
Accepted Manuscript

Impacts of a flipped classroom with a smart learning diagnosis system on
students' learning performance, perception, and problem solving ability in a
software engineering course

Yen-Ting Lin

PII: S0747-5632(18)30571-5

DOI: 10.1016/j.chb.2018.11.036

Reference: CHB 5807

To appear in: Computers in Human Behavior

Received Date: 10 April 2018

Accepted Date: 17 November 2018

Please cite this article as: Yen-Ting Lin, Impacts of a flipped classroom with a smart learning
diagnosis system on students' learning performance, perception, and problem solving ability in a
software engineering course, (2018), doi: 10.1016/j.chb.Computers in Human Behavior
2018.11.036

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Impacts of a flipped classroom with a smart learning
diagnosis system on students' learning performance,
perception, and problem solving ability in a software
engineering course

Yen-Ting Lin *

Department of Computer Science, National Pingtung University, No. 4-

18 Minsheng Rd., Pingtung City, Pingtung County 90003, Taiwan

(R.O.C.)

E-mail: ricky014@gmail.com

* Corresponding Author: Yen-Ting Lin

Email: ricky014@gmail.com

Tel: +886-8-7663800#33550

Fax: +886-8-7215034

ACCEPTED MANUSCRIPT

Impacts of a flipped classroom with a smart learning diagnosis system on students'

learning performance, perception, and problem solving ability in a software

engineering course

Abstract

In recent years, many institutions have announced the significance of software

development for countries, societies, and individuals. In developing software, various

unpredictable problems are often encountered, especially in developing large-scale and

complex software. To reduce the possibility of these problems occurring, it is important

for students to apply software engineering technology to scientifically define the criteria,

models, and procedures needed in the software development process. Therefore, it is

important to cultivate students to learn software engineering concepts and technologies.

However, since the course duration is limited by the semester, most teachers can only

conduct a teacher-centered learning environment to teach theoretical concepts to

students. Most students cannot achieve high-order thinking skills and apply software

engineering technology to solve practical problems after learning in this environment.

As mentioned above, the aim of this study is to apply an innovative pedagogy, called a

flipped classroom, to conduct a learner-centered learning environment in a software

engineering course. Moreover, a smart learning diagnosis system was developed to

support this pedagogy in this course. An experiment was conducted on a software

engineering course at a university in Taiwan to investigate the effectiveness of the

proposed approach. The students in the experimental group learned with the flipped-

classroom learning approach, while the students in the control group learned with the

traditional-classroom learning approach. The experimental results show that, in

comparison with the traditional-classroom learning approach, the proposed approach

significantly improved the students’ learning achievement, learning motivation,

learning attitude, and problem solving ability.

ACCEPTED MANUSCRIPT

Keywords: flipped classroom; learning diagnosis; software engineering; improving

classroom teaching

1. Introduction

In recent years, many institutions have announced the significance of software

development for countries, societies, and individuals (Jeannette, 2006; Stross, 2012).

Moreover, experts and scholars have also consistently opined that software will appear

anywhere in the future (Andreessen, 2011; Meyer, Fritz, Murphy, & Zimmermann,

2014). However, in developing software, various unpredictable problems are often

encountered, especially in developing large-scale and complex software. To reduce the

possibility of these problems occurring, it is important for students to apply software

engineering technology to scientifically define the criteria, models, and procedures

needed in the software development process. The above points of view show the

importance of software engineering (Sommerville, 2010). Therefore, it is also

important to cultivate students in the departments of computer science or engineering

to learn software engineering concepts and technologies (Hadjerrouit, 2005).

In general, to conduct software engineering courses, the instruction of theoretical

concepts and practical skills in a learner-centered learning environment is an ideal

teaching strategy for students (Lin & Lin, 2017). In the learner-centered learning

environment, the teacher arranges appropriate learning activities to promote student

engagement in thinking and further enhance their cognitive levels and problem solving

abilities (Baeten, Kyndt, Struyven, & Dochy, 2010; Schultz, Duffield, Rasmussen, &

Wageman, 2014; Voogt & Roblin, 2012). Many studies have proposed various

approaches to conducting a learner-centered learning environment in different courses

(Jou, Lin, & Tsai, 2016; Kong, 2015; Lin, 2016; Lin, Wen, Jou, & Wu, 2014). However,

since the course duration is limited by the semester, most teachers can only conduct a

teacher-centered learning environment to teach theoretical concepts to students (Baker,

Navarro, & Van Der Hoek, 2005). In the teacher-centered learning environment, the

ACCEPTED MANUSCRIPT

teacher transmits knowledge to students directly, and the students are the recipients.

When the students engage in such passive learning processes, most students are unlikely

to engage in more complex thinking processes or develop high-order thinking skills.

Therefore, it is difficult to apply software engineering technology to solving practical

problems after they complete their educations (Jonassen, 2000; Bransford, Sherwood,

Vye, & Rieser, 1986; Heppner & Petersen, 1982). Table 1 shows a list of characteristics

of learner-centered and teacher-centered learning environments.

Table 1

List of characteristics of learner-centered and teacher-centered learning environments.
Perspective Learner-centered Teacher-centered
Participation Students actively participate

in learning process
Students passively participate in
learning process

Knowledge Students actively construct
knowledge

Students passively receive
knowledge

Interaction Students interact with teacher
and peers in learning process

Students learn alone in learning
process

Thinking
skills

Students are engaged in
applying higher-order
thinking skills in learning
process, such as analysis,
evaluation, and creation.

Students are engaged in applying
lower-order thinking skills in
learning process, such as
remembering, understanding, and
application

As mentioned above, the aim of this study is to apply an innovative pedagogy, called a

flipped classroom, to conduct a learner-centered learning environment in a software

engineering course. Moreover, a smart learning diagnosis system was developed to

support this pedagogy in this course. An experiment was conducted on a software

engineering course at a university in Taiwan to investigate the effectiveness of the

proposed approach.

The remainder of this paper is organized as follows. Section 2 provides reviews of the

theoretical background of this study. Section 3 describes the system developed in this

ACCEPTED MANUSCRIPT

study. The experiment and results evaluation are shown in Sections 4 and 5,

respectively. Finally, the conclusions, discussions, and suggestions for further research

are presented in Section 6.

2. Theoretical Background

2.1. Software Engineering Education

A software engineering course involves a range issues from software specification and

lifecycle to software structure and programming. The purpose of a software engineering

course is to enable students to use scientific methods to well define the criteria, models,

and procedures needed in the software development process and then efficiently

develop software that meets the needs of users (Sommerville, 2010). In Taiwan’s higher

education, to train students to become software developers, departments of computer

science or engineering have planned relevant courses in programming to develop

students' software development skills. Most students are able to acquire programming

skills after participating in the courses. However, to develop satisfactory and robust

software, programming skills alone are insufficient for students because programming

is only part of the software development process (Moreno, Sanchez-Segura, Medina-

Dominguez, & Carvajal, 2012). Therefore, students also need to learn software

engineering knowledge and technology to address software development and software

project management issues.

To conduct software engineering courses, several studies have indicated that the course

design should involve appropriate learning activities to conduct a learner-centered

learning environment to facilitate teacher-student and student-student interactions to

enhance students’ learning performance (Chen & Teng, 2011; Hainey, Connolly,

Stansfield, & Boyle, 2011; Maratou, Chatzidaki, & Xenos, 2016). Hainey et al. (2011)

developed a game-based learning application to teach students how to collect and

analyze user requirements during the system development process. This application

provided a learner-centered learning environment to engage students in learning

ACCEPTED MANUSCRIPT

software engineering concepts in a virtual world. The research results showed that the

game-based learning approach can effectively help students learn relevant concepts in

the course. Furthermore, in general, to conduct a software project, a project team is an

essential element. It is important how team members collaboratively develop the project

during the software development process. Therefore, Chen and Teng (2011) proposed

a learning system to support teachers and students to conduct collaborative learning and

project-based learning in software engineering courses. The investigation result

indicated that the proposed system can promote students to invest in a collaborative

learning process to develop software projects collaboratively. In addition, Maratou et

al. (2016) presented a role-play game to assist students in learning the software project

management issue of software engineering in a three-dimensional online multiuser

virtual world. The research result revealed that the proposed system can improve

students’ learning experience and performance.

As mentioned above, several studies have noted that software engineering courses

should focus on the interaction between teachers and students and the discussion of and

reflection about practical cases (Chamillard & Braun, 2002; Hadjerrouit, 2005;

Saiedian, 2002). Moreover, educators also indicated that software engineering courses

supplemented with appropriate computer technology can enhance students’ problem

solving ability (Chen & Teng, 2011).

2.2. Flipped Classroom

In traditional classrooms, teachers usually use the class time to teach the course material,

and students usually receive the instruction in the class. Moreover, to promote students’

thinking, teachers may assign homework or practice exercises to each student out of the

class. However, to complete the assignment, students often need to have discussions

with teachers and classmates to promote thinking skills. In other words, students cannot

ACCEPTED MANUSCRIPT

obtain sufficient learning resources to foster high-order thinking skills in traditional

classrooms (Lin & Hwang, 2018a).

To change the traditional learning patterns and teacher-centered learning modes, the

concept of the flipped classroom originated with Bergmann and Sams in 2007

(Bergmann & Sams, 2012). The flipped classroom is a learner-centered pedagogy that

reverses the in-class and out-of-class learning activities in traditional classrooms (Chen,

Wang, Kinshuk, & Chen, 2014). In the flipped classroom, the in-class lecture is

transformed to before-class learning through videos or other forms of media to free up

more in-class time for opportunities to discuss the issues, practice, or apply knowledge

(Bergmann & Sams, 2014). Therefore, the flipped classroom can increase the

interaction between teachers and students in class, give teachers the opportunity to

address the problems of individual students, and enable students to have more

successful experiences in knowledge application (Lin & Hwang, 2018b). To date, the

flipped classroom has been applied to various educational degrees and courses

(Slomanson, 2014; Teo, Tan, Yan, Teo, & Yeo, 2014).

Another important activity of the flipped classroom is students’ self-learning prior to

class since learning performance affects how instructors and students interact with the

learning materials in class (Kim, Kim, Khera, & Getman, 2014). In self-learning

activities prior to class, students may be unable to efficiently and effectively realize the

gaps between their learning results and course aims. In this situation, students may face

a strong risk of engaging in in-class learning activities on faulty foundations since they

lack sufficient levels of prior knowledge (Lin & Huang, 2013).

As mentioned above, to support an ideal software engineering education, this study

aims to apply the flipped-classroom pedagogy to conduct a learner-centered learning

environment in a software engineering course. Moreover, since students’ self-learning

performance prior to class is significant in affecting their prior knowledge while

conducting high-order thinking activities in class, this study develops a smart learning

ACCEPTED MANUSCRIPT

diagnosis system to support the flipped classroom to assist students in learning and

diagnosing the theoretical concepts of software engineering and assist instructors in

managing the students’ learning status. To evaluate the effectiveness of the proposed

approach, an experiment was conducted on a software engineering course at a

university in Taiwan to investigate the following research questions.

(1) Do the students who learn software engineering with the flipped-classroom

learning and diagnosis approach show better learning achievement than those who learn

software engineering with the traditional-classroom learning approach?

(2) Do the students who learn software engineering with the flipped-classroom

learning and diagnosis approach show better learning attitude than those who learn

software engineering with the traditional-classroom learning approach?

(3) Do the students who learn software engineering with the flipped-classroom

learning and diagnosis approach show better problem solving ability than those who

learn software engineering with the traditional-classroom learning approach?

(4) What are the students’ perceptions of the proposed system in terms of perceived

usefulness?

3. Smart Learning Diagnosis System

To apply the flipped-classroom pedagogy to software engineering courses, this study

developed a smart learning diagnosis system to assist instructors and students in

conducting learning and diagnostic activities in this learning mode. Moreover, to enable

the instructors and students to use various devices to operate the system, this study

adopted responsive web design (RWD) technology to develop a cross-platform web

application for the proposed system. The instructors and students can thus apply web

browsers supported by any devices to use the system, as shown in Fig. 1.

ACCEPTED MANUSCRIPT

Fig. 1. Interfaces of the smart learning diagnosis system on various devices

The proposed system was implemented using PHP, and a database was built using

MySQL. Fig. 2 shows the architecture of the proposed system. The system is composed

of three subsystems: a self-learning system, a diagnostic system, and a management

system. The proposed system can support instructors and students in the flipped

classroom to conduct relevant learning activities in and out of class. With regard to the

management system, instructors can use the subsystem to manage the learning activities

of the software engineering course out of class. Regarding the self-learning system,

students can use the subsystem to watch learning videos of the software engineering

course out of class. With regard to the diagnostic system, students can use the

subsystem to take diagnostic assessments to evaluate their learning status out of class.

ACCEPTED MANUSCRIPT

Fig. 2. The architecture of the smart learning diagnosis system

To support the flipped classroom, instructors can apply the management system to

manage learning resources and diagnostic assessments for the software engineering

course. As shown in Fig. 3, instructors can upload learning videos, add assessment

items, and modify video descriptions through the management interfaces.

Fig. 3. Snapshots of the management interfaces

Students can use personal learning devices with the Internet to login to the system

through web browsers. As shown in Fig. 4, students can view various learning resources

and watch learning videos to learn the theoretical concepts of the software engineering

ACCEPTED MANUSCRIPT

course through the self-learning system.

Fig. 4. Screenshot of the self-learning interface.

Furthermore, students can take diagnostic assessments to evaluate their learning status.

Based on the assessment logs, the diagnostic system would be triggered to diagnose the

students’ learning problems and further show the diagnostic results on an individual

dashboard, as shown in Fig. 5.

Fig. 5. Screenshot of the diagnostic result interface.

In addition, instructors can capture students’ learning status and diagnostic results from

the system. In this study, the diagnostic system was developed based on the testing-

ACCEPTED MANUSCRIPT

based approach proposed by Lin, Lin, and Huang (2011). The detailed formulation of

the diagnostic system is presented in the Appendix.

As mentioned above, to store each learning resource and log, a corresponding database

of the proposed system was deployed, including a learning material database, a

diagnostic database, a user profile database, and a learning status database. The learning

material database is a collection of software engineering video clips that includes

instructional slides, annotations, and voice. The diagnostic database includes several

pieces of information, such as item information, the relationship between items and

concepts. The user profile database stores personal profiles that include students and

instructors. The learning status database contains the learning and diagnostic status of

individual students.

4. Experiment

This study aims to adopt the flipped classroom as a teaching strategy to help instructors

and students to conduct a software engineering course through the use of the proposed

system.

4.1. Subject

To determine whether the proposed approach truly enhances student learning

performance in software engineering, a quasi-experiment was conducted on a software

engineering course at a Taiwanese university. The subject of this experiment was

conducted on the software development process, including requirement analysis, design,

implementation, testing, and evolution. The course had a length of 10 weeks (25 hours).

A total of thirty-four students and an instructor from the department of computer

science asked to participate in this experiment. One group of fifteen students served as

the control group. The other group of nineteen students served as the experimental

group. The experimental group was supported by the flipped-classroom strategy with

the proposed system to conduct the course, while the control group was supported by

ACCEPTED MANUSCRIPT

the traditional-classroom strategy without the proposed system. All of the students were

taught by the same instructor who had taught that particular software development

course for more than ten years. The students in the two groups were not aware of the

intervention in this experiment.

4.2. Research instruments

To evaluate the effect of the proposed approach on student learning performance,

various data sources were analyzed, including a prior knowledge test, a learning

achievement test, and questionnaire results. The prior knowledge test was designed to

assess the students’ knowledge level with regard to software engineering before

participating in the course. The learning achievement test was designed to evaluate the

students’ learning results after the conclusion of the course. In this study, two

instructors were asked to develop the two tests together; they had taught the course

more than 10 years. The two tests included 10 multiple-choice test items, and the

maximum score of the tests was 100 points. Moreover, three questionnaires were

adopted to measure the students’ learning motivation, learning attitude, and problem

solving ability. Furthermore, a system usefulness questionnaire was used to capture the

perceptions of the experimental group with regard to the usefulness of the proposed

system.

With regard to the investigations of the students’ learning motivation and learning

attitude, two questionnaires were used from the intrinsic scale of motivated strategies

for learning questionnaire (MSLQ) and the learning attitude questionnaire. The learning

motivation questionnaire and the learning attitude questionnaire consisted of nine items

with a seven-point Likert scale and seven items with a six-point Likert scale,

respectively. The two questionnaires were investigated by several studies on various

courses (Hwang & Chang, 2011; Hwang, Wu, & Ke, 2011; Lin, Wen, Jou, & Wu, 2014;

Pintrich & De Groot, 1990; Wei, Lin, & Lin, 2016). The learning motivation

questionnaire was used to measure students’ intrinsic interest in ("I think what we are

ACCEPTED MANUSCRIPT

learning in this class is interesting") and perceived importance of the course work ("It

is important for me to learn what is being taught in this class") as well as their

preferences regarding challenges and mastery of goals ("I prefer class work that is

challenging so I can learn new things"). The learning attitude questionnaire was used

to measure students’ learning attitudes toward learning activities (e.g., “The course is

valuable and worth studying” and “I would like to know more about the learning

targets”).

To measure the students’ perceptions of problem solving ability and system usefulness,

two questionnaires were used from the problem solving ability questionnaire and the

perceived usefulness scale of the technology acceptance model (TAM). The

questionnaire for problem solving ability included 25 items with a five-point Likert

scale, and the questionnaire for the perceived usefulness of the proposed system

included five items with a seven-point Likert scale (Davis, Bagozzi, & Warshaw, 1989;

Lin, Lin, Huang, & Cheng, 2013; Liu, Chen, Sun, Wible, & Kuo, 2010). The problem-

solving ability questionnaire was used to measure students’ problem-solving attitudes

toward the software development process (e.g., “When I encounter a problem, I will

first explore the key to the problem”, “When I encounter problems, I will think about

what to do next”, and “I can often come up with innovative and effective ways to solve

problems”). The system usefulness questionnaire was used to measure students’ belief

that the technology will improve their performance (e.g., “I could improve my learning

performance by using this system” and “I think using this system helps me learn”).

4.3. Experimental procedures

Fig. 6 shows the experimental process. Students in the experimental group and control

group were asked to take four pretests before undergoing the software engineering

learning activities. The first three pretests were conducted to capture the initial learning

motivation, learning attitude, and problem solving ability of the two groups by using

the learning motivation questionnaire, learning attitude questionnaire, and problem

ACCEPTED MANUSCRIPT

solving ability questionnaire. The fourth pretest was the prior knowledge test to

evaluate the level of the students’ background knowledge with regard to software

engineering.

Fig. 6. The experimental process

Before engaging in the formal learning activities, the students in the control group and

experimental group first received 30-min of instruction with regard to the traditional-

classroom learning strategy and flipped-classroom learning strategy in the software

engineering course, respectively. Furthermore, the students in the experimental group

obtained an additional 20-min of instruction with regard to the operations of the

proposed system.

During the course session, the instructor instructed the students in the control group in

theoretical concepts of software engineering by using slides in class. Moreover, case

studies, discussions, and practice exercises were also used to facilitate the students’

high-order thinking by utilizing the remaining time in class. Out of class, the students

ACCEPTED MANUSCRIPT

in the control group were asked to complete two open-ended questions (e.g., “Please

explain how to apply the agile method to speedup software development and deploy

it”) with regard to software engineering every week.

With regard to the experimental group, the students were asked to engage in the flipped

classroom. Out of class, the students were asked to engage in self-learning to learn the

theoretical concepts of software engineering by watching 61 video clips on the

proposed system. Table 2 shows the information in the video clips with regard to the

software development process. Moreover, the students made specific diagnosis

assessments to evaluate their level of understanding through the proposed system. In

class, the instructor facilitated the students’ engagement in case studies, discussions,

and practice activities. Furthermore, the instructor assigned two open-ended questions

to the students in the experimental group every week. In addition, during the course

session, the instructor applied the proposed system to diagnose the students’ learning

problems and further discussed the diagnostic results with the students to promote their

learning.

Table 2
The information on the video clips in the software engineering course.

Unit Duration # Unit Duration

01
Introduction to
Software
Engineering

07:42 32
Structural
Models Part 2

04:49

02
Introduction to
Software
Processes

04:59 33
Behavioral
Models Part 1

04:46

03
Waterfall
Model

07:24 34
Behavioral
Models Part 2

05:47

04
Incremental
Development

06:16 35
Introduction to
Design and
Implementation

02:11

ACCEPTED MANUSCRIPT

05
Reuse-Oriented
Software
Engineering

05:32 36
Object-oriented
design using the
UML Part 1

02:57

06
Introduction to
Software
Specification

05:24 37
Object-oriented
design using the
UML Part 2

04:46

07

Introduction to
Software
Design and
Implementation

03:07 38
Object-oriented
design using the
UML Part 3

03:05

08
Introduction to
Software
Validation

03:44 39
Object-oriented
design using the
UML Part 4

02:45

09
Introduction to
Software
Evolution

01:34 40
Object-oriented
design using the
UML Part 5

06:38

10
Introduction to
Cope with
Change

02:35 41
Object-oriented
design using the
UML Part 6

02:54

11 Prototyping 02:04 42
Implementation
Issues

08:43

12
Incremental
delivery

05:03 43
Introduction to
Software
Testing Part 1

05:11

13
Introduction to
Agile Software
Development

06:19 44
Introduction to
Software
Testing Part 2

05:25

14 Agile Methods 06:01 45
Testing
Processes

02:47

15
Extreme
programming
Part 1

06:46 46
Development
Testing Part 1

02:28

16
Extreme
programming
Part 2

06:48 47
Development
Testing Part 2

03:53

17
Agile project
management

02:29 48
Development
Testing Part 3

04:46

ACCEPTED MANUSCRIPT

18 Scrum Method 06:09 49
Development
Testing Part 4

02:44

19
Introduction to
Requirements
Engineering

03:08 50
Development
Testing Part 5

06:15

20
Functional and
Non-Functional
Requirements

06:26 51
Development
Testing Part 6

04:20

21
The Software
Requirements
Document

03:25 52
Release Testing
Part 1

03:26

22
Requirements
Specification
Part 1

05:52 53
Release Testing
Part 2

04:52

23
Requirements
Specification
Part 2

03:14 54
Introduction to
Software
Evolution

04:08

24
Requirements
Elicitation and
Analysis Part 1

07:51 55
Evolution
Processes Part 1

03:43

25
Requirements
Elicitation and
Analysis Part 2

05:22 56
Evolution
Processes Part 2

05:38

26
Requirements
Validation

04:50 57
Software
Maintenance
Part 1

09:14

27
Requirements
Management

04:57 58
Software
Maintenance
Part 2

04:15

28
Introduction to
System
Modeling

05:02 59
Software
Maintenance
Part 3

04:34

29 Context Models 01:32 60
Software
Maintenance
Part 4

04:17

30
Interaction
Models

07:44 61
Software
Maintenance
Part 5

08:47

ACCEPTED MANUSCRIPT

31
Structural
Models Part 1

06:05

After going through all of the learning activities, all the students from the two groups

received four posttests and completed the learning motivation questionnaire, learning

attitude questionnaire, and problem solving ability questionnaire. The fourth posttest

was the learning achievement test with regard to the software development process they

learned in the course. Furthermore, the students in the experimental group were asked

to complete the perceived usefulness questionnaire to survey their perceptions with

regard to the usefulness of the proposed system.

5. Results

The IBM SPSS was applied to analyze the performance of the students in the

experiment, including the results of the prior knowledge test, learning achievement test,

learning motivation questionnaire, learning attitude questionnaire, problem solving

ability questionnaire, and usefulness of the proposed system questionnaire.

5.1. Analyses of prior knowledge and learning achievement

To measure the students’ prior knowledge and learning achievement, two tests were

conducted before and after the software engineering learning activities.

With regard to the prior knowledge test, the mean value and standard deviation of the

test scores were 48.00 and 14.73 for the control group and 36.84 and 17.33 for the

experimental group. To evaluate the equivalent of the students’ background knowledge

with regard to software engineering before participating in the learning activities, an

independent sample t-test was applied to analyze the prior knowledge test results

between the two groups. Before the analysis, a Shapiro-Wilk test was used to examine

the normality of the above data since the participating students constituted less than 50

samples in the experimental group and control group. The value of this test was 0.953

(p > 0.05), indicating that the sample satisfied the assumption of normality.

ACCEPTED MANUSCRIPT

Furthermore, Levene’s test for equality of variances was statistically insignificant

(F(1,32) = 2.02, p = 0.656 > 0.05), which indicates that the group variances could be

treated as equal. To further check the t-test result, it reveals that there were no

significant differences between the experimental group and the control group (t(1,32)

= 1.988, p = 0.055 > 0.05). In addition, the effect size (d) of the prior knowledge test

was 0.69, representing a moderate effect size (Cohen, 1988). The result implies that the

students’ prior knowledge with regard to software engineering in both groups was

statistically equivalent before undergoing the course.

To investigate the effectiveness of the proposed approach for improving the learning

achievement of the students in the software engineering course, a one-way independent

sample analysis of covariance (ANCOVA) was used to exclude the difference between

the prior knowledge of the two groups. To conduct the ANCOVA, the learning

achievement and prior knowledge test scores were treated as the dependent variable

and covariate, respectively, and the homogeneity of the regression coefficient was

tested first. The result confirmed the homogeneity of the regression coefficient (F(1,32)

= 0.204, p > 0.05). Table 3 shows the ANCOVA results of the learning achievement

for the two groups. The adjusted means and standard deviations were 84.22 and 3.40

for the experimental group and 72.65 and 3.85 for the control group. There was a

statistically significant difference between the adjusted means (F(1,31) = 4.779, p =

0.036 < 0.05). Moreover, the learning achievement of the experimental group was

significantly higher than that of the control group. In addition, the effect size (η2) of

the learning achievement test was 0.134, representing a large effect size (Cohen, 1988).

The result reveals that the flipped classroom software engineering course with the

proposed system benefits students more than the traditional classroom software

engineering course without the system in terms of learning achievement.

ACCEPTED MANUSCRIPT

Table 3
The ANCOVA results for the students’ learning achievement.
Group Number

of
students

Mean S.D. Adjusted
mean

Adjusted
S.D.

F(1,31) p-
value

Experimental
Group

19 83.68 8.95 84.22 3.40 4.779 0.036*

Control
Group

15 73.33 19.15 72.65 3.85

Note: S.D.: Standard deviation.
*p < 0.05

5.2. Analyses of learning motivation and learning attitude

With regard to the analysis of the learning motivation, all the participating students

were asked to complete the learning motivation questionnaire before and after the

learning activities to evaluate their learning motivation. The pretest and posttest

Cronbach’s alpha values of the questionnaire were 0.913 and 0.909, respectively. To

explore whether there were any significant differences between the means of the

learning motivation of the two groups after engaging in the entire learning process, an

ANCOVA was used to exclude this difference between the pretest of the learning

motivation of the two groups, with the posttest and pretest scores of the learning

motivation treated as the dependent variable and covariate, respectively. The

homogeneity of the regression coefficient was not violated (F(1,32) = 0.005, p = 0.942

> 0.05). Table 4 shows the ANCOVA results of the learning motivation for the two

groups. The adjusted means and standard deviations were 5.77 and 0.12 for the

experimental group and 5.35 and 0.13 for the control group. There was a statistically

significant difference between the adjusted means (F(1,31) = 5.818, p = 0.022 < 0.05).

In addition, the effect size (η2) of the posttest of the learning motivation was 0.157,

representing a large effect size (Cohen, 1988). The result implies that the proposed

ACCEPTED MANUSCRIPT

approach significantly benefits students in terms of learning motivation.

Table 4
The ANCOVA results for the students’ learning motivation.
Group Number

of
students

Mean S.D. Adjusted
mean

Adjusted
S.D.

F(1,31) p-
value

Experimental
Group

19 5.72 0.66 5.77 0.12 5.818 0.022*

Control
Group

15 5.41 0.63 5.35 0.13

Note: S.D.: Standard deviation.
*p < 0.05

With regard to the analysis of the learning attitude, all the participants in the two groups

were asked to complete the learning attitude questionnaire before and after taking the

software engineering course. The pretest and posttest Cronbach’s alpha values of the

questionnaire were 0.834 and 0.852, respectively. To evaluate the equivalent of the

students’ learning attitudes with regard to the software engineering course before

participating in the learning activities, an independent sample t-test was applied to

analyze the pretest scores of the learning attitude between the two groups. Before the

analysis, a Shapiro-Wilk test was used to examine the normality of the above data since

the participating students constituted less than 50 samples in the experimental group

and control group. The value of this test was 0.910 (p = 0.073 > .05), indicating that the

sample satisfied the assumption of normality. Furthermore, a Levene’s test for equality

of variances was statistically insignificant (F(1,32) = 0.287, p = 0.596 > 0.05), which

indicates that the group variances could be treated as equal. To further check the t-test

result, there was no significant difference between the experimental group and the

control group (t(1,32) = -0.340, p = 0.736 > .05). In addition, the effect size (d) of the

pretest of the learning attitude was 0.17, representing a small effect size (Cohen, 1988).

The result indicates that the two groups of students had an equivalent awareness of their

ACCEPTED MANUSCRIPT

learning attitudes before entering the course.

In addition, an independent sample t-test was performed on the rating scores to compare

the posttest scores of the learning attitudes between the two groups. The values of the

Shapiro-Wilk test and Levene’s test were 0.916 (p = 0.095 > .05) and 1.960 (p = 0.171

> 0.05), indicating that the sample satisfied the assumption of normality and

homogeneity. The analysis result reveals that there was no significant difference in the

posttest scores of learning attitude between the two groups (t(1,32) = 0.818, p = 0.419

> .05). In addition, the effect size (d) of the posttest of the learning attitude was 0.27,

representing a small effect size (Cohen, 1988). The result reveals that the students’

learning attitudes with regard to the software engineering course in both groups was

also statistically equivalent after undergoing the course.

To further investigate the students’ learning attitudes, a paired sample t-test was used

to examine the difference in the learning attitudes for the two groups before and after

the learning process. Table 5 shows that there was a significant difference between the

students’ posttest and pretest scores for learning attitude in the experimental group

(t(1,18) = 3.899, p = 0.001 < 0.05). In addition, with regard to the control group, the

result shows that there was no significant difference in the students’ learning attitudes

before and after participating in the learning process (t(1,14) = 1.015, p = 0.327 > 0.05).

Therefore, it can be seen that the flipped classroom software engineering course with

the proposed system significantly benefits students in terms of learning attitude.

Table 5
The paired t-test results of the learning attitude for the two groups.
Group Tests Number

of
students

Mean S.D. t p-value

Posttest 19 3.330 0.412Experimental
group Pretest 19 3.045 0.316

3.899 0.001*

Posttest 15 3.200 0.560Control
group Pretest 15 3.085 0.381

1.015 0.327

ACCEPTED MANUSCRIPT

Note: S.D.: Standard deviation.
*p < 0.05

5.3. Analyses of problem solving ability and system usefulness

With regard to the analysis of problem solving ability, all the students in the two groups

were asked to complete the problem solving ability questionnaire before and after the

learning activities to evaluate their problem solving ability. The pretest and posttest

Cronbach’s alpha values of the questionnaire were 0.769 and 0.780, respectively. To

investigate the difference in the problem solving ability between the two groups after

engaging in the course, an ANCOVA was used to exclude this difference between the

pretest of the problem solving ability of the two groups, with the posttest and pretest

scores of the problem solving ability treated as the dependent variable and covariate,

respectively. The regression coefficient analysis revealed that the assumption of

homogeneity was supported by the ANCOVA (F(1,32) = 0.585, p > 0.05). Table 6

shows the ANCOVA results of the problem solving ability for the two groups. The

adjusted means and standard deviations were 3.732 and 0.062 for the experimental

group and 3.521 and 0.072 for the control group. There was a statistically significant

difference between the adjusted means (F(1,31) = 4.855, p = 0.035 < 0.05). Moreover,

the problem solving ability of the experimental group was significantly higher than that

of the control group. In addition, the effect size (η2) of the posttest of learning attitudes

was 0.139, representing a large effect size (Cohen, 1988). The result reveals that the

flipped classroom software engineering course with the proposed system benefits

students more than the traditional classroom software engineering course without the

system with regard to problem solving ability.

ACCEPTED MANUSCRIPT

Table 6
The ANCOVA results for the students’ problem solving ability.
Group Number

of
students

Mean S.D. Adjusted
mean

Adjusted
S.D.

F(1,31) p-
value

Experimental
Group

19 3.730 0.315 3.732 0.062 4.855 0.035*

Control
Group

15 3.522 0.170 3.521 0.072

Note: S.D.: Standard deviation.
*p < 0.05

To evaluate the perceptions of the experimental group with regard to the usefulness of

the proposed system, the perceived usefulness questionnaire was used and revised

based on the TAM. The Cronbach’s alpha value of the questionnaire was 0.908, and

the results of the investigation are shown in Table 7. The investigation results show that

98.9% of the students perceived the usefulness of the proposed system.

Table 7
The results of the students’ perceptions of using the proposed system in the
experimental group.
Question EU

(%)
QU
(%)

SU
(%)

Neither
(%)

SL
(%)

QL
(%)

EL
(%)

Mean

1 Using the proposed
system in the flipped
classroom software
engineering course
would enable me to
learn and diagnose
relevant knowledge
more effectively

0 0 0 0 10.5 52.6 36.8 6.26

2 Using the proposed
system would improve

0 0 0 0 10.5 57.9 31.6 6.21

ACCEPTED MANUSCRIPT

my learning
performance in the
flipped classroom
software engineering
course

3 Using the proposed
system in the flipped
classroom software
engineering course
would increase my
learning
comprehension
productivity

0 0 0 0 15.8 57.9 26.3 6.10

4 Using the proposed
system would make it
easier to learn software
engineering in the
flipped classroom

0 0 0 5.3 10.5 36.9 47.4 6.26

5 I would find the
proposed system useful
in the flipped
classroom software
engineering course

0 0 0 0 10.5 57.9 31.6 6.21

In addition, a multivariate analysis of covariance (MANCOVA) was used to have a

statistical control of the pre-existing difference in this study. The pretest scores of

learning achievement, learning motivation, learning attitude, and problem solving

ability were set as covariates to analyze the difference between the pretest and posttest

scores for all of the dependent variables. As shown in Table 8, the results indicate that

the posttest scores for learning achievement, learning motivation, learning attitude, and

problem solving ability differed significantly between the two groups (Wilks’ Λ = 0.597,

F = 4.056, p = 0.012). The result reveals that the flipped classroom software engineering

course with the proposed system benefits students more than the traditional classroom

software engineering course without the system in terms of learning achievement,

ACCEPTED MANUSCRIPT

learning motivation, learning attitude, and problem solving ability.

Table 8
The MANCOVA results for learning achievement, learning motivation, learning
attitude, and problem solving ability of the control group and experimental group.
Effect Wilk’s

Λ
F Hypothesis df Error df η2 Observed

Powera

p-value

Group 0.597 4.056 4 25 0.403 0.847 0.012*

a Computed using alpha = 0.05; *p < 0.05

6. Discussion and conclusions

This study proposed a flipped classroom with a smart learning diagnosis system to

support a software engineering course. Moreover, an experiment was conducted to

evaluate the effectiveness of the proposed approach. The experimental results showed

that, in comparison with the traditional-classroom learning approach, the proposed

approach significantly improved the students’ learning achievement, learning

motivation, and learning attitude. Furthermore, the students who learned with the

proposed approach had stronger problem solving abilities than those who learned with

the traditional-classroom learning approach. In addition, most students in the

experimental group agreed on the usefulness of the proposed system in the flipped

classroom software engineering course.

These findings provide evidence that the proposed approach can benefit students in

terms of software engineering learning. From the aspect of learning achievement, the

proposed system applied in the proposed approach provides a strong learning and

diagnosis tool for instructors and students since appropriate learning and assessment

activities have a significant effect on learning achievement in a flipped classroom

(Wang, 2017). From the perspective of learning motivation, this study applied the RWD

technique to develop a cross-platform application to facilitate content delivery in the

flipped classroom. This design was consistent with past research findings, which noted

ACCEPTED MANUSCRIPT

that the effective application of technology in a flipped classroom is an important

indicator of students’ learning motivation (Bergmann & Sams, 2012; Davies, Dean, &

Ball, 2013). Moreover, the literature indicates that sufficient prior knowledge can also

enhance students’ learning motivation and achievement (Lai & Hwang, 2016; Lin, Lin,

& Huang, 2011). In addition, with regard to learning attitude, past investigations

indicated that the development of intelligent techniques in an online learning platform

for a flipped classroom would positively affect students’ learning attitude (Zhai, Gu,

Liu, Liang, & Tsai, 2017). This point was also consistent with the diagnostic tool of the

proposed system in this study. In terms of learning activity design, several studies have

noted the specific advantages that could be achieved by conducting appropriate

diagnostic activities during the learning process (Huang, Huang, & Wu, 2014; Hwang,

Panjaburee, Triampo, & Shih, 2013; Panjaburees, Triampo, Hwang, Chuedoung, &

Triampo, 2013). Furthermore, the literature indicates that it is preferable to implement

a flipped-classroom approach in a small class (< 20 students) since it is possible to

involve all the students in class activities at one time (Galway, Corbett, Takaro, Tairyan,

& Frank, 2014; Kerr, 2015).

Overall, the major contribution of this study is to propose a flipped classroom with a

smart learning diagnosis system to support software engineering education. Based on

the proposed approach, this study has some limitations and opportunities for future

work. In the present study, the experimental results can only indicate that the flipped

classroom with the proposed system can benefit student learning performance in a

software engineering course. The result does not fully reflect the impact of the proposed

system on student learning performance. Therefore, to address this issue, a further

experiment should be conducted to investigate the student learning performance of a

software engineering course between a traditional classroom without the proposed

system, a flipped classroom without the proposed system, and a flipped classroom with

the proposed system and further investigate the effect of the system on student learning

ACCEPTED MANUSCRIPT

performance in the flipped classroom. Moreover, as the sample size of the experiment

was not large, this study needs to continuously conduct more software engineering

courses to cover various samples and provide additional evidence. To facilitate human-

computer interactions in the flipped classroom, a modern technique, called chatbot,

should be integrated with the proposed system to provide intelligent learning services

for instructors and students.

Appendix

The diagnostic system was developed to evaluate students’ theoretical concepts of

software engineering while learning with the proposed system. It assumes that a student

takes a diagnostic assessment and the assessment involves several items, and the student

has to apply corresponding concepts to answer the items in the assessment. According

to the context, three data relationships from the assessment were defined: the

relationship between the items and the concepts, the relationship among the concepts,

and the relationship between the student’s answers and the items, as shown in Tables

A.1, A.2, and A.3. Moreover, three variables were used to represent the three

relationships, X, Z, and R. The values of X and Z ranged from 0 to 1, indicating the

relevant degree from weak to strong. In addition, the value of R is set to 0 or 1, which

indicates the correctness of the student’s answer on each item.

Table A.1
The relationship between the items and the concepts.

Concept
Item

C1 C2 C3 … Ci … Cn

I1 X11 X21 X31 … Xi1 … Xn1

I2 X12 X22 X32 … Xi2 … Xn2

I3 X13 X23 X33 … Xi3 … Xn3

… … … … … … … …

ACCEPTED MANUSCRIPT

Ij X1j X2j X3j … Xij … Xnj

… … … … … … … …

Ik X1k X2k X3k … Xik … Xnk

Table A.2
The relationship among concepts.

Concept
Concept

C1 C2 C3 … Ci … Cn

C1 Z11 Z21 Z31 … Zi1 … Zn1

C2 Z12 Z22 Z32 … Zi2 … Zn2

C3 Z13 Z23 Z33 … Zi3 … Zn3

… … … … … … … …

Cm Z1m Z2m Z3m … Zim … Znm

… … … … … … … …

Cn Z1n Z2n Z3n … Zin … Znn

Table A.3
The relationship between students’ answers and the items.

Student
Item

S1 S2 S3 … Sl … Sr

I1 R11 R21 R31 … Rl1 … Rr1

I2 R12 R22 R32 … Rl2 … Rr2

I3 R13 R23 R33 … Rl3 … Rr3

… … … … … … … …

Ij R1j R2j R3j … Rlj … Rrj

… … … … … … … …

Ik R1k R2k R3k … Rlk … Rrk

Based on the definitions, the importance of each concept in a diagnostic assessment is

ACCEPTED MANUSCRIPT

measured as Eq. (A.1).

 (A.1)CI(𝐶𝑖) =
∑𝑛

𝑚 = 1∑𝑘
𝑗 = 1𝑍𝑖𝑚𝑋𝑚𝑗

∑𝑛
𝑖 = 1∑𝑛

𝑚 = 1∑𝑘
𝑗 = 1𝑍𝑖𝑚𝑋𝑚𝑗

where CI(Ci) represents the importance of the ith concept in the diagnostic assessment,

0≦CI(Ci)≦1; Zim indicates the relevant degree between ith and mth concepts, 0≦Zim

≦1; and Xmj represents the relationship between the mth concept and jth item, 0≦Xmj

≦1.

Moreover, based on the relationship between the student’s answers and the items, the

understanding level of the student with regard to the concepts in the diagnostic

assessment can be inferred as Eq. (A.2)

 (A.2)UL(𝑆𝑙,𝐶𝑖
) =

∑𝑛
𝑚 = 1∑𝑘

𝑗 = 1𝑅𝑙𝑗𝑍𝑖𝑚
𝑋𝑚𝑗

∑𝑛
𝑖 = 1∑𝑛

𝑚 = 1∑𝑘
𝑗 = 1𝑍𝑖𝑚𝑋𝑚𝑗

where UL(Sl, Ci) represents the understanding level of the lth student on the ith concept,

0≦UL(Sl, Ci)≦1; Rlj represents the correctness of answer of the lth student on the jth

item; Zim indicates the relevant degree between ith and mth concepts; and Xmj represents

the relationship between the mth concept and jth item, 0≦Xmj≦1.

In addition, to further evaluate whether the student has a sufficient level of

understanding of the concepts, Eq. (A.3) was formulated based on the investigation in

Khumalo (2006).
 (A.3)T(𝐶𝑖) = 𝑚 × 𝐶𝐼(𝐶𝑖) + 𝑏

where T(Ci) represents the threshold value of the ith concept, 0≦T(Ci)≦1; m indicates

the gradient of the function, m=1; CI(Ci) represents the importance of the ith concept

in the diagnostic assessment, 0≦CI(Ci)≦1; and b is the point at which the line crosses

the y-axis, b=0.

Therefore, the diagnostic system can infer the concepts with regard to which the student

is weak through the above functions.

References

Andreessen, M. (2011). Why software is eating the world. The Wall Street Journal.

ACCEPTED MANUSCRIPT

http://online.wsj.com/news/articles/SB10001424053111903480904576512250915629

460. Accessed July 17, 2017.

Baeten, M., Kyndt, E., Struyven, K., & Dochy, F. (2010). Using student-centred

learning environments to stimulate deep approaches to learning: Factors encouraging

or discouraging their effectiveness. Educational Research Review, 5(3), 243-260.

Baker, A., Navarro, E. O., & van der Hoek, A. (2005). An experimental card game for

teaching software engineering processes. Journal of Systems and Software, 75(1-2), 3-

16.

Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every

class every day. Eugene, OR: International Society for Technology in Education.

Bergmann, J., & Sams, A. (2014). Flipped learning: Gateway to student engagement.

Washington, DC: International Society for Technology in Education.

Bransford, J., Sherwood, R., Vye, N., & Rieser, J. (1986). Teaching thinking and

problem solving: Research foundations. American psychologist, 41(10), 1078.

Chamillard, A. T., & Braun, K. A. (2002). The software engineering capstone: structure

and tradeoff. ACM SIGCSE, 34(1), 227–231

Chen, C. Y., & Teng, K. C. (2011). The design and development of a computerized tool

support for conducting senior projects in software engineering education. Computers &

Education, 56(3), 802-817.

Chen, Y. L., Wang, Y. P., Kinshuk, & Chen, N. S. (2014). Is FLIP enough? Or should

we use the FLIPPED model instead?. Computers & Education, 79, 16–27.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.).

Hillsdale, NJ: Erlbaum.

Davis, F., Bagozzi, R., & Warshaw, R. (1989). User acceptance of computer technology:

A comparison of two theoretical models. Management Science, 35(8), 982–1003.

Davies, R. S., Dean, D. L., & Ball, N. (2013). Flipping the classroom and instructional

technology integration in a college-level information systems spreadsheet course.

ACCEPTED MANUSCRIPT

Educational Technology Research and Development, 61(4), 563-580.

Galway, L. P., Corbett, K. K., Takaro, T. K., Tairyan, K., & Frank, E. (2014). A novel

integration of online and flipped classroom instructional models in public health higher

education. BMC Medical Education, 14, 181.

Hadjerrouit, S. (2005). Learner-centered web-based instruction in software engineering.

IEEE Transactions on Education, 48(1), 99-104.

Hainey, T., Connolly, T. M., Stansfield, M., & Boyle, E. A. (2011). Evaluation of a

game to teach requirements collection and analysis in software engineering at tertiary

education. Computers & Education, 56(1), 21-35.

Heppner, P. P., & Petersen, C. H. (1982). The development and implications of a

personal problem-solving inventory. Journal of Counseling Psychology, 29(1), 66.

Huang, Y. M., Huang, S. H., & Wu, T. T. (2014). Embedding diagnostic mechanisms

in a digital game for learning mathematics. Educational Technology Research and

Development, 62(2), 187-207.

Hwang, G. J., & Chang, H. F. (2011). A formative assessment-based mobile learning

approach to improving the learning attitudes and achievements of students. Computers

& Education, 56(4), 1023-1031.

Hwang, G. J., Panjaburee, P., Triampo, W., & Shih, B. Y. (2013). A group decision

approach to developing concept–effect models for diagnosing student learning

problems in mathematics. British Journal of Educational Technology, 44(3), 453-468.

Hwang, G. J., Wu, P. H., & Ke, H. R. (2011). An interactive concept map approach to

supporting mobile learning activities for natural science courses. Computers &

Education, 57(4), 2272-2280.

Jeannette M. W. (2006). Computational thinking. Communications of the ACM, 49(3),

33-35.

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational

Technology Research and Development, 48(4), 63-85.

ACCEPTED MANUSCRIPT

Jou, M, Lin, Y. T., & Tsai, H. C. (2016). Mobile APP for motivation to learning: an

engineering case. Interactive Learning Environments, 24(8), 2048-2057.

Kerr, B. (2015). The flipped classroom in engineering education: A survey of the

research. In Paper presented at the 2015 International Conference on Interactive

Collaborative Learning Proceedings, Florence, Italy.

Khumalo, B. (2006). The fundamental theory of knowledge. MPRA Paper, 3733.

Kim, M. K., Kim, S. M., Khera, O., & Getman, J. (2014). The Experience of three

flipped classrooms in an urban university: An Exploration of design principles. The

Internet and Higher Education, 22, 37-50.

Kong, S. C. (2015). An Experience of a three-year study on the development of critical

thinking skills in flipped secondary classrooms with pedagogical and technological

support. Computers & Education, 89, 16-31.

Lai, C. L., & Hwang, G. J. (2016). A self-regulated flipped classroom approach to

improving students’ learning performance in a mathematics course. Computers &

Education, 100, 126-140.

Lin, Y. T. (2016). When Mobile Technology Meets Traditional Classroom Learning

Environment: How Does it Improve Students’ Learning Performances?, In K. Wallace

(Eds.), Learning Environments: Emerging Theories, Applications and Future

Directions (Chapter 8). Nova Science Publishers, Inc.

Lin, Y. C., & Huang, Y. M. (2013). A Fuzzy-based Prior Knowledge Diagnostic Model

with Multiple Attribute Evaluation. Educational Technology & Society, 16 (2), 119–

136.

Lin, H. C., & Hwang, G. J. (2018a). Research trends of flipped classroom studies for

medical courses: a review of journal publications from 2008 to 2017 based on the

technology-enhanced learning model. Interactive Learning Environments,

doi.org/10.1080/10494820.2018.1467462.

Lin, C. J., & Hwang, G. J. (2018b). A Learning Analytics Approach to Investigating

ACCEPTED MANUSCRIPT

Factors Affecting EFL Students’ Oral Performance in a Flipped Classroom.

Educational Technology & Society, 21 (2), 205–219.

Lin, Y. T., Lin, Y. C. (2017). Applying Mobile Technology to the Support Learning and

Diagnosis Approach in a Flipped Classroom, In D. René and C. Aubin (Eds.), Mobile

Learning: Students' Perspectives, Applications and Challenges (Chapter 5). Nova

Science Publishers, Inc.

Lin, Y. C., Lin, Y. T., & Huang, Y. M. (2011). Development of a diagnostic system

using a testing-based approach for strengthening student prior knowledge. Computers

& Education, 57(2), 1557-1570.

Lin, Y. T., Lin, Y. C., Huang, Y. M., & Cheng, S. C. (2013). A wiki-based teaching

material development environment with enhanced particle swarm optimization.

Educational Technology & Society, 16(2), 103–118.

Lin, Y. T., Wen, M. L., Jou, M., & Wu, D. W. (2014). A cloud-based learning

environment for developing student reflection abilities. Computers in Human Behavior,

32, 244-252.

Liu, I. F., Chen, M. C., Sun, Y. S., Wible, D., & Kuo, C. H. (2010). Extending the TAM

model to explore the factors that affect intention to use an online learning community.

Computers & Education, 54(2), 600–610.

Maratou, V., Chatzidaki, E., & Xenos, M. (2016). Enhance learning on software project

management through a role-play game in a virtual world. Interactive Learning

Environments, 24(4), 897-915.

Meyer, A. N., Fritz, T., Murphy, G. C., & Zimmermann, T. (2014). Software

developers' perceptions of productivity. In Paper presented at the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering Proceedings, Hong

Kong, China.

Moreno, A., Sanchez-Segura, M., Medina-Dominguez, F., & Carvajal, L. (2012).

Balancing software engineering education and industrial needs. The Journal of Systems

ACCEPTED MANUSCRIPT

and Software, 85(7), 1607-1620.

Panjaburees, P., Triampo, W., Hwang, G. J., Chuedoung, M., & Triampo, D. (2013).

Development of a diagnostic and remedial learning system based on an enhanced

concept effect model. Innovations in Education and Teaching International, 50(1), 72-

84.

Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning

components of classroom academic performance. Journal of Educational Psychology,

82(1), 33–40.

Saiedian, H. (2002). Bridging Academic Software Engineering Education and

Industrial Needs. Computer Science Education, 12(1-2), 5-9.

Schultz, D., Duffield, S., Rasmussen, S. C., & Wageman, J. (2014). Effects of the

flipped classroom model on student performance for advanced placement high school

chemistry students. Journal of Chemical Education, 91(9), 1334-1339.

Slomanson, W. R. (2014). Blended learning: A Flipped classroom experiment. Journal

of Legal Education, 64(1), 93-102.

Sommerville, I. (2010). Software Engineering (9th Edition). Boston, Addison-Wesley.

Stross, R. (2012). Computer Science for the Rest of Us. The New York Times, BU5.

Teo, T. W., Tan, K. C. D., Yan, Y. K., Teo, Y. C., & Yeo, L. W. (2014). How flip

teaching supports undergraduate chemistry laboratory learning. Chemistry Education

Research and Practice, 15(4), 550-567.

Voogt, J., & Roblin, N. P. (2012). A comparative analysis of international frameworks

for 21st century competences: Implications for national curriculum policies. Journal of

Curriculum Studies, 44(3), 299-321.

Wang, F. H. (2017). An exploration of online behaviour engagement and achievement

in flipped classroom supported by learning management system. Computers &

Education, 114, 79-91.

Wei, C. W., Lin, Y. C., & Lin, Y. T. (2016). An interactive diagnosis approach for

ACCEPTED MANUSCRIPT

supporting clinical nursing courses. Interactive Learning Environments, 24(8), 1795-

1811.

Zhai, X., Gu, J., Liu, H., Liang, J. C., & Tsai, C. C. (2017). An Experiential Learning

Perspective on Students’ Satisfaction Model in a Flipped Classroom Context.

Educational Technology & Society, 20 (1), 198–210.

ACCEPTED MANUSCRIPT

This study is supported by the Ministry of Science and Technology, Taiwan, R.O.C.

under grants MOST 104-2511-S-153-002-MY2 and MOST 106-2511-S-153-003-

MY2.

ACCEPTED MANUSCRIPT

 This study proposed a flipped classroom with a smart learning diagnosis system.

 An experiment was conducted in a software engineering course.

 The proposed approach is helpful to students in improving learning performance.

 Most students showed positive perceptions toward the usage of the proposed

system.

