methods are not fully explored
(Lahmiri et al., 2018; Oung et al., 2018b).

• Feature Selection method can reduce the dimensionality
• Extract the important features that are useful for diagnosis
• Decreases computation cost and time.
• Improve detection accuracy (Zhang et al., 2018).
• Applying AutoEncoders right after CNN can reduce the dimensionality of feature space (Pereira
et al., 2018)

Longer datasets are required for generalization. • Deep Learning models are data-driven, also known as data consuming machines, therefore they
require larger datasets for generalization purposes.
• Overfitting can also be avoided with the use of a large sample size.
• Less time will be employed in cross-validation techniques like Leave One Out cross-validation.
• Most of the studies include very fewer data samples from later and moderate stages, extending the
dataset with later and moderate stage patients help to improve the staging process (Yuvaraj et al.,
2018).
• Data samples from the diverse ethnic group (Oung et al., 2018b; Yuvaraj et al., 2018) to check
whether socio-cultural differences may affect the disease (Bandini et al., 2017).
• Gender balanced datasets are needed (Bandini et al., 2017).
• If larger datasets are not available, we can utilize incomplete datasets with a large amount of
information (Prince et al., 2018)

Data from multiple visits need to be included (Prashanth and Roy,
2018).

• Data from the same patient on multiple visits will help in the monitoring of patients.
• Will help in checking if the medications are working properly or not.
• Stage progression can also be checked.

• To develop a Computer-Aided Design (CAD) system (Lahmiri and
Shmuel, 2019)
• To develop a clinical decision-making support tool (Parisi et al.,
2018)
• Development of web and mobile platform (Afonso et al., 2019)
• Implementation in a distributed environment (Cai et al., 2018)
• On-chip integration of closed-loop DBS (Yao et al., 2018)
• Implement system in a wearable computer Rasberry Pi (Saad
et al., 2017)
• Accommodate framework into the test-battery system (Khan et al.,
2014)

• Testing in the real environment is needed as to help the clinicians with the diagnosis process.
• To check real-time computation cost and time.
• To includes run-time from the evaluation process (Mostafa et al., 2019).
• To monitor PD patients using the Internet of Health Things.
• Need to select features with high discriminative accuracy (Yao et al., 2018)
• Low hardware cost (Yao et al., 2018)
• To check if the system can handle big data (Zhang, 2017)
• To check Resource utilization (Camps et al., 2018)
• To check if the system is accessible from any location (Bernardo et al., 2019)

To develop a multimodal feature-based system for PD diagnosis
(Lahmiri and Shmuel, 2019).

• PD is a combination of multiple symptoms that vary from person to person.
• It may be the case that one may have voice distortion and others may not.
• Combination of at least two of related symptoms is needed to serve as the criteria for disease
diagnosis (Pedrosa et al., 2018).
• Performance of PD can be strengthened by fusing different modalities.
• Need to determine the relationship between different symptoms for robust diagnosis (Prince et al.,
2018)

To develop machine learning-based Recommender Systems. • To help PD patients overcome sadness, depression, real-time recommender systems can be made to
improve the quality of life of PD patients.
• Can provide a reminder to patients in case of stooped posture (Dang et al., 2019)

To develop an adaptive framework (Prateek et al., 2017) • System should be able to learn parameters and dynamically adjusts them in real-time.
• Development of a valid, reliable and dynamic method for real-time adjustment

To solve the class imbalance problem (Prashanth and Roy, 2018). • As data collection from Parkinson’s patients is difficult, there are a smaller number of instances of
patients, so there is a class imbalance problem.
• Machine learning-based systems need to developed to obtain high a detection rate of minority class
without jeopardizing the accuracy of other classes.
• There is usually a tradeoff between sensitivity and specificity and high values for both are required
simultaneously (Impedovo et al., 2018)

To employ cost-sensitive learning techniques (Prashanth and Roy,
2018).

• Cost is an important factor in real-world diagnosis of PD.
• Overall Cost of the system should be minimized.
• Biasing of minority class is needed to improve the diagnosis process and to decrease the cost of the
system.

To classify Parkinson patients from other disease patients. • A lot of work is already done in classifying Parkinson patients from healthy controls.
• Very few works have been done to classify Parkinson patients from other diseases having similar
symptoms.
• Examples include:
• Progressive supranuclear palsy from PD by finger tapping as there is a decrement in amplitude/speed in
PD whereas preservation of speed in Progressive supranuclear palsy (McKay et al., 2019)
• Differentiate IH patients from PD patients to investigate the early onset of PD. Follow-up of IH patients
to check for the development of PD (Rovini et al., 2018)
• Distinguish RBD patients from PD patients as RBD is considered as an early stage of PD. Diagnosis can
be done years before actual conversion to PD (Ruffini et al., 2019b) (may also help in prevention). RBD
patients who later develop PD display diminished complexity as compared to HC as well as from RBD
who remain disease-free.
• Compare walking patterns of Huntington Disease, Knee Osteopsathyrosis with PD (Benson et al., 2018)

(continued on next page)
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Table 16 (continued).
Research Gap/Future Direction Explanation/Challenges

To detect Subtle Instability (Stack et al., 2018). • Sensitive algorithms need to be developed which can capture even subtle variations in the gait of
PD patients as falls are extremely dangerous for PD patients.

To check the feasibility and effectiveness of proposed methods in
free living environment (Son et al., 2018)

• Wide range of movements cannot be detected in laboratory settings
• Remote monitoring needs to be done
• Personalized care need to be provided
• The requirement to check how patients react to the system after using it for a few hours (Oung
et al., 2018a)
• 15–20 min of clinic visits do not provide enough information for doctors to accurately access the
patients (Zhang et al., 2017)

To check the Long-term feasibility (Son et al., 2018; Tahavori et al.,
2017)

• Checking the symptoms in the long run is better than focusing on a short period
• We can quantify responses to treatment and differentiate from day-to-day variations.
• The severity of tremor varies with time, that cannot be quantified in a short period (Delrobaei
et al., 2018)
• To check worst and best performance throughout the day to check medication effects
(Bernad-Elazari et al., 2016)

Speech denoising needs attention (Zhang, 2017) • For remote monitoring, there should be strong and low-cost denoising techniques which can be
either implemented on client-side or server-side.

To find the minimum number of sensors required to measure each
symptom correctly (Daneault et al., 2017)

• The increase in the sensor number does not determine a direct increase in classification accuracy
(Caramia et al., 2018)

Feature Extraction based on handwriting is very less explored (de
Souza et al., 2018).

• As seen in Table 14 also, various feature extraction techniques have a lot of potential in analyzing
handwriting signals and images like TQWT, HOS, Hjorth parameters, EWT, and others.

Exploration of sounds of writing (Pereira et al., 2018) • Sounds of writing can enhance the classification accuracy of PD

Decreasing the number of EEG channels (Ruffini et al., 2019b) • Motive is to maintain the relevant information but decreasing complexity

Very limited work to detect dyskinesia (Camps et al., 2018; Lonini
et al., 2018)

• Refers to uncontrolled, involuntary muscle movement
• One of the major symptom which needs more exploration

Exploration of diverse handwriting templates (Moetesum et al.,
2019)

• Variant templates apart from spirals, meanders may further improve the diagnosis process

Analyzing Signals from handwritten exams (Passos et al., 2018) • Most of the work in handwriting based classification is done on images.
• Signals can provide much more detailed feature set which will improve the accuracy of the
classification process

Explore the importance of the relation of velocity and motion
curvature i.e. two-thirds Power Law (Impedovo et al., 2018)

• Two-Thirds Power Law states that there is an inverse relationship between tangential hand speed
and the curvature of trajectory during curved motion (Maoz et al., 2006).
• This relationship could prove useful in learning some handwriting features.

Differentiate between an episode of FoG from a voluntary pause in
gait (Punin et al., 2019)

• FoG detection is needed to provide external stimuli to reduce the FoG time
• Differentiation between the two is needed to reduce the false alarm rate. If false alarm rate is high
then the wrong timing of external stimuli can cause sudden falls

Estimate stage of PD using gait patterns (Benson et al., 2018) • Staging helps in estimating the severity of the disease.
• Very less work has been found in stage estimation as shown in Table 13

Fully automated UPDRS-III evaluation using video recordings (Li
et al., 2018)

• Will provide a non-invasive and computationally inexpensive calculation of UPDRS scores

Potential of LMC is not fully Explored (Butt et al., 2018) • Updated Versions needs exploration

Development of Multiplayer Games (Pachoulakis et al., 2018) • To improve communication and coordination among PD patients
• To improve decision-making capabilities of PD patients

Staging using different standard Scales • HY scale gives visual staging of PD patients whereas the UPDRS score gives a rating of pertinent
features (Prashanth and Roy, 2018).
• If we can map the UPDRS scores with HY scale stages, stage estimation of PD patients can be done.
• Similarly, other scales can be mapped with stage estimation.
Examples include:
• Geriatric Depression Scale
• ESS (Lei et al., 2017)
• UPSIT (Lei et al., 2017)
• Montreal Cognitive Assessment Test
• Dynamic Gait Index
• Berg Balance Scale
• Freezing of Gait Questionnaire (FoGQ) (Punin et al., 2019)

Exploring other Deep architectures • To check the sensitivity w.r.t size of data (Zhang et al., 2018)
• Deep Belief Networks (DBNs) (Pereira et al., 2017)- For Feature Extraction and classification
• Deep Boltzmann Machines (DBMs) (Pereira et al., 2017)-For Feature Extraction and classification
• RBMs (Pereira et al., 2017) - For classification
• RNN (Ruffini et al., 2019a) - For Feature Extraction and Classification
• Extreme Gradient Boosting (Gao et al., 2018)
• Knowledge-based machine learning (Gao et al., 2018)
• non-encoding RiboNucleic Acid (RNA) (Gao et al., 2018)
• micro RNA (Gao et al., 2018)

Advance spectral estimation • State-space estimation (Ruffini et al., 2019a)
• Multi-tapering (Ruffini et al., 2019a)

(continued on next page)
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Research Gap/Future Direction Explanation/Challenges

Adding new Sensing Modalities Wearable Non-Wearable Clinical

Inclinometers (Torres et al., 2017) Compass EMG (McKay et al., 2019)
Pressure Sensor (Benson et al., 2018) Ambient sensors (Li et al., 2018) Facial-EMG (Bandini et al., 2017)
Pedometer (Benson et al., 2018) Optical Sensors (Torres et al., 2017) ECG (Bandini et al., 2017)
Barometer (Benson et al., 2018) Environment Sensors (Torres et al., 2017) PCG (Tuncer et al., 2019)
GPS (Benson et al., 2018) Touch-Based Sensors (Pereira et al., 2019) Polysomnography (Ruffini et al., 2019a)
Bending Sensor (De Lima et al., 2017) Sony Playstation EYE (Pachoulakis et al., 2018)
Potentiometers (Saad et al., 2017) Nintendo Wii (Pachoulakis et al., 2018)
Magnetic Sensors (Khan et al., 2014) Sensorized Walkways (Caramia et al., 2018)

Load Sensors (Caramia et al., 2018)
8. Research Gaps and Future Directions

Machine learning and deep learning-based diagnosis system for
Parkinson’s disease has proved to be very helpful for robust classifi-
cation, prediction, and monitoring of Parkinson’s patients. It has also
shown potential in estimating the severity of the disease, early diagno-
sis of the disease, and UPDRS prediction. Research articles showed the
potential of different pre-processing, feature extraction, and classifica-
tion techniques. A lot of work has been done to classify patients, stage
estimation, remote monitoring. But there is still potential in each of
the areas to be explored. Many sensors like accelerometer, gyroscope,
magnetometer have been used and validated. Work has been done using
EEG signals, MRI, f-MRI, DATSCAN images. Other brain signal images
can also be analyzed to explore more research opportunities like Elec-
troCardioGram (ECG), ElectroMyoGram (EMG), and PhonoCardioGram
(PCG). There are many more sensing modalities that have not been
yet explored and their integration with the classification process can
further improve the accuracy. Moreover, most of the work has been
done on a smaller dataset. Large datasets are needed for generalization.
A step toward this research gap is taken in Bot et al. (2016), where
the authors build the ‘‘mPower’’ app to take the data from Parkinson
patients from their iPhone. As smartphones are available with each
individual, this technique can be extended to Android app users to
collect data from the mass public. This would solve the problem of
generalizability. Similarly, many other limitations and future directions
are suggested which are summarized in Table 16. It gives the potential
research gaps and future directions along with the suggested measures
to work upon in the future.

9. Conclusion

Parkinson’s disease is a neurological disorder which is caused due
to the loss of dopamine-producing cells in the brain. These cells are
responsible for maintaining coordination between brain and body parts.
Therefore, patients suffer from various motor and non-motor symp-
toms. Clinical methods for evaluating the symptoms of Parkinson’s dis-
ease i.e. UPDRS scale and HY scale are subjective in nature and suffers
from the problem of inter-rater inconsistency. Therefore, computer-
assisted diagnosis is necessary for the classification, prediction, and
monitoring of Parkinson’s disease. Moreover, there is no cure for this
disease. Therefore, its early diagnosis is of utmost importance. The
present study focuses on the machine and deep learning-based classifi-
cation, prediction, and monitoring of Parkinson’s disease. A compara-
tive analysis has been done by dividing the analysis into six different
sub-categories based on the symptom, type, and source of data. All
the research articles are from the year 2017, 2018, and some articles
of 2019. Each sub-category includes the exploration of public and
private datasets available. Also, exploration is done to study work
done in processing the signals starting from pre-processing, feature
extraction, feature selection, and classification. Important features are
also mentioned as used by the researchers. Some studies have also
been done on the rehabilitation of Parkinson patients to improve the
quality of life. Related software, tools, and libraries have also been
explored for the researchers to use. Then a comparison has been done
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for each sub-category based on the type of data, the sensor used,
whether prediction, stage estimation, and remote monitoring is done or
not. Different feature extraction methods have also been explored with
their pros and cons. It is also discussed whether a particular feature
extraction technique has been studied for each sub-category or not so
that researchers can explore the potential of these techniques in the
future as per need. Different classification methods used by researchers
are also discussed with their pros and cons so that proper and informed
choice of selection of classification technique can be performed. Finally,
research gaps and future directions are explored and elaborated with
some suggestions so that the researchers can work upon them in the
future.

CRediT authorship contribution statement

Jinee Goyal: Conceptualization, Writing - original draft, Writing
- review & editing, Visualization. Padmavati Khandnor: Writing -
review & editing, Supervision. Trilok Chand Aseri: Writing - review
& editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

0000a. HandPD dataset, NewHandPD dataset. http://wwwp.fc.unesp.br/~papa/pub/
datasets/Handpd/.

0000b. ImageNet dataset. Stanford Vision Lab, Standford University, Princeton
University. http://image-net.org/download.

0000c. PPMI dataset. The Michael J.Fox Foundation for Parkinson’s Research. http:
//www.ppmi-info.org/.

2001. Effect of deep brain stimulation on parkinsonian tremor. PhysioNet (1.0.0),
http://dx.doi.org/10.13026/C2D097.

2008. Gait in Parkinson’s disease. PhysioNet (1.0.0), http://dx.doi.org/10.13026/
C24H3N.

Abdulhay, E., Arunkumar, N., Narasimhan, K., Vellaiappan, E., Venkatraman, V., 2018.
Gait and tremor investigation using machine learning techniques for the diagnosis
of Parkinson disease. Future Gener. Comput. Syst. 83, 366–373.

Abós, A., Baggio, H.C., Segura, B., García-Díaz, A.I., Compta, Y., Martí, M.J., Vallde-
oriola, F., Junqué, C., 2017. Discriminating cognitive status in Parkinson’s disease
through functional connectomics and machine learning. Sci. Rep. 7, 45347.

Afonso, L.C., Rosa, G.H., Pereira, C.R., Weber, S.A., Hook, C., Albuquerque, V.H.C.,
Papa, J.P., 2019. A recurrence plot-based approach for Parkinson’s disease
identification. Future Gener. Comput. Syst. 94, 282–292.

Ali, L., Zhu, C., Golilarz, N.A., Javeed, A., Zhou, M., Liu, Y., 2019. Reliable Parkinson’s
disease detection by analyzing handwritten drawings: Construction of an unbiased
cascaded learning system based on feature selection and adaptive boosting model.
IEEE Access 7, 116480–116489.

Almeida, J.S., Rebouças Filho, P.P., Carneiro, T., Wei, W., Damaševičius, R.,
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