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A B S T R A C T

This study develops joint choice models of mode and departure time for implementation in MetroScan, a new
version of TRESIS (Hensher and Ton, 2002). Separate models are estimated for work and non-work purposes,
testing all practical alternatives of model structure with a rich set of explanatory variables. The contributions of
the current work to the existing TRESIS are twofold. First, travel demand for non-work purposes such as
shopping, social and recreation are explicitly modelled in MetroScan as opposed to TRESIS that scales the de-
mand for work purposes to obtain non-work travel demand. Second, choices of travel mode and departure time
become more sensitive to situational factors such as the flexibility of arrival time, the reliability of travel time
and crowding. Willingness to pay for various improvements to the level of service is derived. We describe and
demonstrate how the proposed models are applied in the general modelling framework of MetroScan.

1. Introduction

It has long been recognised that the ability to simulate individual's
choices of when to travel and what mode to use is critical to travel
demand management and policy evaluation. These two decisions, to-
gether with route choice, are taken at an individual or household level,
but when aggregated they determine the temporal distribution of traffic
flows on both road and public transport networks. The importance of
modelling these decisions to the success of travel demand management
in congested/crowded areas has produced a number of models de-
scribing mode and time of day choices (Bhat, 1998a; de Jong et al.,
2003; Hess et al., 2007b). While these models contribute substantially
to our understanding of how travellers choose a time of day to travel
and how this decision interacts with mode choice, they are far too
complex and data-intensive to be operational in large scale travel
modelling systems (Hess et al., 2007a). As a result, most regional travel
demand models in use today do not have the temporal element of
travel. For example, the latest version of the Sydney Strategic Travel
Model (STM3) uses time-of-day factors, derived from the Sydney
Household Travel Survey (HTS), to distribute the originally estimated
24-h travel into different times of day (Bureau of Transport Statistics,
2011). Using time-of-day factors to obtain temporal travel demand is
also adopted in other 4-step regional travel demand models such as the
South California Regional Model (Southern California Assiciation of
Governments, 2008) and Greater Toronto Area Transport Model

(Miller, 2007). As these factors are the same for the base year and the
prediction years, these models are insensitive to temporal changes to
network conditions while in reality travellers can choose to respond by
switching their departure times to a less congested/crowded periods
and staying with the same mode or by switching to a different mode to
travel.

In contrast to 4-step models, advanced activity-based models (ABM)
explicitly consider time of day choices. These models typically divide a
24-h day into discrete time periods to take advantages of discrete choice
models in the estimation and application process (Vovsha and Bradley,
2004; Davidson et al., 2007). Although differences exist between op-
erational ABMs, they all model time choices of outbound and return
legs simultaneously such that “knock-on” effects are captured
throughout the day. An example of the knock-on effect is that if a
commuter goes to work early in the morning to avoid the morning peak
congestion/crowding, he is more likely to return home early in the
afternoon too. Although ABMs represents a significant improvement
over 4-step models in many aspects, including how time of day choices
are handled at the individual level, the adoption of ABMs has been
limited due to the costs relating to data requirements, model develop-
ment and long run times for forecasting.

Given the importance of incorporating temporal choices into re-
gional travel demand models and the popularity of 4-step models, it is
necessary to develop a simplified time of day choice models that are
compatible with the 4-step modelling framework. This is the main
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motivation of the current work. In particular, this study aims to develop
mode and time of day choice models for application within a simulation
framework of MetroScan, an improved version of the Transportation
and Environment Strategy Impact Simulator Transportation or TRESIS
(Hensher and Ton, 2002). The contributions of the current work to the
existing TRESIS are twofold. First, joint choice of mode and time of day
for non-work purposes such as shopping, social and recreation are ex-
plicitly modelled in MetroScan as opposed to TRESIS that scales the
demand for work purposes to obtain non-work travel demand. Second,
a rich set of variables, including arrival time flexibility, travel time
reliability, and crowding (that are collectively referred to as temporal
dimensions) are used to explain individual's joint choice of travel mode
and time of day. The inclusion of temporal dimensions is important for
modelling departure time choice because, for example, workers with
flexible working hours may choose to avoid crowding by travelling
outside the peaks, while those with fixed working hours do not have
such choices. Thus, MetroScan is more sensitive to temporal changes to
network conditions which are important for the analysis and evaluation
of transport policy focused on spreading the peaks.

Briefly, MetroScan is a simulation framework that is based on the
random utility maximisation theory (McFadden, 1974). MetroScan is a
fully integrated transport and land use model that endogenously si-
mulates many decisions, ranging from land use and urban develop-
ments (such as firm location choice, urban density, housing price, re-
sidential and work location choices) to transport demand (tour
generation, destination choice, mode and departure time choice, arrival
time flexibility) and transport supply (network assignment). MetroScan
deals with not only passenger movement, but also services and freight
movement, all within one integrated modelling framework. This is an
on-going work with new modules and refinements added as more data
become available. For the latest development of MetroScan, the reader
is referred to Ho et al. (2017) and Hensher et al. (2020).

The remainder of this paper is organised as follows. The next section
provides a review of pertinent literature on mode and time of day
choice models with a particular focus on operational models. This is
followed by a description of data and modelling approach used in this
paper. Estimation results are then presented, followed by a description
of how these models are calibrated and applied as part of the MetroScan
system. The paper concludes with a summary of the main findings and
recommendations for future work.

2. Review of relevant literature

A number of models have been proposed to study time of day
choice. These models can be broadly classified into two groups, de-
pending on whether time of the day is treated as a continuous or a
discrete variable. While small scale models work fine with continuous
time information, large scale modelling systems require an aggregation
of continuous time into a manageable number of time periods to reduce
run times as well ensure practical and reliable calibration. Given that
practical implementation of models is the main focus of the current
paper, this section limits itself to the literature on discrete time models
(see Habib et al., 2009 for a review of continuous time models).

The approach to modelling trip timing, be it the departure time or
arrival time, as a discrete entity was first proposed by Cosslett (1977)
and Small (1982). Typically, time period choice models are formulated
in a multinomial logit model (MNL) form to describe a decision that
travellers make: paying a higher cost to travel at the preferred time or
switching to another time period to pay less (e.g., shorter journey or
lower cost). Initially, trip timing models focused on the morning com-
mute by car (Abkowitz, 1981; Hendrickson and Plank 1984, Arnott
et al., 1990); however, studies have been extended to cover non-com-
mute trips and the interaction between departure time choice and mode
choice (Bhat, 1998b; de Jong et al., 2003; Hess et al., 2007a). The latter
extension is very important as each mode is associated with different
levels of service throughout the day, and thus the two decisions of what

mode to use and what time to travel are likely to be interdependent. For
example, travellers may prefer the car to public transport during off-
peak hours when traffic congestion is low and public transport service is
not good (e.g., low frequency). By contrast, public transport may be
more attractive during peak hours as it offers higher service levels and
can compete with the car mode that is likely to suffer from greater
traffic congestion. Motivated by this observation, a number of model-
ling approaches has been proposed to account for the interdependency
of mode choice and time of day choice.

In the development of a mode and time of day joint choice model,
two issues needs to be addressed. The first relates to the correlation
structure of the error terms (i.e., unobserved utility components). There
are many reasons for this issue to arise, but the main source relates to
the aggregation of the continuous time space into a finite number of
time periods for the application of discrete choice models. As a result,
adjacent time period alternatives may share unobserved utility, leading
to correlated error terms. This correlation issue can methodologically be
addressed by the use of advanced discrete choice models. For example,
de Jong et al. (2003) and Hess et al. (2007b) used an error component
model (ECM) and Börjesson (2008) used an error component mixed
MNL to jointly model mode and departure time choices. Practically
speaking, however, these models are far too computational intensive to
be operational in large scale modelling systems. Thus, for practical
works, mixed logit models, of which ECM is a member, need to be re-
placed by simpler models with a closed form (e.g., MNL and NL) to
maintain computational costs at an acceptable level (Hess et al.,
2007a).

The second issue that needs to be addressed, for practical reasons,
relates to the specification of explanatory variables. A vast majority of
time of day choice models are based on Vickrey's (1969) equilibrium
scheduling theory. This theory uses the concept of schedule delay to
quantify the loss in utility associated with shifting the trip time away
from the preferred departure/arrival time. As Hess et al. (2007a)
pointed out, the schedule delay formulation works well in exploratory
modelling of sample data, but this can be highly problematic when it
comes to model application as the precise information on the preferred
departure/arrival time is not available in a forecasting context. To deal
with data unavailability, operational trip timing models use a set of
constants associated with different time periods to capture traveller's
preferences for a particular departure/arrival time. Although this ap-
proach may lead to problems with model identification and inter-
pretation (see Hess et al., 2005 for in-depth discussion, Ben-Akiva and
Abou-Zeid, 2013) it does not associate with any operational issues for
large scale modelling systems.

On the basis of the two issues discussed above, Hess et al. (2007a)
conduct an extensive analysis, using three separate Stated Preference
(SP) datasets and three ways of defining time periods, to identify
whether one nesting structure (e.g., mode conditions time of day
choice) is better than the other (e.g., time choice conditions mode
choice) and whether the preferred nesting structure varies across spe-
cifications of time periods (i.e., temporal resolutions). The data were
collected in the UK and the Netherland (the latter is used in de Jong
et al., 2003). Separate models were estimated for commuter, business
and leisure purposes with models for commuters being segmented
further by flexible work hours. Table 1 summarises the results of this
important work. As can be seen from Table 1, the preferred nesting
structure varies across datasets, and within the same dataset, varies
across travel purposes and to a lesser extent, temporal resolutions. In
general, their results show that travellers are more likely to switch time
of day and stay with the same mode than the other way around (i.e., the
preferred structure is nesting mode choice above the time period
choice). This finding is supported by the works of Börjesson (2008) and
Lizana et al. (2014) who found a statistically significant correlation
between time period alternatives under the same mode. In addition,
Hess et al. (2007a) found that the degree of substitution between time
period alternatives is reduced when broader time periods are used. This
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empirical result lends support to the argument that the longer the
length of time period, the less correlation between time period alter-
natives, and hence the more likely that MNL is the preferred structure.

A common element to all of the studies cited in the previous para-
graph is that mode and time of day choice models are based on SP
surveys that include multiple departure time options (usually three:
depart earlier, later, or same as currently observed) for the current
mode but only one departure time option for the alternative mode
(usually the reported time if alternative mode is used). This raises a
critical question as to whether the preferred nesting structure found in
empirical analysis of these datasets (i.e., mode conditions departure
time choice) is a product of the SP design, since respondents have more
options to switch time and stay with the same mode than to switch
mode and maintain the same departure time. The current paper aims to
contribute to the debate.

Another area that needs more attention is that most trip timing
models have relied on SP data and cover car drivers only, although
some exceptions can be found. This limitation stems from the fact that
Revealed Preference (RP) data on trip timing are difficult to collect, and
that most trip timing models are developed to study how car drivers
would respond to increasing road congestion and road pricing.
However, crowding on public transport represents an increasing con-
cern and this calls for an extension of trip timing models to cover public
transport users. In addition, concerns have been raised towards the use
of SP data for analysing and forecasting departure time choice
(Börjesson, 2008). That is, one cannot be sure if respondents, when
faced with the real world situation, would respond in the same way as
they did in the SP experiment. This problem is known as hypothetical
bias, and can be overcome by joint SP/RP analysis. This is the approach
the current paper follows. The next section describes the data sources
and modelling approach.

3. Data collection and descriptive analysis

This section describes the main data sources that are used for the
development of mode and time of day joint choice models for
MetroScan. Descriptive analysis of the data is then presented as a pre-
cursor to model development.

3.1. Data collection

A computer-assisted personal interview (CAPI) survey was purpo-
sely designed to collect data for the development of mode and time of
day joint choice models. A pilot survey was conducted on 14th
November 2013 on a sample of 20 interviewees to test the compre-
hendability of the questionnaire and to collect feedback from both in-
terviewers and interviewees. A number of edits were made after the
pilot survey to improve the layout of the questionnaire and to reduce
respondent burden in terms of the number of SP tasks each interviewee

is required to complete in order to proceed to the next part of the
survey. The main survey was conducted from 20 November 2013 to 4th
May 2014. Fig. 1 shows the locations of the eight interview sites, which
were selected to provide a good mix of travel modes and to cover the
study area of MetroScan – the Sydney Greater Metropolitan Area
(SGMA).

The survey was conducted using a face-to-face interview method.
Respondents were recruited on site by a recruiter who made sure that
the respondent is eligible for the interview (i.e., live in the study area,
undertook at least one motorised trip in the last seven days and had an
alternative motorised mode available to use) and that consent was
obtained before a formal interview was conducted by one of the in-
terviewers who accessed the survey instrument via a desktop computer.
Recruitment and interviews were conducted for one week at each site,
starting on Monday and ending on Sunday. Each respondent was given
a $5 gift card to the supermarket of their choice (i.e., Woolworth or
Coles) for an average interview time of 28 min. Interviewers sat with
the respondents to provide any advice that was required in working
through the survey, while not offering answers to any of the questions.
A preset sample of 150 interviews was contracted for each of the eight
sites. The survey data were analysed on a daily basis when the survey
was in progress to ensure a good balance of travel purposes for each
site. A sample of 1221 interviews (with a response rate of 65%),
spreading almost equally across the six travel purposes (i.e., to work,
from work, education, shopping, personal business, and social), were
obtained.

In terms of the information collected, the questionnaire consisted of
six parts. In the first part, interviewees were asked to select a motorised
trip (in terms of travel purpose and departure time) that they recently
undertook and were able to provide details on trip origin, destination
and timing. The second part included questions relating to trip origin
and destination (in terms of postcode and suburb), departure and ar-
rival times, main travel mode (car as driver, car as passenger, bus, train,
ferry and light rail), alternative mode for the trip if the chosen mode
were not available, and the departure time if the alternative mode were
used. Conditioned on the chosen and non-chosen modes provided,
follow-up questions were used to obtain, where relevant, door-to-door
travel times in the last three occasions, one-way toll fee, distance
driven, car occupancy, the availability of reserved parking and parking
cost per day if the car mode was used, access and egress modes (in-
cluding walk, park and ride, kiss and ride, public transport), access and
egress times, waiting time at station/stop, public transport fares (for
access, main, and egress legs), number of transfers, the availability of
seats on public transport, and the time that the interviewee arrived at
their final destination, be it the activity location or home. Note that
these questions were asked for both chosen and non-chosen alternatives
(i.e., mode and departure time) such that RP data were revealed by the
respondent rather than being inferred by the analyst. The third part of
the questionnaire aimed to elicit how much flexibility the respondent

Table 1
Preferred nesting structure of mode and time period choice models by dataset and length of time periods (Hess et al., 2007a).

Dataset Length of TP Commuter Business Leisure Flexible commuter Inflexible
commuter

APRIL 5 coarse periods TP > Mode Mode > TP Mode > TP n/a n/a
1 h TP > Mode Equivalent Mode > TP n/a n/a
15 min TP > Mode n/a n/a n/a n/a

PRISM 5 coarse periods MNL Mode > TP Mode > TP MNL MNL
1 h Mode > TP MNL Mode > TP n/a n/a
15 min MNL n/a n/a n/a n/a

Dutch 5 coarse periods Mode > TP MNL Mode > TP Mode > TP Mode > TP
1 h Mode > TP MNL Mode > TP Mode > TP Mode > TP
15 min Mode > TP n/a n/a Mode > TP Mode > TP

Note: TP = Time period; TP > Mode = preferred structure is nesting time period above mode choice; Mode > TP = preferred structure is nesting mode choice
above time period; Equivalent = two nesting structures are equivalent and statistically better than MNL. MNL = preferred structure is MNL (i.e., NL model is not
statically better than MNL); n/a = models were not estimated due to small sample sizes.
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has in terms of arrival time at the final destination, with six selectable
options: no flexibility at all, within 15 min, 30 min, 45 min, 60 min of
the planned/agreed time, and ‘does not really matter’. The 15-min in-
tervals were used to provide a possibility of developing departure time
choice models with a fine time resolution of 15 min or 30 min (Bowman
and Bradley, 2006; Shiftan & Ben-Akiva, 2011). From a behavioural
standpoint, people may adjust their departure time preferences that
might not be captured in models with coarser time periods. Also,
temporal variables such as crowding during the peak hour may vary
substantially in a short period, and thus, a shift of 15-min may see a
completely different level of crowding, especially on public transport.
Individual responses to this question were used to develop discrete
choice models, predicting how much flexibility each individual has in
terms of their arrival time using travel purpose, socio-demographic and
working industry as explanatory variables. The logsums of this model

are then fed into the mode and time of day choice (see model structure
in Fig. 4). The fourth part included questions relating to the features of
car and public transport modes. In this part, respondents were asked to
indicate for the car mode: the maximum travel time, toll cost per trip,
fuel cost per trip, parking cost per day, and for the public transport
mode: the maximum access/egress times, wait time, time standing on
public transport, and public transport fares that they would consider
using these modes if they make the same trip again.

The information about the recent trip acquired from respondents
over the first fourth part was used to design a customised SP survey in
the fifth part of the questionnaire. Each SP task offered 8 alternatives:
four alternative departure times under the chosen mode (i.e., observed
to use for the recent trip) and four alternative departure times under the
non-chosen mode (revealed by the respondent). Each alternative was
described by a set of relevant attributes with the exact levels shown to

Fig. 1. Study area and interview sites.
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Fig. 2. Illustrative choice screen of mode and time of day survey in Sydney GMA, 2014.
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each respondent varying, depending on the combination of departure
time, main mode, access and egress modes reported for a recently un-
dertaken trip. For most attributes, the levels shown in the SP tasks are
obtained by pivoting around the current perceived levels (for both
chosen and non-chosen modes); however, there are some attributes
such as the availability of guaranteed parking (for car mode), frequency
of PT services, and number of transfers that are fixed while other at-
tributes such as crowding and one-way toll costs are linked to the recent
trip experience via a look-up table. The look-up table for toll fee was
based on the Sydney toll road network and toll charges in 2013 (see
Appendix A). Table 2 shows the set of relevant attributes for each mode
(grouped into access, main or egress legs) and the pivot levels used in
for the generation of SP tasks. Fig. 2 shows an illustrative choice task for
a respondent who reported that he left home for work at 9:00 by car on
an alternative departure time at 8:30 if train were used for the same trip

(Table 2a).
Crowding required a careful consideration as it is one of the factors

that influence mode and time of day choice, a focus of the current
study. This study adopted the approach proposed by Hensher et al.
(2011) in which crowding on public transport is presented by two
measures: percentage of seats occupied and the number of people
standing at the time of boarding the train, bus, and light rail. The
presentation of the crowding attribute involves both a written de-
scription and visual presentation of the seating configuration for each
mode, showing the people seated and standing. An example visualisa-
tion of crowding level is shown in Fig. 3 for the combination of these
two measures defining the crowding levels by departure time are shown
in Table 2c. Different from the previous study by Hensher et al. (2011),
however, this study links crowding levels to the departure time such
that the chance that public transport is crowded will be higher during
peak hours than during the off-peak. The selection of the crowding
levels for peak and off-peaks hours was determined based on the dis-
tribution of crowding levels by departure time (see Appendix B) derived
from a 2012 train load survey (Bureau of Transport Statistics, 2012).
This aims to replicate the crowding levels that public transport users in
Sydney experience in their daily travel, and hence making the SP tasks
more realistic.

Respondents were asked to review four SP tasks and indicate, in
each choice task, whether there are any attributes or attribute levels
that are not relevant to their decisions on what mode to use and what
time to travel when they undertake the same trip in the future. Under

Table 2a
Stated Preference attributes and rules-based pivoting levels.

Attribute (unit) Mode applied Pivot levels

Getting to main means of transport
Departure time (mins) All modes ±60,±30, 0
Access time (mins) All PT modes ±20%,± 10%, 0%
Parking cost ($) PT modes accessed by PnR ±4,± 2, 0 ≥ 0
PT fare ($) All PT modes ±20%,± 10%, 0%
Time arrive at platform/wharf/stop (mins)* All PT modes ±5,± 2, 0

Main means of transport
In-vehicle travel time (mins) All modes ±20%,± 10%, 0%
Availability of guaranteed parking Car Yes, No
Parking cost per day ($) Car ±20%,± 10%, 0%
Fuel cost one way ($) Car ±30%,± 15%, 0%
Toll cost one way ($) Car see look up Table 2b
Time wait for main mode (mins)* All PT modes ±15,±10,± 5, 0
% seats occupied at time of boarding (%) All PT modes see look up Table 2c
# people standing at time of boarding (people) All PT modes see look up Table 2c
Time standing on PT (mins) All PT modes ±25%, 0%
PT fare ($) All PT modes ±20%,± 10%, 0%
Frequency of service or headway (mins) All PT modes 5, 10, 15
Number of transfers Train, Ferry, Light Rail 0,1,2
% Time bus in a bus lane (%) Bus ±30%,± 20%,± 10%, 0%

Getting from main means of transport
Time walk to egress mode (mins) All modes egressed by PT 0%
Time wait for egress mode (mins) All modes egressed by PT 0%
In-vehicle time for egress leg (mins) All modes egressed by PT ±20%,± 10%, 0%
PT fare for egress leg ($) All modes egressed by PT ±20%,± 10%, 0%
Time walk to final destination (mins)* All modes ±5,± 2, 0

Note: * conditions applied to ensure the consistency of times shown to respondents (e.g., time board main mode must be later than time arrive at the
platform/wharf/stop).

Table 2b
Look up table for one-way toll fee levels.

One-way toll fee incurred on recent trip

$0.00 -
$4.00

$4.01 -
$8.00

$8.01 -
$12.00

$12.01 -
$16.00

>$16.00

One-way toll fee
levels shown in
SP tasks

0 0 4 8 8
2 4 8 12 16
4 8 12 16 32
6 12 16 20 40

Fig. 3. Example of crowding on train: level 8 (90% seats occupied, 5 people standing) applied to both peak and off-peak.
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the respondent's indication, interviewers helped respondents to select
irrelevant attributes/attribute levels and then asked them to compare
the proposed options in terms of the remaining attributes and indicate
whether each of the eight alternatives is acceptable to them. Responses
to this first SP question effectively classified the eight alternatives on
offer into two groups: acceptable alternatives and non-acceptable al-
ternatives. The interviewers then asked the respondent to rank the eight
alternatives from 1 (most preferred) to 8 (least preferred), starting with
the acceptable group and then the non-acceptable one. Finally, re-
spondents were required to indicate whether they are late, early or on
time under each of the eight alternatives. The respondents were then
shown a new game and the same process repeated.

Although four SP tasks were offered, respondents were required to
complete a minimum of two SP tasks before they can go to the final part
of the survey (on average each respondent completed 3.50 tasks). This
final part includes standard questions relating to individual and
household characteristics such as age, gender, employment status, oc-
cupation, personal income, household income, household structure,
household size, number of household adults, children, full-time and
part-time workers, and number of vehicles owned by the household.

3.2. Descriptive analysis

This section provides a socio-economic profile of the sample and an
overview of the mode and departure time profile obtained from the RP
data.

Table 3 provides a socio-economic profile of the sample, segmented
by travel purpose. As discussed in Section 3.1, the sampling method
focuses more on obtaining enough observations for model development,
with much less attention being paid to the representativeness of the
sample. Thus, a comparison of the sample profile with that of the po-
pulation is considered not necessary. However, it is important that the
sample from which model parameters are to be estimated cover a wide
spectrum of the population in terms of personal and household char-
acteristics. This is indeed the case for both commuter and non-com-
muter samples where a good mix of gender, age, employment status,
occupation, household structure, and car ownership can be observed
from Table 3.

Table 4 provides a simple crosstab of mode choice against departure
time for commuting trips. The subsample of commuting trips includes
392 respondents, but only two reported that they use ferry or light rail

for commuting. These observations are excluded from further analysis.
It is worth noting that obtaining a decent sample size for ferry and light
rail is difficult in Sydney as these modes have very limited spatial
coverage in the local context. This applies to even the large-scale
Sydney Household Travel Survey which interviews about 3500 house-
holds every year but still having difficulty in obtaining a decent sample
size for these modes (Bureau of Transport Statistics, 2014; Statistics, B.
o. T, 2014a). With a recent rollout of smartcard data across the Sydney
Greater Metropolitan Area (Ho, 2020 Forthcoming) every public
transport journey is captured and this provides a great source of RP data
to incorporate transport modes with a small market share (i.e., light
rail, bus rapid transit, and ferry) into strategic models.

An examination of column-wise percentage in Table 4 indicates that
21% of car commuting trips start during the morning peak (7–9 AM).
The shares of commuting trips by public transport are considerably
higher during the same period (34% for bus commuters and 31% for
train commuters). The same patterns are observed for the afternoon
peak, although the differences are to a lesser extent. Similarly, an ex-
amination of row-wise percentages in Table 4 shows that about 70% of
commuting trips undertaken before 7:00 involve the use of a car while

Table 2c
Crowding level by departure time and mode.

Level Cumulative
Probability

% Seats
occupied

Standing
on Bus

Standing
on Train

Standing
on LR

1, off-peak 0.40 25% 0 0 0
2, off-peak 0.65 50% 0 0 0
3, off-peak 0.70 60% 0 0 0
4, off-peak 0.75 70% 0 0 0
5, off-peak 0.80 80% 0 0 0
6, off-peak 0.85 80% 5 5 5
7, off-peak 0.90 90% 0 0 0
8, off-peak 1.00 90% 5 5 5
5, peak 0.40 80% 0 0 0
6, peak 0.50 80% 5 5 5
7, peak 0.60 90% 0 0 0
8, peak 0.65 90% 5 5 5
9, peak 0.70 100% 0 15 0
10, peak 0.75 100% 3 30 3
11, peak 0.80 100% 7 45 7
12, peak 0.85 100% 11 60 11
13, peak 0.90 100% 15 75 15
14, peak 0.95 100% 19 90 19
15, peak 0.97 100% 23 105 23
16, peak 1.00 100% 27 120 27

Note: Peaks are defined based on departure time between 7 and 9 AM or 4 and
6 PM; off-peak = any departure time outside the peaks.

Table 3
Socio-economic profiles of the commuting and non-commuting samples.

Commuting
sample

Non-commuting
sample

Average age (in years) 43 45
Gender
Male 34% 33%
Female 66% 67%

Employment status
Fulltime worker 63% 14%
Part-time worker 20% 16%
Casual worker 15% 12%
Unpaid voluntary worker 2% 1%
Unemployment 0% 56%

Occupation
Labourer 3% 1%
Trade and Plant 4% 3%
Professional 40% 17%
Management and Admin 23% 10%
Clerk 3% 2%
Self employed 4% 7%
Sales 12% 10%
Other 12% 51%

Average personal income (‘000$) 90 76
Licence holder 93% 89%
Number of household vehicle
0 7% 8%
1 32% 40%
2 39% 33%
3+ 21% 19%

Household structure
Lone person 12% 17%
Couple with children ≤ 14
and > 14 years

5% 5%

Couple only 22% 23%
Single parent with children over
14 years

6% 5%

Couple with children over 14 years 20% 16%
Single parent with children

<15 years
2% 2%

Couple with children < 15 years 14% 7%
Single parent with children ≤ 14
and > 14 years

1% 1%

Other household types 19% 25%
Average household income (‘000$) 211 216
Arrival time flexibility
No flexibility 40% 39%
Within 15–30 min 24% 21%
Within 60 mins 5% 2%
Does not matter 32% 38%

Sample size 392 829
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this value decreases to 53% if a commuting trip starts during the
morning peak. Clearly, there appears to be a correlation between mode
choice and departure time choice with public transport being more
popular to peak commuters and peak-avoiding commuters are much
more likely to be car commuters.

Table 5 offers similar indications, with stronger tendencies than
those seen in Table 3. For non-commuting trips (including education,
shopping, personal business and leisure), it is found that a majority of
car trips (63%) are undertaken during the inter-peak (between 9:00 and
15:00) while train-based non-commuting trips spread more evenly be-
tween the morning peak (38%) and the inter-peak (40%). These two
time periods (morning peak and inter-peak) accounts for a majority of

commuting trips as the sample includes trips from home to activity
locations (i.e., no trips from activity to activity or from activity to home
in the non-commuting sample). The maximum percentage point dif-
ference in the case of non-commuting trips is 23% (63% - 40% = 23%),
which is much higher than that observed for commuting trips (32% -
18% = 14% during PM peak). Similarly, 51% of the non-commuting
trips undertaken during the morning peak are car-based, while this
percentage increases to 69% for non-commuting trips starting between
9:00 and 15:00. Once again, there is a strong correlation between mode
choice and departure time choice for non-commuting trips.

What we cannot draw from these crosstabs, however, is whether
mode choice conditions departure time choice or time choice conditions
mode choice or the two decisions are made simultaneously, since other
factors such as differences in personal and household characteristics
between public transport and car users need to be accounted for. This
can only be done using multivariate analysis described in the next
section.

4. Model specifications and estimation results

4.1. Model specification

For practical reasons discussed in Section 2, models specified for
mode and time of day choice presented in this paper are limited to MNL
and NL forms. The review of the literature in Section 2 also suggests
that alternative nesting structures (mode choice conditions departure
time choice vs. departure time choice conditions mode choice) should
be explored, such that the preferred nesting structure can be decided on
empirical evidence. Thus, for each travel purpose, three alternative
model structures are specified to examine three possible relationships
between mode choice and departure time choice. These are that the
mode choice and departure time choice are made simultaneously (MNL
model); second that the mode choice is determined first and conditions
the departure time choice (nesting mode choice above time period); and
finally that the departure time choice comes first and influences mode
choice (nesting time period above mode).

In addition to the sequence of the model structure, it is necessary
that scale differences between RP and SP data be accounted for when
models are based on combined RP/SP data to enrich model behavioural
responses and to overcome weaknesses associated with each data type.
To this end, the ‘artificial tree structure’ mechanism is employed (Ben-
Akiva and Morikawa, 1990; Hensher and Bradley, 1993; Ortuzar and
Iacobelli, 1998). In addition, a decision on temporal resolution (i.e.,
how many time periods are to be used for modelling) needs to be made.
Given the sample sizes obtained from commuters and non-commuters
discussed in Section 3, we decide to group the 24-h day into six time
periods for model development. These are the morning period
(DT1 = before 7:00), am peak (DT2 = 7:00–9:00), inter-peak
(DT3 = 9:01–14:59), pre-pm peak or school time
(DT4 = 15:00–15:59), pm peak (DT5 = 16:00–18:00) and the evening
(DT6 = after 18:00).

Another issue that model specification needs to take care of relates
to the impact that the flexibility in arrival time or the lack thereof has
on departure time choice and mode choice. Previous studies deal with
this issue by segmenting the sample and using separate models for
commuters with and without flexible working hours (see for example de
Jong et al., 2003; Hess et al., 2007a). This segmentation approach
works well in model development but it can be problematic when the
models are being applied for forecasting because of two reasons. First,
the information on flexible work hours is unlikely to be available for
future years, and also that it is not typically included in the synthetic
(or prototypical) households used in applications. Second, the influence
of arrival time flexibility on mode and departure time choice extend to
non-work travel, which is highly unlikely to be accompanied by any
information on flexible arrival time. Thus, for this practical work, we
develop a model to predict the probability that one has the flexibility in

Table 4
Cross-tabulation of main mode and departure time for commuting trips (to and
from work).

Departure time choice Main mode Total

Car Bus Train Ferry/LR

Frequency
Before 7 AM 44 8 12 0 64
7–9 AM 52 17 29 0 98
9 AM–3 PM 41 6 10 1 58
3–4 PM 18 3 4 0 25
4–6 PM 58 9 30 0 97
After 6 PM 33 7 9 1 50
Total 246 50 94 2 392

Percent within column (mode)
Before 7 AM 18% 16% 13% excluded n/a
7–9 AM 21% 34% 31% excluded n/a
9 AM–3 PM 17% 12% 11% excluded n/a
3–4 PM 7% 6% 4% excluded n/a
4–6 PM 24% 18% 32% excluded n/a
After 6 PM 13% 14% 10% excluded n/a
Total 100% 100% 100% excluded n/a

Percent within row (departure time)
Before 7 AM 69% 13% 19% excluded 100%
7–9 AM 53% 17% 30% excluded 100%
9 AM–3 PM 72% 11% 18% excluded 100%
3–4 PM 72% 12% 16% excluded 100%
4–6 PM 60% 9% 31% excluded 100%
After 6 PM 67% 14% 18% excluded 100%

Table 5
Cross-tabulation of main mode and departure time for non-commuting trips.

Departure time choice Main mode Total

Car Bus Train Ferry/LR

Frequency
Before 7 AM 14 12 13 0 39
7–9 AM 110 49 56 0 215
9 AM–3 PM 322 87 59 3 471
3–4 PM 16 2 4 0 22
4–6 PM 30 10 10 0 50
After 6 PM 19 7 6 0 32
Total 511 167 148 3 829

Percent within mode
Before 7 AM 3% 7% 9% excluded n/a
7–9 AM 22% 29% 38% excluded n/a
9 AM–3 PM 63% 52% 40% excluded n/a
3–4 PM 3% 1% 3% excluded n/a
4–6 PM 6% 6% 7% excluded n/a
After 6 PM 4% 4% 4% excluded n/a
Total 100% 100% 100% excluded n/a

Percent within departure time
Before 7 AM 36% 31% 33% excluded 100%
7–9 AM 51% 23% 26% excluded 100%
9 AM–3 PM 69% 19% 13% excluded 100%
3–4 PM 73% 9% 18% excluded 100%
4–6 PM 60% 20% 20% excluded 100%
After 6 PM 59% 22% 19% excluded 100%
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arrival time, and then feed this information into the mode and de-
parture time choice model using the expected maximum utility (or
logsum) concept. This approach is analogous to the latent desired de-
parture/arrival time described in Ben-Akiva and Abou-Zeid (2013).

Fig. 4 shows an overall structure of the mode and departure time
choice model developed for MetroScan. Note that in Fig. 4, we assume
(and test below) that the mode choice decision comes first and condi-
tions departure time choice. This overall structure, however, can easily
be modified to reflect the other two possibilities (i.e., swapping mode
and departure time to define an alternative NL model in which de-
parture time conditions mode choice, and pooling two decisions into
one level to define a MNL model in which both mode and departure
time are made simultaneously).

4.2. Estimation results

An extensive number of MNL models were first explored to identify
the set of potential variables explaining the joint choice of mode and
departure time for each trip purpose using Nlogit 5 (Econometric
Software, www.limdep.com). Models for ‘to work’ and ‘from work’
purposes deliver similar behavioural outputs such as values of travel
time savings and willingness to pay to travel on a less crowded train/
bus. On the other hand, separate models for each purpose of the non-
commuting segment (i.e., personal business, education/childcare,
shopping, social and leisure) did not deliver statistically significant
parameters for key variables such as travel costs for car and access/
egress time for PT. This is likely to be due to small sample sizes of each
of the non-commuting sub-samples (i.e., personal business, education/
childcare, shopping, social and leisure), which when combined into one
category (i.e., non-work) delivers significant parameter estimates for all
the important variables. Based on these results, we decided to pool the
non-commuting samples for more detailed analysis of the preferred
model structure. To work and from work purposes remain separated;
however, for brevity, we only report results of the mode and time of day
choice model for the ‘to work’ trips.

In searching for the preferred nesting structure, we found that the
model nesting mode choice conditioned on departure time choice is
rejected in all travel purpose segments, with the estimated logsum
parameters lying outside the acceptable [0,1] range. On the other hand,
the commuting to work models nesting mode choice above departure
time choice which gave acceptable logsum parameters but this failed to
reject the MNL model, while the same model for non-commuting trips
took on unacceptable logsum parameters (i.e., larger than 1). In addi-
tion, a number of variables which are highly significant under the MNL

specifications become insignificant under this NL structure. Thus, for
each dataset (RP and SP) the preferred structure is the MNL.

Table 6 presents the estimation results of the preferred models of
mode and departure time choice for commuting and non-commuting
purposes. Both models fit the data very well with the McFadden pseudo-
R2 (McFadden et al., 1973; Hensher et al., 2015) of 0.710 for com-
muting trips (867 observations, 194 persons) and 0.689 for non-com-
muting trips (3665 observations, 829 persons).

The scale parameters of the SP datasets are larger than one at the
1% level, suggesting that the SP dataset has more noise (i.e. greater
unobserved variance) than the corresponding RP dataset, in line with
findings in most studies that combine RP data with SP data (Börjesson,
2008). With two exceptions, parameter estimates all have the expected
sign with most of them highly significant. The first parameter with an
unexpected sign measures the effect of crowding (#people standing) on
commuter's choice of train mode; however, this parameter is not sta-
tistically significant. The second variable that has an unexpected sign
and insignificant parameter is the observed PT fares for commuting;
however, the same variable in the SP data has a strongly significant
parameter with the expected sign. This suggests that there is not enough
variation in RP public transport fare for its corresponding parameter to
be significant.

Overall, the model results suggest that the levels of service such as
travel times, travel costs, frequency of service and travel time reliability
are the main drivers of mode choice while having flexibility in arrival
time is the main driver of departure time choice. However, there are
factors that influence both decisions. These are personal income and
number of household vehicles, which influence commuter's choice of
mode and departure time. Interestingly, high income car commuters
appear to avoid the morning peak and they do so by commuting earlier;
however, if they come from households with more children, the like-
lihood of switching departure time from peak to off-peak reduces. A
possible explanation is that workers with children tend to drop-off their
child at school en route to work, and as school starts between 8:00 and
9:00, peak commuting seems to be unavoidable.

Travel time reliability significantly influences mode choice for both
commuting and non-commuting purposes. The parameters associated
with this variable are significantly negative, suggesting that individuals
prefer alternatives with more reliable travel time, measured by the
standard deviation of travel time for repeated trips between the same
origin-destination pair. Note that a direct comparison of parameter
estimates is not meaningful, and thus a willingness to pay for more
reliable travel time was derived and shown in Table 7. Overall, com-
muters are willing to pay more than non-commuters for reliable travel

Fig. 4. Structure of mode and departure time choice model: mode conditions departure time.
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time as we may expect. For the same travel purpose, however, travellers
are willing to pay more for reliable public transport services, compared
to the private car.

Having a flexible arrival time is, as expected, a significant driver of
departure time choice for both commuting and non-commuting trips.
This is reflected in the parameters associated with the logsum of the
Arrival Time Flexibility (ATF) model nested below the mode and de-
parture time choice (see Fig. 4). ATF models, for commuting and non-
commuting, have the four alternatives of arrival time: must be at the
destination on the planned/agreed time (i.e., no flexibility at all), must
arrive within 15–30 min of the planned/agreed time; must arrive within
45–60 min of the planned/agreed time; and arrive at any time (i.e.,
arrival time does not matter). These models are based mainly on socio-
demographic characteristics such that future arrival time flexibility can
be predicted for any synthetic household without relying on data
availability when it comes to model application. Table 6 shows that the
logsum parameters of ATF are bounded between zero and one, in-
dicating that the model structure is consistent with the assumption of

global utility maximisation. Also, the commuting model has more and
strongly significant logsum parameters than the non-commuting
models. This suggests that having flexible working hours plays an im-
portant role in commuter's choices of departure time.

Crowding on public transport, measured as the number of people
standing on the vehicle at the time of boarding, was also found to in-
fluence mode and departure time choice but this influence was sig-
nificant only for non-commuting trips by bus. The corresponding
parameter is negative (−0.033) and significant at the 10% level, sug-
gesting that non-commuting travellers prefer less crowded buses.
Number of people standing on trains does not have a significant para-
meter, suggesting that crowding on train does not significantly influ-
ence individual choice of mode and departure time. One possible ex-
planation is that trains are often crowded during the peak hours when a
lot of commuters have to use train travel to work (i.e. captive train
users). Further investigation is required to separate the influence of
captive users (i.e. preferences) from crowding on mode and departure
time choices.

Table 6
Estimation results of mode and departure time choice models for commuting and non-commuting trips, Sydney GMA 2014.

Variable (RP/SP utility) Alternative applied Commuting (to work) Non-commuting

Parameter Sig. t-value Parameter Sig. t-value

Car in-vehicle time (RP = SP) Car −0.052 *** −4.14 −0.031 *** −9.74
Egress time in mins (RP) Car −0.189 ** −2.31 −0.004 −0.18
Fuel cost in $ (RP = SP) Car −0.148 *** −3.56 −0.231 *** −5.25
Toll cost in $ (RP = SP) Car −0.148 *** −3.56 −0.533 *** −9.31
Travel time reliability (RP) all −0.144 ** −2.21 −0.088 *** −10.43
Parking cost in $ (RP) Car −0.028 −0.65 −0.067 *** −5.04
Availability of guaranteed parking (RP) Car 1.443 * 1.77 − −
Egress time in minute (RP) Car −0.117 *** −3.02 −0.072 *** −4.70
Parking cost in $ (SP) Car −0.087 *** −2.90 −0.148 *** −7.83
Availability of guaranteed parking (SP) Car 0.413 ** 2.16 0.850 *** 6.28
Access time in minute (RP) Bus, Train −0.084 *** −3.51 −0.041 *** −5.23
PT in-vehicle time (RP = SP) Bus, Train −0.038 *** −4.17 −0.031 *** −9.74
Egress time in mins (RP) Bus, Train −0.093 *** −3.54 −0.021 *** −3.88
PT fare in $ (RP) Bus, Train 0.079 0.79 −0.168 *** −4.28
Accessed by car (RP = SP) Train − − −1.541 *** −5.53
Accessed by bus (RP = SP) Bus, Train 4.976 *** 3.21 −0.440 −1.53
Egress by PT (RP = SP) Bus, Train 1.308 ** 2.09 − −
Access time in minute (SP) Bus, Train −0.059 *** −3.04 −0.049 *** −5.39
Egress time in minute (SP) Bus, Train −0.072 *** −3.47 −0.034 *** −5.40
PT fare in $ (SP) Bus, Train −0.180 *** −2.67 −0.375 *** −7.13
Number of people standing (SP) Bus −0.031 −0.96 −0.033 * −1.82
Number of people standing (SP) Train 0.005 1.05 −0.006 −1.28
Headway in minute (SP) Bus −0.058 * −1.69 0.028 * 1.82
Headway in minute (SP) Train −0.039 −1.29 −0.002 −0.09
Number of transfers (SP) Train −0.296 * −1.71 0.004 0.04
Logsum parameter of ATF (RP = SP) DT1 0.845 *** 6.21 1 fixed
Logsum parameter of ATF (RP = SP) DT2 0.872 *** 6.52 0.273 ** 2.04
Logsum parameter of ATF (RP = SP) DT3 0.697 *** 4.55 0.344 ** 2.21
Logsum parameter of ATF (RP = SP) DT4 1 fixed 0.152 0.79
Logsum parameter of ATF (RP = SP) DT5 0.341 *** 2.81 0.164 ** 2.09
Logsum parameter of ATF (RP = SP) DT6 0.076 0.73 0.094 1.19
Management and admin worker (SP) DT1 −0.392 −0.88 1.248 * 1.95
Management and admin worker (SP) DT6 − − 2.177 ** 2.21
Self-employed worker (SP) DT1 −2.446 ** −2.43 − −
Part-time worker (SP) DT3 2.257 ** 2.55 − −
Couple with kids > and ≤ 14 (SP) DT1 −1.305 * −1.95 − −
Couple with kids ≤14 (SP) DT1 1.107 ** 2.09 − −
Personal income in 1000$ (RP) Car_DT1 0.026 * 1.91 − −
Personal income in 1000$ (RP) Car_DT2 −0.004 −0.58 − −
Personal income in 1000$ (RP) Car_DT3 0.018 1.06 − −
Number of household children (RP) Car_DT2 0.432 ** 2.02 − −
Number of household vehicles (SP = RP) Car − − 0.259 *** 3.38
Male (RP = SP) Car − − −0.310 *** −4.07
Age 45–54 (SP = SP) Car − − 0.771 *** 4.03
Age 55–64 (SP = RP) Car − − 0.261 * 1.72
RP data scale 1 fixed 1 fixed
SP data scale 1.360 *** 4.28 1.799 *** 9.99
Log-likelihood (pseudo-R2;#observations) −1186 (0.710;867) −5387(0.689; 3665)

Note: ⁎⁎⁎ Significant at 1% level; ⁎⁎5% level, ⁎10% level; − variables not included in models; ATF = Arrival time flexibility model.

C.Q. Ho, et al. Journal of Transport Geography 87 (2020) 102793

10



A specific issue arising in the pooling of RP-SP datasets relates to the
selection of parameter estimates to form utility functions. Specifically,
which parameters (RP or SP) are to be used for model application,
especially when dataset-specific parameters are used in estimation? A
common practice is to discard the RP parameters estimates and the SP
constant terms and use the remaining parameters to form composite
utility functions (Hensher et al., 2015). This practice is supported by the
model results, which suggest that SP parameters are more significant
and robust than RP parameters. Also, the SP parameters account for a
greater variation in the attribute levels than the RP data and are hence
of greater value in applications where we are making significant
changes in the levels of the attributes. The model constants (23 in total),
although estimated, are not shown in Table 6 as they are not in-
formative (the sample used for model development is not representative
of the population). These constants will be updated when the models
are calibrated to replicate the population shares in the base year.

Using the composite utility functions, we derive the willingness to
pay for various improvements to the levels of service. Table 7 gives
these estimates in 2014 dollars. Overall, these values appear to be
realistic and reflect what people are willing to pay for. For example, car
commuters (per person) are willing to pay $23 for an hour travel time
savings and they are willing to pay twice as much ($51.65) to reduce
one hour in the standard deviation of their commuting time (i.e., value
of travel time reliability or VTTR). The values are much lower for non-
commuting trips. When bus is crowded, bus commuters are willing to
pay $1.70 more to have 10 less people standing on the bus.

5. Placement of models in MetroScan

The proposed model for the joint choice of mode and departure time
represents a part of the MetroScan modelling system developed for
Sydney GMA. The model has been calibrated and applied in this mod-
elling framework to provide travel demand forecasts for a number of
transport infrastructure investments in Sydney. Fig. 5 shows an overall
structure of the MetroScan passenger travel and location choice model
system. MetroScan is an integrated package of choice models structured
in a certain way to reflect the interdependencies of travel decisions.

The modelling system is implemented sequentially at the household,
the individual and the network levels in a micro-simulation fashion
with numerous feedbacks and links between modules. As shown in
Fig. 5, the joint choice models of mode and departure time are applied
conditional on work and non-work location choice (see Ho and
Hensher, 2016 for details). On the one hand, the mode and time of day
choice model receives logsums from the ATF model. That is, the AFT
model is implemented first, using data from the synthetic households

(Ellison and Hensher, 2016) and its logsum is computed and fed into the
mode and departure time choice models. The logsums come out of these
models are then fed to the work and non-work location choice models
to simulate the destination of work and non-work trips (Ho and
Hensher, 2016). Once these models have been executed, their logsums
can be computed and fed to the residential location choice model (Ho
et al., 2017), together with the logums of other models including ve-
hicle fleet size choice, work practice (Hensher, 2008), and tenure and
dwelling type choice (Ho and Hensher, 2014). Passenger models in-
teract with light commercial vehicle and freight models through net-
work assignments which reflect the competition for road space amongst
these three segments.

6. Model application

This section describes an example application of MetroScan to assess
the impact of crowding level on the commuting trips whose destination
or origin are in the inner area of Sydney, including Botany Bay,
Leichhardt, Marrickville, Sydney Inner, Sydney East, Sydney South,
Sydney West and Randwick SLAs. To obtain patronage forecast under
various settings of crowding level of trains, we report in this paper the
MetroScan forecast of changes to the incoming and departing com-
muting trips in 2036.

To evaluate the impact of crowding level on train commutes, we
consider two scenarios of increasing the crowding levels for all trips to
Sydney Inner for six time periods by 5% and 10% respectively, and
compare the number of morning commute trips by train in 2036 (Fig. 6)
with that under the business as usual or do nothing scenario. The top
two maps in Fig. 6 demonstrate difference in the predicted incoming
morning commute trips by train between the do nothing and the two
scenarios. Similarly, the bottom two maps show the difference in the
predicted morning commute trips that depart from these 8 SLAs be-
tween the do nothing and the same two scenarios. It can be seen that an
increase in train crowding level results in a slight drop in train commute
trips to Sydney Inner in the morning, while the decrease of trips by train
departing from Sydney Inner is not so evident. It can be concluded that
the increasing crowding level can lead to change of transport mode of
people and thus decrease train trips.

7. Conclusions and discussion

This paper has examined practical approaches to modelling mode
and departure time choice in a large-scale regional travel demand
modelling framework. Three possible model structures for the joint
choice of mode and departure time were explored in the search for the
preferred structure, using the dataset recently collected in Sydney by
face-to-face interviews. By combining RP with SP data collected from
this survey, a rich set of variables was derived and used to explain the
interdependencies of mode choice and departure time choice. We found
that Sydney residents seem to make the two decisions simultaneously
with alternative relationships (e.g., the mode choice come first and
conditions the departure time choice or vice versa) being rejected by
the empirical data.

This finding is in sharp contrast to what has been found in the UK
and the Netherland in which empirical data suggest a nesting structure
with mode choice being placed above departure time choice (Hess
et al., 2007a; Hess et al., 2007b). While it is hard to find a conclusive
explanation for this difference, we suspect that differences in data
quality may play a role. The differences come from two sources. First,
we used SP tasks with an equal number of departure time options for
the chosen mode (the mode actually used in recent trips) and non-
chosen mode (alternative mode reported by the respondents) while all
previous studies used SP tasks with only one time option for the non-
chosen mode. In reality, there is no reason why travellers should not
have alternative departure times for the mode that is observed to not be
used for a recently undertaken trip. Second, a rich set of attributes

Table 7
Willingness to pay for improved levels of service ($2014).

Level of service Unit Commuting Non-commuting

In-vehicle time, car $/hour 23.13 5.93
Standard deviation of

time, car
$/hour 51.65 13.82

Egress time, car $/hour 63.75 16.86
In-vehicle time, PT $/hour 12.83 4.94
Access time, PT $/hour 19.87 7.80
Egress time, PT $/hour 23.89 5.49
Standard deviation time,

PT
$/hour 65.39 25.29

Transfer, train $/transfer 1.65 −0.01
Crowding on bus $/ one less person

standing
0.17 0.09

Crowding on train $/ one less person
standing

−0.03 0.02

Frequency of bus
services

$/ 1-min reduction
in headway

0.32 −0.07

Frequency of train
services

$/ 1-min reduction
in headway

0.22 0.00
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(including crowding, access/egress time for PT modes, parking avail-
ability and parking costs for car mode) were used to describe the al-
ternatives offered in our SP tasks, while previous studies typical for-
mulated trade-off between, on the one hand, temporal travel times and
travel costs, and on the other hand travellers' preferences for a certain
departure time. As a result, potential trade-offs such as facing a
crowded bus to have a less expensive journey or using a car and paying
a high cost of being stuck in traffic congestion, are left out and poten-
tially end up in the unobserved (random error) terms. As model struc-
tures are econometrically driven by the variances and correlations of
unobserved influences (i.e., error terms), it may be more likely to find
that such the SP task will provide data that require the use of a NL
model. By contrast, when all potential influences are included in the
observed component of the utility expression (and we have far more to
consider than most other studies), the error terms may indeed be in-
dependent and the MNL models may be found to be sufficient.

This paper has demonstrated a practical way to deal with the un-
availability of data on schedule delay and time flexibility for forecasting
applications. These are critical inputs into most of the departure time
choice models, but they are unlikely to be available at the same level of
temporal precision as that available in the sample from which model
parameters are derived. In this work, we used a set of constants asso-
ciated with the different mode and time period combinations to capture
temporal preferences of travellers for a particular travel mode. In ad-
dition, an arrival time flexibility model was developed to forecast how
much flexibility travellers have in terms of time they need to be at a
certain place. The predicted information is then fed into the mode and
time choice models for application. We have developed separate models

for commuting and non-commuting purposes and found that this ap-
proach works well in operational modelling.

Perhaps the most interesting and useful evidence for policy for-
mulation and economic appraisal of transport investment relates to the
average WTP for improving travel time reliability, both for road-based
and track-based modes. Reducing the variation in car travel time would
see average commuters willing to pay about $23.13 per hour, while an
hour saving in car travel time is valued at $12.83 by commuters. This
means that for car commuting, the reliability multiplier is 1.80 (=
23.13/12.83). For public transport commuters, the WTP to reduce the
variation in travel time is higher, at $65.39 per hour. Note that public
transport journeys in Sydney, particularly train, are typically longer
than car journeys (Ho and Mulley, 2013), and public transport travel
time are more reliable, with 95% of buses and trains in Sydney being on
time (Bureau of Transport Statistics, 2014). These facts may explain
why commuters are willing to pay more to improve travel time relia-
bility on PT than by car, while the reverse is true when it comes to
saving travel time for different modes (car users are willing to pay more
than PT users, i.e., $23.13/car-hour vs. $12.83/PT-hour).
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Appendix A. Sydney toll road network and charge in 2013

Motorway Distance Direction charged Light vehicles Heavy vehicles

Sydney Harbour Bridge 1.1 km Southbound Time of day tolling, max $4.00 Time of day tolling, max $4.00
Sydney Harbour Tunnel 2.7 km Southbound Time of day tolling, max $4.00 Time of day tolling, max $4.00

Fig. 6. Incoming and departure train trips forecast in 8 SLAs and the impact of crowding level.
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Eastern Distributor 5.4 km Northbound $6.00 $12.00
M5 East Freeway 9.4 km No toll Nil Nil
M5 South-West Motorway 21 km Each direction $4.40 $9.30
Westlink M7 Motorway 40 km Each direction 36.73 cents/km, Capped at $7.35 36.73 cents/km, Capped at $7.35
Hills M2 Motorway 20 km Each direction $4.95 $16.50

$6.05 (North Ryde) $18.15 (North Ryde)
$2.98 (Herring and Christie Ramps) $8.95 (Herring and Christie Ramps)
$3.15 (Pennant Hills Ramp) $9.45 (Pennant Hills Ramp)
$2.11 (Windsor Rd Ramp) $6.35 (Windsor Rd Ramp)
$2.76 $8.29

Lane Cove Tunnel 3.6 km Each direction $3.01 $6.02
Cross City Tunnel 2.1 km Each direction $4.91 (Main tunnel)

$2.32 (Sir John Young Cres)
$9.82 (Main tunnel)
$4.63 (Sir John Young Cres)

Military Road E-Ramp Each direction $1.50 $3.01
M4 Western Motorway 40 km No toll Nil Nil

Source: http://www.rta.nsw.gov.au/usingroads/motorwaysandtolling/tolling_tolling.html
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Appendix B. Train load in Sydney 2012

(a) AM (7 – 9) peak 
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