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a b s t r a c t

Industry 4.0 is the fourth industrial revolution. It is formed on the building blocks of Industrial Internet of
Things, real-time data collection and predictive analytics using big data analytics, artificial intelligence,
and cloud manufacturing. The complexity and value of Industry 4.0 is established by the existing
research studies. Some of the research studies have proposed the design elements and contribution of
Industry 4.0 to achieving sustainability objectives. This research delves deeper into this area to evolve a
new research challenge on contribution of Industry 4.0 to sustainability accounting and reporting.
Through a methodology of two focus group discussions and interviews, this research derived an
empirical formulation presenting a mapping between Industry 4.0 attributes and selected material topics
and their disclosures in Global Reporting Initiative framework. The empirical formulation divided the
Industry 4.0 framework in India into three levels of maturity each mapped with the appropriate triple
bottomline topics under the Global Reporting Initiative. This empirical formulation requires further
research to establish its validity as it appears to be not-to-optimistic representation by the members of
the two focus groups. The Interview respondents suggested cautious approach as AI-based predictive
analytics and automation may need a long maturity path. Soft aspects of reluctance to complexity and
new technology adoption may need continuous evolution of technical and other training programmes
with the maturity of Industry 4.0 for sustainability accounting and reporting in an organisation.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Sustainability accounting and reporting (SAR) is a framework for
defining sustainability variables based on the triple bottom line
model (TBLM), defining and implementing measurement tech-
niques, and reporting the actual status of the variables in the public
reports by a company (Bebbington and Larrinaga, 2014; DEFRA,
2013). The SAR framework is developed by Global Reporting Ini-
tiatives comprising of universal standards of disclosures and
management approaches of the TBLM variables. Reliable and valid
measurement approaches of TBLM variables have been a challenge
for industries (Burritt and Christ, 2016). Industry 4.0 provides a new
approach to this challenge as advancements in information and
communication technology and IP-enabled industrial cyber-
physical systems (Industrial Internet of Things) can form a value
chain under this framework facilitating real-time data sharing on
the variables under monitoring and controlling (Burritt and Christ,
2016; Kiel et al., 2017; Stock and Seligar, 2016). This level of system
wari).
facilitating real-time awareness was not possible using the legacy
technologies. This research is a study of SAR modelling under In-
dustry 4.0 and is an attempt to develop a reliable and valid model
showing the most significant Industry 4.0 variables influencing the
GRI principles facilitating SAR.

The business case for sustainability was proposed by Porter and
van der Linde (1995), and the Industry 4.0 was first conceptualised
by few industrial organisations in Germany (Burritt and Christ,
2016). SAR has been long criticised for the green wash effect
based on poorly conceptualised and prepared baselines for mea-
surements, unreliable measurements following manual or semi-
automatic processes affected by delays and errors, and manipula-
tion of results and analysis to hide the weaknesses in the corporate
environmental performance of an organisation. The GRI framework
has provided a new perspective to sustainability measurements
and is the most popular framework for sustainability reporting
worldwide (KPMG, 2015, 2017). However, there is a lack of empir-
ical evidence on effectiveness in measurements methods and sci-
entific methods followed in reporting of environmental
performances. Dahl (2012) had highlighted the problem of insuf-
ficient indicators of sustainability targets and their measurement
for meeting company-level sustainability goals and contribution to
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national and global sustainability goals. The indicators need to be
scientific (for example, the indicators measured over a time series
should clearly reflect a trend of improvements). Kwatra et al. (2020)
highlighted the need for bottoms-up approach emphasising that
national or global indicators are not sufficient to assess the sus-
tainability goals of an individual company. For example, technical
efficiency in low carbon production needs to be mapped with the
spatial zone directly influenced by a manufacturing plant (Li et al.,
2020). A spatio-temporal mapping of a zone for capturing in-
dicators of green performance of industries in the zone can reflect
the differences in their green performances.

KPMG (2015) published a three step formula for reliable and
valid carbon reporting: identification of the materiality and mea-
surements data clearly, reporting on steps taken and demonstra-
tion of reduction of carbon emissions and footprints, and
demonstration of how the steps taken have helped in achieving
climate protection goals of the company. Such a framework re-
quires comprehensive technology and process capabilities dedi-
cated to SAR. How can Industry 4.0 help? The Industrial Internet of
Things (IIoT) and big data analytics (BDA) are at the core of Industry
4.0 (Kiel et al., 2017). Currently, manufacturing organisations are
adopting the IIoT and big data systems for solving their gaps in
industrial process data collection and analysis. However, the core
and features of IIoT technology and architecture are not appropri-
ately positioned for SAR of triple bottom line variables in literature.

The research questions investigated in this research are the
following:

(a) What technology and architectural features of Industry 4.0
can enable reliable and valid measurements of SAR variables
in the triple bottom line model?

(b) How can industries implement these features in practice to
ensure reliable and valid measurements of SAR as per the GRI
framework?

The highlights of this research are the following:

(a) A detailed review of the key SAR variables under Global
Reporting Initiatives and other relevant literature;

(b) A detailed review of Industry 4.0 technology and architec-
tural features;

(c) Mapping of Industry 4.0 capabilities with SAR variables in a
multivariate model

(d) Collecting primary data from two Focus Groups working on
Industry 4.0 solutions in Delhi NCR region (details of Focus
Groups are in Section 5: Methodology);

(e) Conducting interviews with five manufacturing operations
heads in the city of Kanpur and Lucknow (details in Section
5: Methodology);

(f) Evolving an empirical model showing relationships between
the Industry 4.0 capabilities and the relevant triple bottom-
line topic areas of the Global Reporting Initiative;

(g) Critical analyses of the empirical model, their relevance, and
significance for theory and practice;

In the next two sections, a review of literature is presented for
building the two foundation pillars of knowledge essential for this
research:

(a) About Industry 4.0 framework and the roles of Industrial
Internet of Things (IIoT), Big Data Analytics (BDA), and Arti-
ficial Intelligence (AI) in it;

(b) The role of the Industry 4.0 in achieving sustainability.
2. Industry 4.0 framework and the roles of Industrial Internet
and Things, Big Data Analytics, and Artificial Intelligence in it

Industry 4.0 is conceptualised as the fourth industrial revolution
benefitting from digital innovations in industrial processes and
engineering applications, latest communication technologies,
service-orientation (servitisation) of knowledge-based integrated
and automated manufacturing systems, and evolving ways of
digitally offering products and services through new forms of
markets and exchanges (Roblek et al., 2016; Yao et al., 2017). This
concept is also called smart manufacturing, which is delivered by
integrating manufacturing systems through cloud computing
riding on integrated cloud-based manufacturing applications.
These applications are specialised production flows offered by
cloud manufacturing integrators allowing manufacturing com-
panies to plug-in their processes with the cloud workflows and
begin taking and processing production orders (Wang and Xu,
2013; Wu et al., 2013).

Adopting cloud-based services-oriented manufacturing is a new
innovation driven by the modern industrial market dynamics,
changing customers’ demand patterns, and the need for real-time
visibility into demands and supplies for building dynamic quick
response and agile capabilities (Cegielski et al., 2012; Oliveira et al.,
2014). Capability building in this direction requires significantly
large scales of data collection, storage, and analysis. This require-
ment created the roles of IIoT and BDA systems deployed on cloud
computing within the Industry 4.0 framework (Gabriel and Pessl,
2016; Kiel et al., 2017; Tao et al., 2014). The framework of cloud-
based manufacturing integration under Industry 4.0 allows large
manufacturers to open their job working assignments to smaller
manufacturers through cloud-based service-oriented
manufacturing integration (Cegielski et al., 2012; Oliveira et al.,
2014). This framework can also allow multiple small manufac-
turers to collaborate through a manufacturing applications inte-
grator to manufacture products flexibly as per the market demands
and quickly deliver them to the intended marketplaces.

As the Industry 4.0 framework rides on real-time flow of de-
mand and supplies data, manufacturers collaborating through the
cloud-based manufacturing integrators can deliver product and
services just-in-time following the demands pull strategy
(Cegielski et al., 2012; Oliveira et al., 2014; Wu et al., 2013). The
manufacturing applications can facilitate performance-oriented
design and allocation of costing per design component, process
planning and production sequencing, plugging in physical pro-
duction resources providers, identification and allocation of re-
sources, testing and quality assurance, and delivery of products to
the end customers bymatching with the demands (Wu et al., 2013).
Fig. 1 presents the framework:

The Industry 4.0 requires two separate sections to be integrated
within the manufacturing system: the traditional materials re-
quirements and enterprise resources planning software (MRERPS)
and the production planning and control of smart manufacturing
system (PPCSMS) powered by cyber-physical (IIoT) system
deployed at the machine controls and data collection, optimisation
and control systems supported by big data (Trstenjak and Cosic,
2017). The process variables’ sensors and robotics controlling the
manufacturing machines are made of different varieties of IIoTs
deployed as separate clusters (Wang et al., 2016). Numerous ro-
botics task allocation algorithms have evolved under the Industry
4.0 framework following a hybrid of centralised and distributed
resource allocation and sensing/control mechanisms. The cloud-
based data centres host the programming and control logic inte-
grated with PPCSMS software system. The data flow mechanism
from the IIoT sensors follow a flow of scheduling, buffering,
filtering, and logging/querying. The PPCSMS calculates multiple



Fig. 1. Cloud-based integrated manufacturing in Industry 4.0 (Redrawn figure based on Wu et al., 2013: 566).

K. Tiwari, M.S. Khan / Journal of Cleaner Production 258 (2020) 120783 3
combinations of resources and their scheduling and selects the
most cost-optimised one for the MRERPS system to handle.

The IIoT sensors and actuators are deployed in three layers:
sensors, middleware, and actuators (Abdmeziem et al., 2016).
Sensors are deployed inmassive-scale farmswith the central role of
data collection, harvesting, and communication to big data servers
(ITU-T, 2012; ITU-T, 2017). Sensors provide vital information from
the running processes needed for decision-making on actuation of
robotic controls. Many IIoTs possess both sensing and actuation
capabilities. Sensors are small autonomous devices with multilay-
ered architecture as per the IoT reference model for collecting data
and storing in the solid state memory within their microchips (ITU-
T, 2012). Sensors are interconnected via wireless sensor networks
(WSNs) for multiple industrial purposes (like, keeping multiple
backups of the real time data) (ITU-T, 2017). They provide their
stored data to the central big data servers whenever request are
made by the centralised PPCSMS (ITU-T, 2017; ITU-T, 2018). How-
ever, actuation is not autonomous. It is tightly controlled through
highly secured signalling protocols and communication channels. A
middleware is an integral component of the PPCSMS that interfaces
a large cluster of sensors with the big data servers (Abdmeziem
et al., 2016). It serves as an intermediate buffering station before
data is finally committed into the big data tables. It also has security
controls to identify compromised sensors and take corrective
actions.

Actuation is a complex robotics process for fulfilling the physical
roles of the cyber-physical IIoTs (Abdmeziem et al., 2016). Actuation
commands are programmable and are linked with a carefully
crafted subroutine of resource allocation and activation within a
manufacturing process chain. The key design considerations for
deploying the IIoTs for the PPCSMS are: protocol support, battery
life and energy efficiency, allocation of IIoT to manufacturing re-
sources (actual field robots), identification and authorisation of the
IIoTs, IPv6 addressing, quality of service, data storage, security and
privacy, and communication systems (Aazam et al., 2016). The BDA
is deployed inside the core of the PPCSMS. It is integrated with the
MRERPS at the database level (Khan et al., 2016; Lee et al., 2014).
Fig. 2 presents a schematic of BDA in the Industry 4.0 PPCSMS
framework:

BDA systemwith artificial intelligence (AI) can command cyber-
physical IIoT systems controlling multiple fleets of machines and
facilitates remote operator tomachine interactions atmass scales. It
helps in smart analytics, like machine health awareness, and
optimal decision support for automated and self-controlled main-
tenance of machines. The big data servers maintains multiple in-
formation items collected from the IIoTs, like data for monitoring
machine conditions, parameters controlled by the robotics, ma-
chine performance measurements data, model and make infor-
mation, machines’ components’ configurations, and data on tasks
executed and utilisation of resources. Artificial intelligence (AI), as
an Industry 4.0 layer over BDA, is related to autonomous decision-
making by machine learning algorithms designed to control robots
and machines (Dopico et al., 2016).

Standardised machine communication languages and BDA sys-
tems have made AI more robust and accurate (Dopico et al., 2016).
Using the power of BDA, AI can now simulate the whole life cycle of
manufacturing of a product providing a three dimensional view on
how a digital factory can work. AI adds the capability of
intelligence-assisted manufacturing and process execution using
the evolving features of robotics and machine tools controllable
through entire algorithmic cycles of mathematical expressions
invoking numerous activations based on data streams (Li et al.,
2017). This capability reduces the role of operators in controlling
robots through individual commands issued through their manual
decision-making (Romero et al., 2016). Modern communication
systems and cloud computing play a significant role in digital
transformation of AI-controlled robotics.

With AI support, robots have become more collaborative,
cognitively and ergonomically aware, conscious and knowledge-
driven within their augmented reality environment, adaptive to
environmental changes, and adaptive to multiple complex control
strategies (Avishay et al., 2019; Romero et al., 2016; Yao et al., 2017).
The human operators need not guide and control the robots at
every step of their operations. They can now play the role of an
analytical operator powered by BDA and multiple decision options
provided by AI actively collaborating with robots using them as
smart cyber-physical assistants. This capability of Industry 4.0 may
be viewed as the next giant step of innovation beyond computer-
aided designs (CAD), computer-aided engineering (CAE), and
computer-aided manufacturing (CAM). Traditional industrial



Fig. 2. Big data Analytics system in the Industry 4.0 framework (Khan et al., 2016: 2).
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communication protocols had limited the networking capabilities
between control systems and robots. Industry 4.0 on IPv6 has
broken this barrier making the control systems smarter.
3. Industry 4.0 for sustainability

Sustainability is a highly complex subject dealing with
numerous variables under the scope of the TBLM objectives (Golini
et al., 2014). Managing sustainability goals, especially related to
environmental protection, is a competitive priority as there is a
strong emphasis on integrating environmental protection tech-
nologies into manufacturing systems and technologies (Jabbour
et al., 2012). Manufacturing organisations have recognised the
value of TBLM objectives for their business in the longer-term, and
are investing in technologies and standards for achieving those
(Jabbour et al., 2012; Golini et al., 2014). However, the effectiveness
of TBLM in a manufacturing network can be achieved only when
each site in the network is prepared as per the established stan-
dards at the network level (Golini et al., 2014). Standalone sites can
lack capabilities in meeting TBLM. Further, manufacturing organi-
sations may implement environmental practices as a preventive
measure with focus on eco-efficiency, which may limit its potential
competitive priority in spite of positive influence on quality, cost,
delivery, and flexibility (four fundamental manufacturing prior-
ities) (Jabbour et al., 2012). A systemic approach towards inte-
grating green supply chain and environmental management
practices with the quality management practices shall enable
enhancement of green performance of manufacturing organisa-
tions (de Sousa Jabbour et al., 2014). A good opportunity in this
context is to implement ISO 14001 standard and its controls.

These crucial findings by Golini et al. (2014), Jabbour et al.
(2012), and de Sousa Jabbour et al. (2014) link the Industry 4.0 to
TBLM as networked manufacturing and achievement of funda-
mental manufacturing priorities (systemic improvements, quality,
cost, delivery, and flexibility) are key components of its funda-
mental design. The traditional manufacturing models lacked de-
livery effectiveness and flexibility for dynamic systemic
improvements (Golini et al., 2014). The traditional Peripheral, On-
ion, and Complex Control System (CCS) models of manufacturing
plants treated a manufacturing facility as a standalone system
(Golini et al., 2014; Herrmann et al., 2014). A standalone
manufacturing plant takes energy inputs (electricity, gas, oil) to
drive production machines and their technical building services
that transform raw materials into finished goods (Herrmann et al.,
2014). Such complex systems generate lots of heat, wastes, ex-
hausts, emissions, and provide highly difficult working environ-
ments for the workers. For decades, such manufacturing plants
have flourished across the world in thousands. They are unsus-
tainable by design. It is very difficult to develop capabilities in them
in their traditional model designs for achieving TBLM objectives
unless the model itself is changed.

The future model of manufacturing plants is the Manufacturing
Ecosystem Model (MEM) in which, plants are integrated in a
network that can facilitate flows-based processes for governing
production, energy, resources, and people skills based on a sym-
biosis driven by cyber-physical systems and modern information
and communication technologies (Alcacer and Cruz-Machado,
2019; Golini et al., 2014; Herrmann et al., 2014). In this model,
plants do not work at their maximum efficiencies (fully stressed
utilisation of capacities) (Herrmann et al., 2014). Instead they work
at optimal efficiencies. The focus is on maximising collaborative
outcomes of multiple plants to meet the demands instead of
pushing an individual manufacturing plant to produce the
maximum that it can achieve to pushmass products in the markets.
This model can be achieved effectively following the Industry 4.0
design (Alcacer and Cruz-Machado, 2019). TBLM objectives are
natural outcomes in this model as the per-plant consumption of
energy and natural resources reduces significantly, and the stress
on workers reduces.

The Industry 4.0 design requires transformation in multiple
features of a manufacturing plant, like modularity in design, scal-
ability, compatibility, mobility, and universality (Alcacer and Cruz-
Machado, 2019; Herrmann et al., 2014). For example, small plant
locations in the proximity of end customers are preferred over large
and remote manufacturing plants (distributed manufacturing)
(Rauch et al., 2015). Plants with modularity capable of mass cus-
tomisation are preferred over in-flexible and non-modular as-
sembly lines capable of mass manufacturing (Shim et al., 2017). The
workstations (machineries) are deployed in such a way that they
can handle multiple product designs, can follow complex heuristic
rules of production scheduling, can auto-adjust to varying lot sizes
(workloads) and bottlenecks, and can process a combination of
multiple despatching rules (like, first in first out, modified due date
rules, minimum setup rules, and slacking rules) (Shim et al., 2017).

As researched by de Sousa Jabbour et al. (2018), the Industry 4.0
design effectively supports the ReSOLVE (Regenerate, Share,



K. Tiwari, M.S. Khan / Journal of Cleaner Production 258 (2020) 120783 5
Optimise, Loop, Virtualise, and Exchange) model of a sustainability-
friendly economy, popularly known as the Circular Economy. de
Sousa Jabbour et al. (2018) presented a five-step approach to
achieving the ReSOLVE model of a circular economy following a
framework of sustainable operations management using suitably
selected Industry 4.0 technologies and cooperation among supply
chain agencies in achieving clearly defined performance indicators
and achievable targets. Two aspects of Industry 4.0 design are
critical for achieving a circular economy e value creation and its
capturing through technologies, processes, practices, performance
measurements, and continuous improvements (de Sousa Jabbour
et al., 2018; Nascimento et al., 2019). The regeneration of energy
resources and shared manufacturing activities among multiple fa-
cilities for optimising per-plant energy consumption can be ach-
ieved through the multi-plant flows-based processes and careful
measurements and monitoring in Industry 4.0 design (Alcacer and
Cruz-Machado, 2019; Herrmann et al., 2014; de Sousa Jabbour et al.,
2018).

The looping attribute of the ReSOLVE model requires infra-
structure for recycling and reuse of the products reaching the end
of life cycle (de Sousa Jabbour et al., 2018; Nascimento et al., 2019).
The looping process involves careful storage and sorting of reusable
materials, treating them for reusability preparations, and then
feeding them into a system of remanufacturing (Nascimento et al.,
2019). Virtualisation and exchange requires virtual integration of
flow-based manufacturing processes spanning across multiple
plants located globally (Herrmann et al., 2014). In the research by
Rosa et al. (2019), the Industrial Internet of Things and Additive
Manufacturing are highlighted as the most useful technologies for
circular economy under the Industry 4.0 framework. IIoT can sense
the TBLM variables and provide the data needed by big data sys-
tems and artificial intelligence to assess the key problem areas for
improvements (Rosa et al., 2019). Cyber Physical Systems (CPS)
with attached IIoTs can help in multiple enhancements in the
product life cycle management for reducing wastes and also for
making products recyclable. Further, additive manufacturing can
contribute to circular economy by reducing wastes significantly
because it does not leaves residues of unused raw materials.

Industry 4.0 system performance is centred at effectiveness of
each process and all the equipment (control systems, robotics,
machinery, and processors) that play their roles in it (Alcacer and
Cruz-Machado, 2019; Yazdi et al., 2018). Reduced rejections and
wastage leading to high production efficiency is one of the core
objectives of Industry 4.0. The factors influencing effectiveness are
performance (total cycles executed/total runtime), quality
(accepted goods/total goods), and availability (total runtime/plan-
ned production runtime) (Yazdi et al., 2018). These factors can be
maximised by conducting a time-series analysis of machine-
generated data about what is happening in each component
(such as, control system, robot, machine, and processor) in a pro-
cess cycle (Sivri and Oztaysi, 2018; Zhong et al., 2017). Maximising
these factors can help in achieving multiple TBLM objectives
because the overall intensity of many variables (like, energy con-
sumption, natural resources consumption, wastage, stress on
workers, emissions, and heat generation) will reduce as a result of
squeezed timelines (Yazdi et al., 2018). Enhanced production
effectiveness is directly proportional to enhanced sustainability.

Industry 4.0 model is designed to achieve all of these for tar-
geted demand fulfilment (Kiel et al., 2017; Yazdi et al., 2018), and
the culture of lean manufacturing acts as a moderator (Iranmanesh
et al., 2019; Resta et al., 2016). The IIoTs provide time-series data
about process performance attributes in real-time to BDA, which
uses AI to determine and fine tune factor variables determining
production effectiveness (Kiel et al., 2017; Ren et al., 2019). The
maintenance reports and daily operating performances of each
component, such as controller, machine, and robot are monitored
remotely by collecting real-time relevant data from the IIoT sensors
(Sivri and Oztaysi, 2018; Zhong et al., 2017). The next maintenance
cycle or urgent repairs of a component is determined dynamically
based on its running and past performances relative to other
similar components. The AI decision-making engine analyses
massive big data repositories and determines the minimum
required performance scoring for each component based on the
targeted demands and their deadlines (Kiel et al., 2017; Ren et al.,
2019). The entire system is fully dynamic as the AI drives the trig-
gers for repairs, maintenance, and replacements. All fixed human-
configured triggers and schedules are replaced by AI-controlled
big-data-driven dynamic triggers and schedules in Industry 4.0.

The Industry 4.0 technological change is a revolution, which can
influence the key principles of the environmentally-sustainable
manufacturing processes through its core feature-based techno-
logical capabilities deployed in globally connected virtual
manufacturing plants through cloud manufacturing (de Sousa
Jabbour et al., 2018a; Lu et al., 2019; Perez-Lara et al., 2018).
Design for environment, cleaner production, green supply chain
management, sustainable procurement, and circular economy
variables under the ReSOLVE model are the key principles of
environmentally-sustainable manufacturing processes. The cyber-
physical systems, big data analytics, cloud manufacturing, addi-
tive manufacturing, and artificial intelligence systems in Industry
4.0 framework enable the real-time visualisation and actuation
capabilities, which in turn enable automated operations-level de-
cision-making capability, automated fault finding and corrections
and prevention capability, optimisation of tasks and maintenance
capability, automatic prioritisation capability, and many such new
capabilities over the Industry 3.0 framework. As the cyber-space
addressing and connectivity is extended to physical equipment,
machinery, and robotics, manufacturing facilities across the world
can be part of a network allowing flow-based networked execution
of manufacturing processes. The key principles of environmentally-
sustainable manufacturing processes can be built as quality targets
to achieve multiple TBLM objectives automatically.

A crucial yet overlooked capability needed for sustainability
under the TBLM framework is about integrating human skills with
technology. The TBLM training, technical training related to TBLM,
customers’ involvement in TBLM initiatives in an organisation,
developing green content based on established standards (notably,
ISO 14001), and inducting sustainable practices in the skills and
practices of suppliers are key influencers of effectiveness of
meeting TBLM objectives in organisational operations (Jabbour
et al., 2013; Jabbour et al., 2015; Kannan et al., 2014; Teixeira
et al., 2012; Teixeira et al., 2016). HR practices relevant to TBLM
and lean manufacturing practices are joint influencers in the same
model achieving goodness of fitment in the research by Jabbour
et al. (2013). In a later study, it was shown that technology prac-
tices relate statistically significantly with market, environment,
operational performance for sustainable production but lacks
relationship with human resources and organisational perfor-
mance (Jabbour et al., 2015). Perhaps, the gap is in the lack of
adequate TBLM training practices. This gap is highlighted in the
research by Teixeira et al. (2012) and Teixeira et al. (2016) identi-
fying misalignment between TBLM training and the required con-
tent as a significant cause. As specifically highlighted by Teixeira
et al. (2012), there should be co-evolution between the training
content and organisational TBLM practices. This means that the
training should become deeper and involved to align accurately as
per the needs for meeting TBLM objectives in the organisation.
These findings are expected to apply in effectiveness of Industry 4.0
in meeting TBLM objectives. Keeping in mind about technical as-
pects of Industry 4.0, the sophistication in training content is
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expected to be much higher. This reveals that training employees
on Industry 4.0 systems for TBLM practices will be a much bigger
challenge in the future.

The next section presents details of the methodology followed
in this research.
4. Methodology

Currently, there is little empirical evidence on contribution of
Industry 4.0 framework to SAR. This research is viewed as one of
the earliest efforts in building this new field of empirical knowl-
edge. Hence, an exploratory qualitative method was preferred to
collect primary data in this research diving deeply into the expe-
riences of industrial experts in “Production Engineering through
Networked Controllers” and “Information and Communications
Technology for Production Engineering” fields. The components of
Industry 4.0 are being implemented in the Delhi NCR industrial
regions in North India. In the quest for reliable and valid industrial
evidences on the subject of interest in this study, a focus group
discussion and analysis approach was followed in this research
(Nyumba et al., 2018). Focus group is recognised as one of the ap-
proaches in qualitative methodology targeted to build collective
consensus on a focussed subject through collaborative narratives of
the individuals having in-depth experience in that subject (Flick,
2010). It can be achieved through focus group interviewing (Yin,
2011) and focus group open discussion and analysis in the form
of a debate (Barry et al., 2009; Kitzinger,1995). This research did not
rely only on the focus group albeit followed a multi-method
approach for deriving more effective scientific outcomes (Mura
et al., 2020).

Conducting a focus group discussion and analysis in the form of
a debate requires expert moderation skills. The participants should
be kept focussed on the subject matter, should be motivated to
reveal deep facts, and everyone in the group should get a fair
chance to contribute (Barry et al., 2009; Flick, 2010). Given the
university teaching experience of the author, hewas able to use this
method effectively treating it as a classroom debate on a highly
complex and sophisticated subject matter. The sampled group
should have both homogeneity and heterogeneity characteristics
(Kitzinger, 1995). For example, the group members should have
experienced a common phenomenon in different work
environments.

A good focus group design should have 8 to 12 members, ses-
sions of not more than 2 h, multiple sessions till a consensus is
reached, very carefully selected group members, and defined pro-
tocols for discussion, data collection, data analysis, consensus
building, and moderation (Grudens-Schuck et al., 2004). In this
research, two focus groups were formed as summarised in Tables 1
and 2:

The Focus Group Awas formed of employees of three large-scale
global companies that have collaborated to offer Industry 4.0
Table 1
Focus Group A e information and communications technology for production engineeri

S.
No.

Age Current role Organisational Profile

1 32 Systems Architect One of the largest networking man
2 35 Systems Architect Same as above
3 33 Systems Architect Same as above
4 34 Product Specialist Same as above
5 33 Account Manager Same as above
6 39 Solutions specialist One of the largest ICT manufacture
7 37 Client Manager e Smart Manufacturing

Solutions
A joint venture of one of the larges
software automation company
solutions in India. These companies have a long presence in India.
The second focus group was formed by some of their prominent
clients in the Uttar Pradesh side of Delhi NCR region (comprises five
heavily industrialised districts: Noida, Greater Noida, Ghaziabad,
Meerut, and Gajraula). The researcher approached the members of
the first focus group through a senior representative of one of the
companies that he had met in the proceedings of a conference. On
learning about his research interest and his design of focus group
discussion, the senior representative invited him to conduct the
two focus groups using one of the conference rooms in his Noida
office. He also helped in recruiting themembers for the two groups.
The Focus Group A was interested in exploring how the existing
Industry 4.0 solutions can contribute to SAR and the Focus Group B
was interested in the existing Industry 4.0 solutions offered by
global vendors in India could be applied for effective and credible
SAR. Their interests in the outcomes of this research were purely
academic for enhancing their knowledge about influence of In-
dustry 4.0 solutions on SAR capabilities.

Both the focus group discussions were conducted separately.
The respondents were requested to conduct an active brain-
storming to write down definitive facts on flip-charts pertaining to
the two research questions of this research (Section 2) presented to
them. The definitive facts were related in the form of an empirical
structural construct, which was discussed critically pertaining to
their relevance, and practical application in the industries studied
in this research.

The results of the focus group discussion were used as founda-
tion knowledge to conduct interviews with the individuals in the
head of production and similar roles reflecting seasoned operations
experience. Five such individuals agreed for interviews. To test the
outcomes of the focus group discussion through independent
perspectives, this time the respondents were chosen from the
manufacturers in the cities of Kanpur and Lucknow (both these
cities are about 500 km away from the Delhi NCR region). Out of the
five respondents, four were heading operations in Kanpur-based
industries and one was heading operations in a Lucknow-based
industry. Kanpur is a heavily industrialised city. Lucknow is not as
heavily industrialised but has the benefit of hosting multiple head
offices of industrial plants located in Kanpur and other cities. The
researchers could meet their respondents in Lucknow itself.

Each respondent was asked the same two questions as discussed
in the focus group discussion:

(a) How the existing Industry 4.0 solutions (in-general) can
contribute to SAR?

(b) What existing Industry 4.0 solutions offered by global ven-
dors in India could be applied for effective and credible SAR?

The next section presents the results of both the methods fol-
lowed in this research.
ng.

ufacturer and software solutions global company

r and industry automation solutions global company
t process engineering manufacturers of the world and a prominent industrial



Table 2
Focus Group B e production engineering through networked controllers.

S.
No.

Age Current role Organisational Profile

1 37 Production control Local Manufacturing Plant of a medium-scale pan India manufacturing company producing specialised chemicals; operating
Industry 4.0 model for slightly more than one year;

2 35 Production management Local Manufacturing Plant of a large-scale global manufacturing company working on global specialised production contracts;
operating Industry 4.0 model for more than four years;

3 42 Production management Same as above
4 41 Production management Same as above
5 40 Production management Same as above
6 44 Supply chain management Same as above
7 39 Managing Director and one of

the Owners
Two manufacturing plants of precision glass cutting and fitting; running a ICT vendor-managed pilot on Industry 4.0 for more
than six months

8 40 Director and one of the Owners Onemanufacturing plant of electrical fittings; running a pilot on Industry 4.0 for more than six months and now planning for its
full-scale rollout

K. Tiwari, M.S. Khan / Journal of Cleaner Production 258 (2020) 120783 7
5. Industry 4.0 for sustainability accounting and reporting
(SAR) e A primary analysis

In this section, the results of the two Focus Group discussions
and a primary analysis of the influence of Industry 4.0 on SAR
following the GRI framework are presented. Before delving deep
into the attributes of Industry 4.0 influencing SAR, a brainstorming
session was held by both the focus groups for highlighting the key
material topics in the GRI framework that are expected to be
influenced by Industry 4.0. After multiple rounds and rejecting the
choices based on collaborative debate, the finalised version after
combining the outcomes of the two focus groups are presented in
Fig. 3. The choices (underlined) were common in both the focus
groups. The primary analysis is focussed on these material topics
only.

Three key industrial solutions were discussed by both the focus
groups: A global IT and networking MNC’s Industry 4.0 communi-
cation systems, a leading factory automation equipment
manufacturing MNC’s Smart Manufacturing, and a global IT MNC’s
Industry 4.0 and Cognitive Manufacturing. These industrial solu-
tions are combined by the focus groups as they are synergised for
Indian markets. These solutions were used by the focus groups as
baselines for their debating because the participants were familiar
Fig. 3. SAR areas in the GRI framework expected to be affected by Industry 4.0 f
with them. The purpose of this research is not to position them
albeit is to use them for creating a list of key Industry 4.0 attributes
and analysing their possible influences on SAR of the material
topics identified (underlined) in Fig. 3.

Using the flip charts method mentioned in Section 5, the attri-
butes of these industry solutions were listed and their influences on
SAR of one or more material topics in the GRI framework were
debated. As the author was the moderator of both the focus groups,
he could standardise the names of attributes and their encodings.
The final outcome was two constructs in which, the influences of
the attributes were shown on the material topics highlighted in
Fig. 3. The two constructs were produced by the two focus groups.
Given that this research is interested in the construct coming out
from a final consensus between the two groups, only those attri-
butes of the industry solutions debated and their influences on GRI
material topics were retained that were common in the outcomes
of the two focus groups. The finalised construct showing the In-
dustry 4.0 mapping with GRI material topics and GRI disclosures is
presented in Table 3:

To understand how the two focus groups arrived at Table 3, their
pattern of analysis is presented in Fig. 4. The focus groups analysed
the GRI standards in the context of the level of investments pro-
posed by the vendors over a longitudinal plan. Initial investments
ramework e an outcome of the two Focus Group Discussions and Analysis.



Table 3
Mapping of the Industry 4.0 attributes with the GRI material topics with reasons, as reflected in the finalised construct.

S.
No.

Industry 4.0 Attribute Mapping with GRI Material
Topics

GRI Disclosures under the Material Topic

1 Digital Signature of each component and
material

GRI 301: Materials Disclosure 301-1 Materials used by weight or volume
Disclosure 301-2 Recycled input materials used
Disclosure 301-3 Reclaimed products and their packaging materials

2 Multi-functional IIoT Sensors on each
component and material packaging

GRI 301: Materials Same as Serial No. 1

3 Cognition (smartness; self-awareness and
self diagnosis) of each component

GRI 301: Materials
GRI 302: Energy
GRI 303: Water
GRI 305: Emissions
GRI 306: Effluents and Waste

Disclosure 302-1 Energy consumption within the organisation: data collected from sensors
Disclosure 302-2 Energy consumption outside of the organisation: data collected from
sensors
Disclosure 302-3 Energy intensity: data collected from sensors
Disclosure 302-4 Reduction of energy consumption: data collected from sensors
Disclosure 302-5 Reductions in energy requirements of products and services: data
collected from sensors and some tests conducted
Disclosure 303-1 Water withdrawal by source: data collected from sensors
Disclosure 303-2 Water sources significantly affected by withdrawal of water: data
collected from sensors
Disclosure 303-3 Water recycled and reused: data collected from sensors
Disclosures 305-1 to 305-7 All forms of emission disclosures identified by GRI: data
collected from sensors
Disclosure 306-1 Water discharge by quality and destination: data collected from sensors
and some tests conducted
Disclosure 306-2 Waste by type and disposal method: data collected from sensors
Disclosure 306-3 Significant spills: data collected from sensors
Disclosure 306-4 Transport of hazardous waste: data collected from sensors
Disclosure 306-5 Water bodies affected by water discharges and/or runoff: data collected
from sensors

4 Machine-to-machine Communication
through Internet

Same as Serial No. 3 Same as Serial No. 3: All sensory and testing data can be communicated freely through the
Internet

5 Real-time data collection from sensors Same as Serial No. 3 Same as Serial No. 3: the cognition data from each component and material package can be
collected in real time from sensors

6 Predictive analytics Same as Serial No. 3 Same as Serial No. 3: Predictive analytics shall help in time-series forecasting on all the
variables collected through sensors and test reports

7 Common communication language and
protocols

Same as Serial No. 3 Same as Serial No. 3: Every sensory data can be communicated and stored through common
language and protocols

8 Prescribed corrective and preventive
actions for best performance

Same as Serial No. 3 Same as Serial No. 3: Predictive analytics shall help in taking strategic and operations-level
actions to continuously improve GRI performance

9 Dynamic scheduling through flexible
machining

Same as Serial No. 3 þ
GRI 402: Labor/Management
Relations
GRI 404: Training and
Education

Same as Serial No. 3 þ
Disclosure 404-1 Average hours of training per year per employee
Disclosure 404-2 Programs for upgrading employee skills and transition assistance
programs
Disclosure 404-3 Percentage of employees receiving regular performance and career
development reviews
Intensive programs shall be needed to migrate the employee skills to the new automated
systems and processes of Industry 4.0; thereafter, training and education will also become
an automated process given the significant visibility into the running components and
processes;

10 Dynamic production engineering
processes

Same as Serial No. 9 þ
GRI 204: Procurement
Practices

Same as Serial No. 9 þ
Disclosure 204-1 Proportion of spending on local suppliers
Continuous replenishment shall become an automated capability, which will also reflect
breakup of suppliers receiving replenishment orders.

11 Individualisation through customer-
specified production specifications

Same as Serial No. 10 Same as Serial No. 10

12 Continuous control systems and
engineering

Same as Serial No. 10 Same as Serial No. 10

13 Dynamic and continuous scheduling Same as Serial No. 10 Same as Serial No. 10
14 Autonomous dynamic and flexible

automation
Same as Serial No. 10 Same as Serial No. 10

15 End-to-end global integration and
visibility of operating clusters of
components

Same as Serial No. 10 Same as Serial No. 10

16 Automated robotic loops of sensing and
actuation

Same as Serial No. 10 Same as Serial No. 10

17 Model-driven production engineering Same as Serial No. 10 Same as Serial No. 10
18 Continuous data collection and storing in

cloud big databases
Same as Serial No. 10 Same as Serial No. 10

19 Real-time dashboards showing real-time
production insights

Same as Serial No. 10 þ GRI
201Economic Performance
þ
GRI 203 Indirect Economic
Impacts

Same as Serial No. 10 þ
Disclosure 201-1 Direct economic value generated and distributed
Disclosure 201-2 Financial implications and other risks and opportunities due to climate
change
Disclosure 203-1 Infrastructure investments and services supported
Disclosure 203-2 Significant indirect economic impacts
Real-time production insights shall provide in-depth analytics on economic performance of
the components and processes running on them, which will not only justify efficiency of
operations albeit, will also justify efficiency of sustainable value generation. At a larger
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Table 3 (continued )

S.
No.

Industry 4.0 Attribute Mapping with GRI Material
Topics

GRI Disclosures under the Material Topic

scale, integration of global plants and distributing production processes across global units
can reduce global carbon footprints and emissions caused by a large-scale globally spread
manufacturing company.

20 Cloud-based integrated global operations Same as Serial No. 19 Same as Serial No. 19
21 Continuous health monitoring of each

component
Same as Serial No. 19 Same as Serial No. 19

22 Predictive forecasting of repairs,
maintenance, and replacements

Same as Serial No. 19 Same as Serial No. 19

23 Virtual Engineering with Machine
Learning

Same as Serial No. 19 Same as Serial No. 19

Fig. 4. Simplified attributes of cloud-based Industry 4.0 framework e an outcome of the two Focus Group Discussions and Analysis.
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require setting up new IIoT sensors or modifying the existing pro-
grammable logic controllers (PLC) infrastructures to IPv6 based
sensing technologies and integrating them (through SCADA or
DCS), deploying systems for protocol conversions and real-time
data collection, deploying big databases, and deploying applica-
tions for real-time health monitoring, real-time machine engi-
neering, and dynamic production and scheduling. The Focus Group
B concluded that this system is sufficient to collect and view the
data needed for reporting the selectedmaterial topics and their GRI
disclosures under “GRI 300: Environmental Topics”. Although,
Focus Group A proposed better analytical abilities for reporting the
environmental material topics GRI 301 and GRI 306 (Fig. 3), overall
both focus groups agreed that investments up to real-time moni-
toring capabilities can improve GRI 300 reporting significantly. For
example, equipment with longer runtimes causing longer cycle
times of emissions and other environmental hazards, and needing
operations fine-tuning, maintenance, or parts replacements can be
easily identified.

The next level of investments is required in predictive analytics
and forecasting, which involves multiple sub-modules, such as
predictive health monitoring, predictive forecasting for repairs and
maintenance, and predictive machine engineering, production,
procurement, and scheduling. This level will involve multiple
industry-standard data engineering applications but may or may
not involve artificial intelligence (depends upon architecturesmade
by different vendors).

At this level, improvements can be made at much larger scales
extending numerous benefits to workers. They shall be exposed to
significantly lower stress and danger times because the maximised
production strategy can be migrated to optimised production
strategy without losing on outputs. Both the focus groups agreed
that this level of investments can potentially develop capabilities
for collecting and reporting the data needed for the selected ma-
terial topics and their GRI disclosures under “GRI 300: Environ-
mental Topics” as well as “GRI 400: Social Topics”. Large scale
enhancements in production systems can improve the working
lives of employees exposed to difficult work routines. The man-
agement e labour relationships (GRI 402) can improve by imple-
menting organised and predictive processes for identifying
potential threats and equipment predicted to be causing excessive
stress thus reducing risks to health and safety of workers (GRI 403)
and reducing security threats (GRI 410). Industry 4.0 will require
new training and skill-building under the new automated opera-
tions environment (GRI 404). There may be some time needed for
settling down in the new automated framework.

The two focus groups proposed that in absence of cloud-based
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integration and analytics conducted by artificial intelligence, the
“GRI 200: Economic Topics” are difficult to report. Although, Focus
Group B felt that GRI 204 (procurement practices) can be improved
with predictive analytics as the requirement is merely to report on
opportunities given to local suppliers, Focus Group A argued that an
honest reporting of the larger economic benefits extended to so-
ciety will require longitudinal training of machine learning algo-
rithms. Data collected without cloud computing integration will be
insufficient to gain such insight. Both the focus groups argued that
getting an overall insight into direct and indirect economic impacts
will require longitudinal analytics using data integrated through
cloud computing and longitudinal training of machine learning.

The next step followed in this researchwas an interview process
involving five respondents as discussed in Section 4. The two
questions as stated in Section 4 were presented to them along with
the results of the focus group discussions. The respondents pro-
vided explanatory responses, which were converted into definitive
facts at the end of the individual interviews by involving each
respondent and achieving their agreements. The duplicate defini-
tive facts were merged and the final outcomes were as presented
below:

(a) Industry 4.0 solutions in-general and the specific offers made
by multinational companies in India may be more effective
for environmental measurements and reporting (GRI 300).

(b) The aforesaid solutions may be useful for economic mea-
surements and reporting (GRI 200) if contextual analysis and
clear benefits relevant to the company can be conducted
objectively.

(c) The solutions may not be effective for social measurements
and reporting (GRI 400) in their current form because almost
all the GRI topics under GRI 400 requires predictive moni-
toring and involvement of AI-based decision making.

(d) Involvement of AI is essential for meeting the objectives of
economic (GRI 200) and social (GRI 400) topics.

(e) The foundation level of solutions comprising of cyber-
physical systems and Internet of Things may be used for
operations and environmental parameters monitoring.

(f) Predictions of possible machine failures and timely mainte-
nance using data collected frommachines shall be among the
most useful value additions.

(g) The AI-driven automation capabilities will require prolonged
maturity periods as AI will need loads of historical data to
make error-free actuations. It is possible that automated
actuations may seldom happen in small to medium scale
Indian industries in of fear malfunctions.

(h) Body wearables may be a good idea for monitoring health
and safety, but their feasibility and longevity in the work
environments need to be assessed.

(i) The fundamental solutions comprising cyber physical sys-
tems, IIoT, and basic software solution for monitoring and
decision-making can be adopted after some customisations.
Advanced predictive analytics and AI-based automation may
not provide any fruitful results for a long time; until the data
sizes and AI training is sufficient enough to trust its auto-
mation capabilities.

(j) Global integration, flow-based automated capabilities, and
global sustainability monitoring and localised resources
control will require long periods of maturity. It may be
viewed similar to ERP and MRP implementation, which were
matured after decades of continuous improvement efforts.
Industry 4.0 technologies may not be any different.

These results have provided an insight into the perspectives of
practitioners regarding role of Industry 4.0 in SAR following the GRI
standards. Keeping these perspectives and the results from focus
group discussion and interviews in mind, an empirical formulation
is presented after critical discussion in the next section.

6. Critical discussion and empirical formulation

Industry 4.0 is a good solution for sustainable manufacturing.
The framework requires significantly large scales of data collection,
storage, and analysis on cloud computing (Gabriel and Pessl, 2016;
Kiel et al., 2017; Tao et al., 2014). The MRERPS and PPCSMS capa-
bilities require complete multi-plant integration for achieving
effective automation in production and machine engineering, and
in scheduling (Trstenjak and Cosic, 2017; Wang et al., 2016).
Sensing and actuation driven by real-time data collection and
analysis is the foundation of Industry 4.0 (Abdmeziem et al., 2016).
However, they are not enough to develop predictive capabilities.
The end-to-end machine engineering systems need to be aware,
conscious and knowledge-driven within their augmented reality
environment, adaptive to environmental changes, and adaptive to
multiple complex control strategies (Avishay et al., 2019; Romero
et al., 2016; Yao et al., 2017). This level of capability can only be
achieved through implementing the complete framework. The role
of Industry 4.0 in achieving the circular economy ReSOLVE model
will require sensing, actuation, predictive analytics, and automated
decision-making capabilities (de Sousa Jabbour et al., 2018;
Nascimento et al., 2019). As reflected in the focus group discus-
sion and interviews, sensing and actuation, predictive analytics,
and automated decision-making are three levels of Industry 4.0
requiring three different levels of investments. The solutions from
multinationals operating in India comprise of all the three levels,
but the practitioners recommend beginning with sensing, actua-
tion, and basic levels of real-time monitoring and control as an
optimum solution to begin with. The academic research studies
view predictive analytics and automation as critical capabilities
needed for sustainable manufacturing (de Sousa Jabbour et al.,
2018; de Sousa Jabbour et al., 2018a; Kiel et al., 2017; Ren et al.,
2019; Sivri and Oztaysi, 2018; Zhong et al., 2017). The full system
prescribed by academic researchers involves machine-level data
collection from the IIoT sensors, which needs to be fed to advanced
big data analytics systems for training the AI algorithms. However,
the practitioners have suggested taking a cautious approach based
on their past experiences of slow and tedious maturity paths of ERP
and MRP systems.

Overall, Industry 4.0 appears to be fulfilling a crucial variable of
integrating environmental quality practices into planning and op-
erations of an industry as suggested by Diabat and Govindan (2011).
In another research, Govindan et al. (2014) highlighted the chal-
lenge of industries sticking to their existing inflexible practices and
hesitating in adopting complex designs, technologies, and pro-
cesses. These are softer challenges of sustainable manufacturing
practices, which can be addressed through in-depth trainings and
workshops (Jabbour et al., 2013; Jabbour et al., 2015; Kannan et al.,
2014; Teixeira et al., 2012; Teixeira et al., 2016). If the technical and
soft trainings evolve with the maturity of sustainable
manufacturing operations of an organisation, the challenge of
resistance to implementing Industry 4.0 technologies shall be
addressed. Companies in India would (possibly) never implement a
complete framework. They will prefer phased implementation
based on evidences of maturity in the system. From sustainability
perspective, there will always be a tendency in India to implement
systems with lower investments amidst lack of complete under-
standing of the benefits of sustainability practices on businesses
(Govindan et al., 2014).

The global vendors targeting Indian industrial markets perhaps
know about these challenges in the Indian markets. From the focus
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group discussions, the concept of multi-level solutions offered by
vendors is clearly visible. However, on the basis of the concepts of
MRERPS and PPCSMS (Trstenjak and Cosic, 2017; Wang et al., 2016)
and the capabilities of globally integrated manufacturing, engi-
neering, maintenance, repairs, and replacements (Kiel et al., 2017;
Rauch et al., 2015; Ren et al., 2019), targeted demand fulfilment
(Kiel et al., 2017; Yazdi et al., 2018), and lean manufacturing as a
moderator (Iranmanesh et al., 2019; Resta et al., 2016), Industry 4.0
needs to be implemented up to the third level defined by the two
focus groups. The actual implementation plan may be prolonged
but this research, at a theoretical and empirical level and agreeing
with the recent studies by de Sousa Jabbour et al. (2018), de Sousa
Jabbour et al. (2018a), Kiel et al. (2017), Ren et al. (2019), Sivri and
Oztaysi (2018), and Zhong et al. (2017), proposes the need for
complete yet maturity-driven implementation approach of In-
dustry 4.0 technologies at the three levels for achieving the goals of
sustainable manufacturing and the objectives of the circular
economy ReSOLVE model. For SAR following the GRI framework,
even the complete implementation of the three levels of Industry
4.0 (sensing and actuation, predictive analytics capabilities, and AI-
driven automation) will not be sufficient to cover all the topics in
the TBLM.

The three levels of Industry 4.0 and their attributes are pre-
sented in Fig. 5. This design of Industry 4.0 indicates that Indian
companies might prefer a phased approach, and there will al-
ways be differences between vendors and industrial reports and
the actual field-level benefits derived from each level. The chal-
lenge highlighted by Govindan et al. (2014) may be realised if
industries implement Industry 4.0 either at Level 1 only or at
Levels 1 and 2.

The empirical formulation in Fig. 5 is an attempt to justify what
can be expected by a particular level of investments in Industry
4.0. This formulation is an outcome of in-depth and focussed
discussion by professionals in the Indian industry, who are
involved in decision-making and implementation projects. Real-
isation of limitations of the three levels of Industry 4.0 capabilities
positioned in India is a practical outcome. Further, the realisation
Fig. 5. Empirical formulation of contribution of attributes o
that Industry 4.0 is not a complete solution for sustainability is
also a practical outcome, as the capabilities of all the levels of
Industry 4.0 are projected as contributing to a limited number of
GRI disclosures under the GRI material topics. This may be a
pessimistic projection, however, and hence its validity needs to be
studied further in future studies. The next section presents the
implications for theory and practice of the empirical formulation
and these practical outcomes.

7. Implications for theory and practice

Industry 4.0 presents a significant opportunity to achieve the
goals of sustainable manufacturing, and achieving the objectives of
the circular economy ReSOLVE model. The recent studies by de
Sousa Jabbour et al. (2018), de Sousa Jabbour et al. (2018a), Rosa
et al. (2019), and Nascimento et al. (2019) presented the role of
Industry 4.0 technologies in achieving different goals of circular
economy. The role of IIoT and cyber physical systems is widely
recognised as the most critical, but real-time visualisation, pre-
dictive analytics, and automation are recommended to approach
maturity in sustainable manufacturing through gradual integration
with quality management practices, and operational decision-
making. This research study has elaborated that approach
through an empirical formulation of three levels of Industry 4.0
implementation. To meet the empirical models presented by ma-
jority of the existing researchers (such as de Sousa Jabbour et al.,
2018; de Sousa Jabbour et al., 2018a; Kiel et al., 2017; Ren et al.,
2019; Sivri and Oztaysi, 2018; Zhong et al., 2017), Industry 4.0
technologies need to be implemented as a complete solution.
However, when analysing in the context of measurements and
reporting of sustainability variables under the GRI topics, only a
partial coverage has evolved from the focus group discussion. The
interview respondents have further cautioned against much opti-
mism in investing in Industry 4.0 given that the analytics and
automation parts are driven by artificial intelligence, which may
take a long time to mature, provide accurate predictions, and make
correct decisions. As maturity of artificial intelligence requires
f cloud-based Industry 4.0 framework to GRI reporting.
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training data collected from historical records, the path may be
much longer for small to medium manufacturers than large com-
panies. The lowest layer of Industry 4.0 technologies as per the
empirical formulation has been mapped with measurements and
reporting of environmental topics as per the GRI standard. To
achievemeasurements and reporting of economic and social topics,
the layers of predictive capabilities and AI-driven global practices
are needed, even if their maturity might take a long time.

Further, the research by Govindan et al. (2014) regarding
reluctance by Indian companies in adopting new technologies and
practices is reflected in the results of both focus group and in-
terviews outcomes. Another group of researchers have tried to
address this challenge through their studies on the softer aspects of
achieving sustainable practices (such as: Jabbour et al., 2013;
Jabbour et al., 2015; Kannan et al., 2014; Teixeira et al., 2012;
Teixeira et al., 2016). These studies have found gaps in signifi-
cance of human resources management in meeting sustainability
goals amidst lack of appropriate content and its depth for training.
To implement the empirical formulation of Industry 4.0 for SAR, the
training programs need to be aligned closely with the maturity
level achieved by an organisation. The depth and quality of the
training content need to be enhanced continuously to meet the
softer challenges in implementing Industry 4.0 for SAR. The
empirical formulation may be used as a high level guideline on the
way the training content needs to be enhancedwithmaturity when
an organisation transitions from Level 1 to Level 3.

This research is based on focus group discussion and interviews
involving small groups in Indian small scale industries. The solu-
tions proposed by prominent multinational organisations in India
were discussed in the focus group discussions. The perspectives
evolving have some credible validation from existing research
studies. However, these groups are too small to evolve recom-
mendations having larger impacts. The perspectives may differ
significantly within India and multiple other developing countries.
Further, there may be differences between perspectives of
manufacturing professionals in developing and developed coun-
tries. For example, in countries like China and USA having matured
manufacturing practices, companies may prefer to invest in big
data and artificial intelligence along with IIoT and cyber physical
systems in early stages of implementation knowing the time span
they need to mature through continuous data collection and
training. Further, mapping of the three levels of Industry 4.0 with
SAR TBLM topics under GRI framework may be more exhaustive
than what has evolved in this research. However, there may be
some aspects in this research achieving global acceptance. For
example, the design of the three levels of Industry 4.0 technologies
based on their maturity may be accepted globally after minor
changes. Further, the strengths of these technologies inmeeting the
specified GRI TBLM topics may be accepted globally although
perceived as incomplete and non-optimistic.

Future validation of the mapping of empirical formulation of
Industry 4.0 levels with GRI topics may be undertaken by re-
searchers in different economies. Varying perspectives are ex-
pected; but more importantly, the reasons for change in
perspectives need to be recorded. The empirical world needs to
draw a line between mere reluctance to adopt a complex techno-
logical framework like Industry 4.0 and grounded theories on why
and why not a mapping between an Industry 4.0 level and a GRI
topic can be validated. With the perspectives captured from mul-
tiple economies, the mappings on the either side of this linewill get
clearer and accepted globally.

8. Conclusion

This research presented a study of the influence of Industry 4.0
capabilities on the material topics of Global Reporting Initiative
(GRI) model of sustainability reporting. Two focus groups were
formed to study this topic through in-depth group discussions. The
Industry 4.0 capabilities were derived in the form of attributes at
three levels of implementation evident in India. The two focus
groups mapped the attributes carefully with individual GRI dis-
closures under the GRI material topics. The final empirical formu-
lation reflects that Industry 4.0 is not a complete solution for
comprehensive GRI reporting because only a limited number of
disclosure requirements can be implemented even if all the three
levels of Industry 4.0 positioned in India are implemented. Further,
limitations of partial implementation are clearly reflected from the
final empirical formulation. Level 1 of Industry 4.0 is projected to
contribute to disclosures related to five material topics under GRI
300 (environmental topics), Level 2 of Industry 4.0 is projected to
contribute to disclosures related to the stated material topics under
GRI 300 (environmental topics) and two material topics under GRI
400 (social topics), and Level 3 of Industry 4.0 is projected to
contribute to the statedmaterial topics in GRI 300 and GRI 400, and
three material topics under GRI 300 (economic topics).

The above findings were presented to five operations heads and
the questions used for focus group discussion were asked. The re-
spondents credited IIoT and cyber physical systems to mostly
environmental performance monitoring, but were not optimistic
about body wearable sensors for health and safety monitoring.
Especially, they cautioned against optimism in deploying AI-based
predictive analytics and automation. In their view, the traditional
ERP andMRP systems took ages to settle down and the Industry 4.0
technologies cannot be rushed, as well. Companies will need to set
their expectations right and allow them to mature gradually.

It is difficult to judge the validity of this empirical formulation
because this is a new area of research. However, the formulation
appears not too optimistic when compared with the empirical re-
sults of existing studies in sustainable manufacturing and circular
economy modelling. Hence, future research studies are recom-
mended to validate the mappings in this formulation to judge its
validity. There is a possibility that contributions of Industry 4.0
attributes to additional material topics and their disclosures might
appear through future studies.

In India, cautious and restrictive investments for meeting triple
bottom-line sustainability goals, and sustainability accounting and
reporting will always be a barrier. Industry 4.0 offers dual benefits
in the areas of automation and operations efficiency, and in sus-
tainability accounting and reporting. However, the empirical
formulation reveals that economic benefits will only be visible after
implementing Level 3 of Industry 4.0. Hence, the usual “what-if”
doubt will be a significant barrier in investing in complete imple-
mentation of 4.0. Perhaps, industries will attempt to truncate the
overall framework of Industry 4.0 in their respective settings citing
internal feasibility analytics. Pessimistic empirical formulations like
the one derived from the outcome of this research may only add to
this barrier. It is essential that the validity of this empirical
formulation is tested further. If appropriate, its expansion is needed
to drive better confidence in Industry 4.0 for developing capabil-
ities for sustainable accounting and reporting.
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