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A B S T R A C T

The drying shrinkage of recycled aggregate concrete (RAC) varies considerably owing to the extensive sources of
parent concrete from which recycled aggregates are obtained. This paper proposes a theoretical drying shrinkage
model for RAC considering the properties of the parent concrete, including its service time and strength. To
achieve this, shrinkage tests were conducted on 60 concrete specimens over 360 days. Five types of parent
concrete with different service times (1 year, 20 years, and 42 years) and water-to-cement ratios (0.30, 0.45, and
0.60) were crushed to obtain recycled coarse aggregates (RCAs) that were used to prepare the RAC specimens.
Three RCA replacement ratios (0%, 50%, and 100%) and three RAC water-to-cement ratios (0.30, 0.45, and
0.60) were assessed. The results indicated that the drying shrinkage of RAC was effectively reduced by an
increase in the parent concrete strengths and vice versa. A theoretical RAC shrinkage model was developed
considering the influence of the residual mortar content and parent concrete strength. A benchmarking analysis
using 262 shrinkage samples demonstrated that the proposed model offers improved accuracy for estimating the
long-term drying shrinkage of RAC over existing methods, particularly when the parent concrete and RAC have
large strength variations.

1. Introduction

Recycled aggregate concrete (RAC), which uses aggregates from
waste concrete (known as parent concrete), has significant environ-
mental and economic benefits [1–4]. After crushing, the mortar from
the parent concrete remains adhered to the original virgin aggregate
(OVA), and consequently the recycled coarse aggregates (RCAs) have
worse basic properties than conventional aggregates [5–12]. RCAs are
generally recommended for use in non-structural members, although a
few design specifications have recommended the use of RAC in re-
inforced concrete structures, with clearly defined RCA physical quali-
ties, applied compressive strength, maximum replacement ratios, etc.
[13–17]. Over the past three years, two specifications of RAC composite
structures have been issued in China to further promote their com-
mercial applications [18,19].

Extensive research on the mechanical behaviour of RAC exists. The
basic properties of RCAs and RAC were initially believed to be highly
dependent on the residual mortar [20–22]. However, the residual

mortar content and quality are significantly influenced by the size of
the OVA and RCA [23], parent concrete strength [24–27], service time
of parent concrete [28], etc. At the aggregate level, researchers have
attempted to establish a relationship between the residual mortar
content (CRM) and the basic properties of RCAs, such as density, water
absorption, and Los Angeles abrasion [5,29–31], and recommended
optimal values of residual mortar content for structural applications of
RCAs [5]. At the concrete level, experimental studies to investigate the
influence of CRM on the basic properties of RAC, such as the compres-
sive strength [32–34], tensile strength [35–37], elastic modulus
[37,38], and creep [39,40] were conducted, and revealed that the
properties of RAC degraded with the increase in CRM. To predict these
mechanical properties, regression analysis was initially used to account
for the RCA replacement (r) ratio [41,42], however, the accuracy of
regressed models depends on the scale of the database. Subsequently
theoretical models that predict the compressive strength [43,44], ten-
sile strength [38], elastic modulus [37,38], and creep [45] of RAC using
two-phase composite material theory, i.e. treating the RCAs as a
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combination of residual mortar (RM) and OVA, have been proposed.
Recently, researchers have reported that creep models that include CRM

cannot provide reasonable estimations for high-strength RAC (lower w/
c ratios) or RAC using RCAs from high-strength parent concrete. Efforts
have since been made to include the effect of parent concrete properties
in the prediction models [8,46].

In addition to above-mentioned mechanical properties, long-term
drying shrinkage deformation is an important control factor in the
overall design of RAC when introduced to structural members [47–49].
Ravindrarajah and Tam (1985) [26] measured the drying shrinkage of
RAC, with a test period of 70 days and an r ratio of 100%, and obtained
an increase in drying shrinkage of up to 95%. Subsequently, researchers
partially replaced natural coarse aggregates (NCAs) with RCAs to pre-
pare normal-strength and high-strength RAC with w/c ratios of
0.26–0.75 [50–60], and evaluated their shrinkage behaviour. The re-
sults indicated that RAC of varying strengths (w/c ratios) exhibited
higher drying shrinkage with the increase in RCA r ratios. However,
these increases varied significantly, ranging from 0.1% to 121.3% [61].
This was attributed to the extensive sources of RCAs, each possessing
different characteristics. For example, de Brito et al. (2011) [62,63]
reported that the RAC drying shrinkage significantly increased with the
degradation of the physical properties of RCAs (i.e. RCA density and
water absorption), and Duan and Poon (2014) [20] observed that the
RAC drying shrinkage increased with the increase in the residual mortar
content of RCAs. Besides the above-mentioned factors, the residual
mortar quality (primarily determined by the service time and strength
of parent concrete) may also influence the drying shrinkage of RAC,
although different conclusions have been reported to date. Katz [64]
selected three types of young parent concrete specimens with different
service times (1, 3, and 28 days), to prepare RAC with r=100%. The
results showed that the RAC specimen made with RCAs crushed after
28 days had the largest 90-day drying shrinkage. Kou and Poon [25],
Gonzalez-Corominas and Etxeberria [59], and Gholampour and Oz-
bakkaloglu [65] reported that RCA from higher-strength parent con-
crete could help reduce the drying shrinkage of resulting concrete,

while Pedro et al. (2014) [66] reported that parent concrete strength
had no significant impact on the drying shrinkage of resulting concrete.
Several expressions predicting the drying shrinkage of RAC have been
proposed based on these experiments. While Seara-Paz reported that
RAC demonstrated a relatively smaller early age total shrinkage than
NAC due to the inner curing effects on autogenous shrinkage [47,67],
others have suggested that both NAC and RAC have similar trends of
the development of drying shrinkage [8,68–70]. Most researchers tend
to establish an approximate relationship between the RAC drying
shrinkage and the reference NAC drying shrinkage using a shrinkage
amplification factor (κsh). Initially, only the RCA replacement (r) ratio
was selected as a key parameter [61,71], as adopted by current design
specifications [17]. Subsequently, weighted aggregate water absorption
ratio (WaRAC/WaNAC) or weighted aggregate density ratio (DRAC/DNAC)
and CRM have also been introduced to further refine the drying
shrinkage models [62,63]. Despite these improvements, large varia-
tions in the predicted shrinkage amplification factor (κsh) have been
reported [72]. Further research is required to accurately predict the
drying shrinkage of RAC, by following the research approaches adopted
in the creep models of RAC [8,46]. The studies discussed above indicate
that the source of parent concrete may influence the drying shrinkage of
the RAC. However, very little effort has been devoted to quantifying the
influence of the strength and the service time of parent concrete on the
drying shrinkage of RAC.

2. Objectives

The aim and objective of this study is to theoretically propose
drying shrinkage model for recycled aggregate concrete (RAC) ac-
counting for the properties of parent concrete, including its service time
and strength. This is achieved using two-phase composite models, in
which the recycled coarse aggregate (RCA) is treated as the composi-
tions of original virgin aggregate (OVA) and residual mortar (RM). Only
a few parameters in the newly proposed model need to be regressed
using the test results collected from this study, and therefore this model

Nomenclature

CA coarse aggregate
COV coefficient of variation
ITZ interfacial transition zone
NAC natural aggregate concrete
NCA natural coarse aggregate
NFA natural fine aggregate
NM natural mortar
OVA original virgin aggregate
PC parent concrete
RAC recycled aggregate concrete
RCA recycled coarse aggregate
RM residual mortar
SP superplasticiser
SSD saturated surface-dried
a, b, c coefficients used in the drying shrinkage model
CRM residual mortar content of RCA
DNAC weighted density of aggregates in NAC
DRAC weighted density of aggregates in RAC
Ec elastic modulus of concrete
Ec

PC elastic modulus of parent concrete
fcm compressive strength of concrete
fcm

PC compressive strength of parent concrete
fcm

NAC compressive strength of NAC
fcm

RAC compressive strength of RAC
n empirical coefficient in the drying shrinkage model
r replacement ratio of RCA

RH relative humidity
S service time of parent concrete
T temperature
VNCA

NAC volume fraction of NCA in NAC
VNM

NAC volume fraction of natural mortar (NM) in NAC
VNCA

RAC volume fraction of NCA in RAC
VRM

RAC volume fraction of residual mortar (RM) in RAC
VTNCA

RAC total volume fraction of NCA in RAC
VTM

RAC total volume fraction of mortar in RAC
VOVA

RAC volume fraction of original virgin aggregate (OVA) in RAC
VCA

RAC volume fraction of coarse aggregate (CA) in RAC
WaNAC weighted water absorption of aggregates in NAC
WaRAC weighted water absorption of aggregates in RAC
w/b water-to-binder ratio of concrete
w/c water-to-cement ratio of concrete
wor/cor original water-to-cement ratio of parent concrete
εsh drying shrinkage of concrete
εsh,360 drying shrinkage of concrete at 360 days
εsh

NAC drying shrinkage of NAC
εsh

NM drying shrinkage of natural mortar (NM)
εsh

RAC drying shrinkage of RAC
εsh

TM drying shrinkage of new and residual mortar ensemble in
RAC

κsh,a, κsh,f shrinkage coefficients caused by the volume change of
coarse aggregate in recycled concrete, and by the differ-
ence in the drying shrinkage properties of natural mortar
and residual mortar

κsh drying shrinkage amplification factor
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is expected to have better accuracy with wider parameter ranges,
compared with available drying shrinkage models that are directly re-
gressed based on limited test data. For this purpose, parent concretes
with varied water-to-cement ratios are systemically prepared to quan-
tify the influence of parent concrete strength on the drying shrinkage of
resulting RAC; and parent concretes with service time older than 1 year
are collected from real projects to further investigate the impact of the
service time of parent concrete on the RAC drying shrinkage, as in
practice RCAs are usually stored for a quite long time before used in
structural applications. Based on the experiment results collected from
this study and those available in literature, a modified shrinkage model
is theoretically derived accounting for the influence of parent concrete,
by “κsh,a” to consider the influence of residual mortar content (CRM) and
by “κsh,f” to account for the difference in the shrinkage behaviour be-
tween residual mortar and natural mortar.

3. Experimental program

The details of the long-term shrinkage specimens are listed in
Table 1. The variables investigated in this study were the RCA re-
placement ratio (r), service time of parent concrete (S), original water-
to-cement ratio of parent concrete (wor/cor) and water-to-cement ratio
of resulting concrete (w/c). Particularly, a total 20 batches of RAC were
designed with RCA r ratios of 0%, 50%, and 100%, and with new water-
to-cement (w/c) ratio of 0.30, 0.45 and 0.60. Three groups of parent
concrete were collected from a laboratory with a service time of 1 year,
and had original water-to-cement ratio (wor/cor) of 0.30, 0.45 and 0.60.
Another two groups of parent concrete were also sourced from real
demolitions with service times of 20 years and 42 years, and had ori-
ginal water-to-cement ratio (wor/cor) of 0.45. The compressive strength
and elastic modulus of concrete were measured at 28 days and 90 days,
and drying shrinkage was monitored for a test period of 360 days.

3.1. Materials

Portland cement (CEM 42.5 N) was used as the binder in the con-
crete mixture. River sand (0–5mm) with a fineness modulus of 2.58 and

crushed Andesite (5–25mm) were used as the natural fine aggregate
(NFA) and natural coarse aggregate (NCA), respectively, both of which
are representative aggregate sources widely used in concrete mixtures
across China. Superplasticiser (SP) AS-I with a density of 1200 kg/m3

was added to the mix to provide enough workability to the concrete
mixes.

The parent concretes prepared in laboratory and from real demoli-
tion projects were used in this study, whose mixes ingredients and
mechanical properties are reported in Table 2. Particularly, three
groups of parent concrete with wor/cor ratios of 0.30, 0.45, and 0.60
were poured into 1000mm×1000mm×120mm mould in laboratory
and cured for a time period of 1 year before crushed. The curing con-
ditions could represent typical indoor condition in the northeast of
China (e.g. [72]). Their mechanical properties were measured by means
of companion material cubes and prisms. The 20- and 42-year-old
parent concretes were sourced from real demolition projects with the
w/c ratio of 0.45, and their 28-day compressive strength and elastic
modulus values were provided in the construction documentation.
These two demolished buildings represent typical structures adopting
normal strength concrete and demolished after their service lives. The
five groups of parent concrete underwent a two-stage crushing process
to achieve a proper size fraction conforming to JGJ-52-2006 [73], with
a particle size of 5–25mm. From here on, the three groups of RCAs from
the laboratory parent concrete with a service time of 1 year are referred
to as RCA-S1-H, RCA-S1-M, and RCA-S1-L, wherein ‘S1’ denotes the
service time of 1 year and ‘H’, ‘M’, and ‘L’ denote the wor/cor levels, i.e.
high wor/cor, medium wor/cor, and low wor/cor, respectively. Similarly,
the other two groups of RCAs are from real-world projects, with a
service time of 20 years and 42 years and medium wor/cor, and are re-
ferred to as RCA-S20-M and RCA-S42-M.

Similar particle size distributions were specified for the coarse ag-
gregates, i.e. RCA and NCA, as listed in Table 3. The basic properties of
the aggregates according to JGJ-52-2006 [73], i.e. oven-dried density,
surface saturation density, water absorption, and index of crushing, are
also listed in Table 3. The value of each basic property listed in Table 3
is the average measurement of three identical samples. The residual
mortar content of the RCA (CRM) was measured using a thermal

Table 1
Details of specimens for drying shrinkage tests.

Notation Mix designation a Type of RCA r (%) Parent concrete propertiesb

S (year) wor/cor fcm
PC(MPa)

Series L: w/c=0.30
Low w/c concrete

NCA-L – 0 – – –
RCA-S42-M-50-L RCA-S42-M 50 42 0.45 40.2
RCA-S42-M-100-L RCA-S42-M 100 42 0.45 40.2
RCA-S1-L-100-L RCA-S1-L 100 1 0.30 62.7
RCA-S1-M-100-L RCA-S1-M 100 1 0.45 44.2
RCA-S1-H-100-L RCA-S1-H 100 1 0.60 36.9

Series M: w/c=0.45
Medium w/c concrete

NCA-M – 0 – – –
RCA-S42-M-50-M RCA-S42-M 50 42 0.45 40.2
RCA-S42-M-100-M RCA-S42-M 100 42 0.45 40.2
RCA-S20-M-50-M RCA-S20-M 50 20 0.45 40.2
RCA-S20-M-100-M RCA-S20-M 100 20 0.45 40.2
RCA-S1-L-100-M RCA-S1-L 100 1 0.30 62.7
RCA-S1-M-100-M RCA-S1-M 100 1 0.45 44.2
RCA-S1-H-100-M RCA-S1-H 100 1 0.60 36.9

Series H: w/c=0.60
High w/c concrete

NCA-H – 0 – – –
RCA-S42-M-50-H RCA-S42-M 50 42 0.45 40.2
RCA-S42-M-100-H RCA-S42-M 100 42 0.45 40.2
RCA-S1-L-100-H RCA-S1-L 100 1 0.30 62.7
RCA-S1-M-100-H RCA-S1-M 100 1 0.45 44.2
RCA-S1-H-100-H RCA-S1-H 100 1 0.60 36.9

a For the nomenclature, the concrete specimen was named by “Aggregate type-Replacement ratio-Concrete w/c level”. Using ‘RCA-S42-M-50-L’ for example, RCA-
S42-M denotes that recycled aggregate are sourced from parent concrete with service time of 42 years and medium original water-to-cement ratio (wor/cor); 50 is the
RCA replacement ratio of 50%; the following L stands for low w/c level of resulting concrete.

b S, wor/cor and fcm
PC is the service time, original water-to-cement ratio and compressive strength of parent concrete.
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treatment method [5,20]. As listed in Table 3, the five types of RCAs
had similar physical properties, with a maximum difference of 11.0% in
water absorption and 4.1% in oven-dried density, despite exhibiting
significantly different CRM values. This suggests that in addition to the
residual mortar content, mortar compactness may also influence the
physical properties of RCAs.

3.2. Concrete mixtures

Three series of concrete mixtures, i.e. Series L (low w/c of 0.30),
Series M (medium w/c of 0.45), and Series H (high w/c of 0.60), were
prepared using NCA and the five groups of RCAs (Table 4). The w/c
ratios were determined according to JGJ-55-2011 [74], which re-
commends w/c ratios of 0.40–0.70 for normal-strength natural con-
crete, and w/c ratios of 0.24–0.33 for high-strength natural concrete. A
w/c ratio of around 0.30 could also be obtained from similar studies on
high-strength recycled concrete–0.28 in [23] and 0.26 in [68,69]. In
this study, the sand ratio and water content were equal for the NAC and
the RAC at 0.36 and 180 kg/m3, respectively. The RCA content was
determined by replacing a fraction of the NCA by weight, i.e. 50% and
100%. A total of 20 batches of concrete were prepared, with three
identical samples designed for each measurement. For each concrete
batch, six 100mm-cubes and six 150mm×150mm×300mm-prisms
were cast to measure the compressive strength at 28 and 90 days and
elastic modulus at 28 and 90 days, respectively. Furthermore, three
100mm×100mm×400mm-prisms were cast to measure the drying
shrinkage.

For the mixing procedures used in this test, the RCAs were designed
in a saturated surface-dry (SSD) condition, and this was achieved by
pre-soaking the RCAs in water tank for 24 h before draining it for ap-
proximately 1 h [8–10]. Other mixing procedures could be obtained
from our previous studies [8–10]. Concrete workability was measured

with the slump test and the slump values were maintained in the ranges
of (110 ± 20) mm, (180 ± 20) mm, and (150 ± 20) mm for Series L
(low w/c concrete), Series M (medium w/c concrete), and Series H (high
w/c concrete), respectively.

3.3. Test methods

The cubes and prisms were cured in the laboratory for 24 h, after
sealing their top surface with aluminium foil (ambient environmental
temperature of about 23 °C), before being demoulded. They were then
wet-cured until their corresponding test ages. A 2000 kN compression
machine was used to obtain the compressive strength of the concrete
specimens. The loading rates in the compressive tests were 5.0 kN/s, in
accordance with the requirements of GB/T 50081-2002 [75] and BS EN
12390 [76]. The elastic modulus of concrete was determined according
to GB/T 50081-2002 [75] and UNI EN 83316 [77] using the same
compression machine.

The drying shrinkage over time was measured in accordance with
GB/T 50082-2009 [78] and ASTM C157 [79]. Demec gauges, 200mm
in length, were used to measure the shrinkage of the prisms. The prisms
were first immersed in a water tank for 28 days, and their initial lengths
were measured. Subsequently, the specimens were moved to a multi-
purpose laboratory maintained at a constant temperature (23 ± 1) °C
and relative humidity (50 ± 5)% for 360 days.

4. Strength and elastic modulus of RAC

The mean value and the corresponding coefficient of variation
(COV) of the measured compressive strength and the elastic modulus
are listed in Table 5. Each measurement was obtained using three
identical samples. The compressive strength of the RAC was affected by
the strength and service time of the parent concrete, with a maximum

Table 2
Mechanical properties of parent concrete.

Parent concrete source Aggregate Mix proportions (kg/m3) wor/cor S (year) fcm
PC (MPa) Ec

PC (GPa)

Water Cement NFA NCA SP

Laboratory concrete RCA-S1-L 180 600 610 1080 6.0 0.30 1 62.7 34.0
RCA-S1-M 180 400 670 1180 4.0 0.45 1 44.2 31.2
RCA-S1-H 180 300 710 1240 3.0 0.60 1 36.9 27.3

Real demolition concrete RCA-S20-M 180 400 N/A N/A N/A 0.45 20 40.2 30.2
RCA-S42-M 180 400 N/A N/A N/A 0.45 42 40.2 30.5

Note: SP stands for superplasticiser; wor/cor and S is the original water-to-cement ratio and service time of parent concrete; fcm
PC and Ec

PC is the compressive strength
and elastic modulus of parent concrete measured on 100mm3 cubes and 150× 150×300mm3 prisms, respectively.

Table 3
Particle size distributions and mechanical properties of aggregates.

Properties Size of sieve (mm) Percentage passing by weight (%)

NCA RCA-S1-L RCA-S1-M RCA-S1-H RCA-S20-M RCA-S42-M NFA

Sieve analysis 26.5 100.0 100.0 100.0 100.0 100.0 100.0 –
19.0 67.1 67.1 67.1 67.1 66.8 66.7 –
16.0 50.0 50.0 50.0 50.0 50.2 49.5 –
9.5 16.7 16.7 16.7 16.7 16.8 16.7 –
4.75 0.6 0.5 0.5 0.5 1.5 0.9 100.0
2.36 – – – – – – 86.2
1.18 – – – – – – 74.3
0.60 – – – – – – 52.0
0.30 – – – – – – 12.9
0.15 – – – – – – 2.4

Oven-dried density (kg/m3) 2816 2704 2713 2708 2699 2605 2623
Surface saturation density (kg/m3) 2827 2866 2863 2852 2842 2744 2714
Water absorption (%) 0.41 5.99 5.53 5.33 5.33 5.36 3.45
Residual mortar content (%) – 46.3 39.4 35.8 40.1 47.9 –
Index of crushing (%) 4.3 8.7 10.9 12.4 15.2 20.2 –
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decrease of 19.5%. These reduction rates were consistent with those
reported in our previous study [8,37]. The parent concrete strength and
service time had no considerable influence on the elastic modulus of the
RAC, with a maximum difference of only 8.5% and no consistent trend.
This phenomenon was explained in our previous study [37].

5. Experimental results and discussions on drying shrinkage

5.1. Influence of RCA replacement ratio

The shrinkage development in each specimen over time is illu-
strated in Fig. 1. All specimens experienced a continuous increase in
shrinkage during the test period, with a fairly rapid growth during the
first few months, followed by a stabilising trend towards the end of the
test period. After 112 days of drying, the shrinkage was nearly 80–93%

of the final shrinkage recorded at the end of the test period (360 days),
after which the shrinkage rate slowed dramatically. Therefore, it is
reasonable to terminate the test after 360 days. The results predicted by
the proposed model are also illustrated in Fig. 1, and are discussed in
Section 6.

The relative shrinkage development in the specimens with different
RCA r ratios and different parent concrete strengths (wor/cor ratios) is
illustrated in Fig. 2. This was done by normalising the observed drying
shrinkage of each specimen with its final value at the end of the test, i.e.
εsh/εsh,360, where εsh,360 is the measured 360-day drying shrinkage.
Fig. 2 also illustrates the predicted results using the Eurocode 2 [80]
concrete model for comparison. The RCA r ratio (0%, 50%, and 100%)
and wor/cor ratio (0.30, 0.45, and 0.60) had no observable influence on
the drying shrinkage development of the RAC and the measured
shrinkage variation was primarily due to the variations in the

Table 4
Mix proportions of natural and recycled aggregate concrete.

Notation Mix designation Coarse aggregate r (%) Mix proportions (kg/m3)

Water Cement NFA NCA RCA SP a

Series L:
Low w/c
Concrete

NCA-L 100%NCA 0 180 600 610 1080 0 6.0
RCA-S42-M-50-L 50%NCA+50% RCA-S42-M 50 180 600 603 509 509 6.0
RCA-S42-M-100-L 100% RCA-S42-M 100 180 600 590 0 1018 6.0
RCA-S1-L-100-L 100% RCA-S1-L 100 180 600 580 0 1030 6.0
RCA-S1-M-100-L 100% RCA-S1-M 100 180 600 580 0 1030 6.0
RCA-S1-H-100-L 100% RCA-S1-H 100 180 600 580 0 1030 6.0

Series M:
Medium w/c Concrete

NCA-M 100%NCA 0 180 400 670 1180 0 4.0
RCA-S42-M-50-M 50%NCA+50% RCA-S42-M 50 180 400 652 551 551 4.0
RCA-S42-M-100-M 100%RCA-P42 100 180 400 652 0 1102 4.0
RCA-S20-M-50-M 50%NCA+50% RCA-S20-M 50 180 400 652 564 564 4.0
RCA-S20-M-100-M 100% RCA-S20-M 100 180 400 652 0 1129 4.0
RCA-S1-L-100-M 100% RCA-S1-L 100 180 400 640 0 1130 4.0
RCA-S1-M-100-M 100% RCA-S1-M 100 180 400 640 0 1130 4.0
RCA-S1-H-100-M 100% RCA-S1-H 100 180 400 640 0 1130 4.0

Series H:
High w/c
Concrete

NCA-H 100%NCA 0 180 300 710 1240 0 3.0
RCA-S42-M-50-H 50%NCA+50% RCA-S42-M 50 180 300 702 593 593 3.0
RCA-S42-M-100-H 100% RCA-S42-M 100 180 300 702 0 1185 3.0
RCA-S1-L-100-H 100% RCA-S1-L 100 180 300 680 0 1200 3.0
RCA-S1-M-100-H 100% RCA-S1-M 100 180 300 680 0 1200 3.0
RCA-S1-H-100-H 100% RCA-S1-H 100 180 300 680 0 1200 3.0

a SP represents superplasticiser.

Table 5
Mechanical properties of natural and recycled aggregate concrete.

Notation Mix designation CRM of RCA r (%) fcm (MPa) Ec (GPa) εsh (με)

28-day 90-day 28-day 90-day 360-day

Series L:
Low w/c Concrete

NCA-L – 0 57.9(2.37%) 68.2(2.2%) 39.1(3.2%) 40.4(2.5%) 411(6.8%)
RCA-S42-M-50-L 47.9% 50 58.2(0.66%) 66.9(3.7%) 34.5(1.9%) 35.7(3.7%) 492(6.5%)
RCA-S42-M-100-L 47.9% 100 53.3(3.40%) 61.3(3.4%) 29.9(6.9%) 30.9(3.5%) 624(4.6%)
RCA-S1-L-100-L 46.3% 100 58.2(4.85%) 66.6(4.2%) 31.7(4.8%) 32.8(2.2%) 579(4.7%)
RCA-S1-M-100-L 39.4% 100 55.5(1.01%) 63.9(1.9%) 29.2(0.8%) 30.2(0.9%) 595(6.2%)
RCA-S1-H-100-L 35.8% 100 53.4(1.02%) 62.1(7.3%) 31.9(0.2%) 33.0(1.2%) 656(4.5%)

Series M:
Medium w/c Concrete

NCA-M – 0 46.7(9.82%) 55.5(1.4%) 34.3(4.6%) 35.5(2.6%) 439(8.2%)
RCA-S42-M-50-M 47.9% 50 44.3(1.53%) 52.5(1.8%) 31.5(3.2%) 32.6(1.8%) 490(4.5%)
RCA-S42-M-100-M 47.9% 100 40.9(3.74%) 50.3(3.2%) 27.8(1.5%) 28.7(2.9%) 643(7.6%)
RCA-S20-M-50-M 40.1% 50 44.7(0.76%) 52.6(1.6%) 33.0(3.2%) 34.1(4.3%) 484(4.9%)
RCA-S20-M-100-M 40.1% 100 42.6(2.11%) 52.3(0.7%) 28.0(0.9%) 29.1(4.6%) 593(4.8%)
RCA-S1-L-100-M 46.3% 100 46.0(0.58%) 57.6(3.2%) 27.5(3.5%) 28.4(2.2%) 584(7.2%)
RCA-S1-M-100-M 39.4% 100 43.9(3.02%) 51.0(0.7%) 27.8(0.6%) 28.7(1.6%) 611(3.6%)
RCA-S1-H-100-M 35.8% 100 41.1(2.29%) 50.2(5.4%) 27.4(2.8%) 28.3(2.7%) 680(4.6%)

Series H:
High w/c Concrete

NCA-H – 0 36.9(0.88%) 46.3(6.6%) 32.5(4.1%) 33.6(2.9%) 490(5.6%)
RCA-S42-M-50-H 47.9% 50 32.1(6.62%) 38.3(0.7%) 30.4(4.4%) 31.4(3.3%) 508(7.4%)
RCA-S42-M-100-H 47.9% 100 28.4(3.97%) 34.6(3.0%) 27.2(2.2%) 28.1(2.1%) 625(6.3%)
RCA-S1-L-100-H 46.3% 100 33.1(1.53%) 43.0(3.4%) 27.1(3.0%) 28.0(0.5%) 628(4.9%)
RCA-S1-M-100-H 39.4% 100 32.4(6.16%) 40.1(4.3%) 27.1(2.0%) 28.0(6.2%) 650(6.6%)
RCA-S1-H-100-H 35.8% 100 31.6(1.67%) 39.6(2.2%) 27.7(6.8%) 28.6(3.5%) 710(7.2%)
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environmental conditions. Additionally, the expressions provided in
Eurocode 2 described the shrinkage development of the concrete spe-
cimens reasonably well, with a maximum error of 15%. Thus, the im-
pact of the quality of parent concrete on the drying shrinkage of RAC
can be investigated using the shrinkage amplification factor (κsh) i.e. the
ratio of the drying shrinkage of the RAC to that of the reference NAC.

As illustrated in Fig. 3, the drying shrinkage of all samples increased
with the increase in RCA r ratio, regardless of the other test variables.
Compared to the reference NAC, the RAC specimens experienced in-
creases of 3.6–19.7% and 27.6–59.6% in their 360-day drying
shrinkage values for RCA r ratios of 50% and 100%, respectively. These

increases conform to those reported in other studies [61]. Furthermore,
as expected, smaller compressive strengths (larger w/c ratios) lead to
larger drying shrinkage in the NAC. For example, the NAC with a
compressive strength of 36.9 MPa (w/c=0.60) had a 19.2% larger
drying shrinkage than that with a compressive strength of 57.9MPa (w/
c=0.30) (Fig. 3(a)). Smaller differences were obtained for the RAC.
For example, in the concrete with 100% RCA-S42-M (Fig. 3(a)), a
limited increment of 3% was observed as the w/c ratio decreased to
0.30 from 0.60.
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Fig. 1. Measured drying shrinkage of concrete with different types of RCA.
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5.2. Influence of service time of parent concrete

The impact of the service time of the parent concrete on the drying
shrinkage of RAC is quite limited. Fig. 4 compares the 360-day drying
shrinkage of the RAC with 100% RCAs from parent concrete of different
service times. The drying shrinkage of the RAC clearly exhibits similar
values. For example, in the low w/c concrete (Series L), the measured
360-day drying shrinkage of the RCA-S1-M-100-L specimen with 1-
year-old RCA and the RCA-S42-M-100-L specimen with 42-year-old
RCA was 595 με and 624 με, respectively, with a difference of 4.6% and
the concrete with the older RCAs experiencing a larger drying
shrinkage. Similar observations were made for medium w/c concrete
(Series M) and high w/c concrete (Series H), with maximum differences
of 8.4% and 3.8%, respectively.

5.3. Influence of strength of parent concrete

Fig. 5 illustrates the influence of the strength of parent concrete on
the drying shrinkage of RAC. RCAs from parent concrete with higher
strength (lower wor/cor) led to lesser shrinkage in the RAC, even though
RCAs from higher strength parent concrete have larger CRM values than
those from lower strength parent concrete (larger CRM values generally
result in a larger shrinkage in RAC). In particular, in Series L (w/
c=0.30), the RAC shrinkage using RCA-S1-H (CRM=35.8%) was

59.6% higher than that of the reference NAC-L, while the shrinkage
increase percentage decreased to 44.8% when using RCA-S1-M
(CRM=39.4%) and to 40.9% when using RCA-S1-L (CRM=46.3%). For
the RAC with w/c=0.45, the shrinkage increase percentage decreased
from 54.9% for RCA-S1-L to 39.2% and 33.0% for RCA-S1-M and RCA-
S1-H, respectively. For the RAC with w/c=0.60, the shrinkage in-
crease percentage decreased from 44.9% for RCA-S1-L to 32.6% and
28.2% for RCA-S1-M and RCA-S1-H, respectively. This probably hap-
pens because the RCAs from parent concrete with a lower wor/cor have a
lower porosity and a more uniformly hardened cement paste which
increases the shrinkage deformation of the RAC. The large influence of
parent concrete strengths on drying shrinkage clearly highlights why
residual mortar content cannot serve as the only parameter required to
evaluate the shrinkage amplification factor of RAC.

A similar investigation was also conducted by Kou and Poon (2015)
[25] and Gholampour and Ozbakkalogu (2018) [65]. Fig. 6(a) illus-
trates the measured shrinkage amplification factor of the RAC speci-
mens using RCAs from parent concrete of 30–100MPa, as investigated
by Kou and Poon [25]. The higher-strength parent concrete clearly led
to a smaller shrinkage amplification factor for water-to-binder (w/b)
ratios of both 0.35 and 0.50. Particularly, the concrete with r=100%
had a shrinkage amplification factor of 1.246–1.354 when using 30MPa
parent concrete, which decreased to 1.042–1.157 when using 100MPa
parent concrete. This phenomenon is even more significant in high-
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Fig. 1. (continued)
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strength RAC [65]. In the RAC specimens with a target compressive
strength of 80MPa, the shrinkage increase after 360 days was nearly
100% when using 20MPa parent concrete, but reduced significantly to
about 7% when using parent concrete with a strength of 110MPa.

Although the RCAs from the 20MPa and 110MPa parent concrete had
similar residual mortar contents of 42–53%, the difference in their
shrinkage amplification factors was nearly 100%. This further sub-
stantiates the need to account for the parent concrete strength in the
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Fig. 2. Relative shrinkage development over time.
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Fig. 3. Influence of RCA r ratios on the drying shrinkage.
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prediction model, in addition to residual mortar content.
Gonzalez-Corominas and Etxeberria also observed similar

tendencies. When RCAs from 60 to 100MPa parent concrete were used
to prepare 100MPa RAC, shrinkage amplification factors of 1.55–1.38
were obtained. However, this value increased significantly to 2.13
when using RCAs from 40MPa parent concrete [59] (Fig. 7). Fig. 7 also
illustrates that the linear correlation between the shrinkage amplifica-
tion factor and the physical properties of the aggregate (density and
water absorption of the aggregate) no longer exists due to the use of
aggregates from parent concrete with different strengths.

Pedro et al. (2014) [66] prepared three groups of RAC using RCA
r=100% and parent concrete with strengths equivalent to that of the
RAC, i.e. 20MPa, 45MPa, and 65MPa. Similar shrinkage amplification
factors were observed for all three groups of the RAC. As similar
compressive strength values were selected for both the parent concrete
and the RAC, the properties of the residual mortar in the RCA and that
of the fresh mortar in the RAC were similar, and accordingly, similar
shrinkage factors were obtained.

The above-mentioned experiments suggest that similar shrinkage
amplification factors are observed when the properties of the parent
concrete and the RAC are similar, and varied shrinkage amplification
factors are observed when the properties of the parent concrete and the
RAC are different, i.e. a larger shrinkage amplification factor for a
lower-strength parent concrete and vice versa. Furthermore, this impact
cannot be effectively represented by the r ratio, CRM, or physical
properties of the RCAs. Therefore, an additional parameter is required
to describe the shrinkage difference between RAC and NAC–the
strength of parent concrete.

6. Modified drying shrinkage model for RAC

This study aims to propose a new model to estimate the shrinkage
amplification factor κsh, in which the strength of parent concrete is
further accounted in addition to the residual mortar content (CRM). To
predict the drying shrinkage of RAC, the proposed κsh can be combined
with the existing shrinkage models for NAC. Here, the EC 2 model [80]
was selected to combine the proposed κsh, as it predicted the time-de-
pendent relative shrinkage of both NAC and RAC reasonably well, as
illustrated in Fig. 2.
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6.1. Modified drying shrinkage model

Concrete is generally considered to be a two-phase composite ma-
terial (consisting of mortar and coarse aggregate) [45]. Drying
shrinkage is caused by the evaporation of water from mortar and is
restricted by the presence of coarse aggregates. Therefore, Eq. (1) can
be used to calculate the drying shrinkage of NAC, where εsh

NAC represents
the NAC shrinkage strain, while εsh

NM stands for the shrinkage strain of
the new mortar, VNCA

NAC is the volumetric content of NCA in the NAC, and
n is a constant that is related to the stiffness of the NCA, with a value
that ranges between 1.2 and 1.7.

= −ε ε V·(1 )n
sh
NAC

sh
NM

NCA
NAC (1)

RCA can also be treated as a two-phase composite material con-
sisting of the original virgin aggregate (OVA) and residual mortar (RM),
and hence the shrinkage strain of RAC can be obtained as shown in Eq.
(2).

= −ε ε V·(1 )n
sh
RAC

sh
TM

TNCA
RAC (2)

Here, εsh
RAC is the drying shrinkage strain of the RAC and εsh

TM re-
presents the drying shrinkage strain of the new and residual mortar.
VTNCA

RAC is the total volumetric content of the stone particles in the RAC,
which can be estimated using Eq. (3).

= + = −V V V r C V(1 · RM)·TNCA
RAC

NCA
RAC

OVA
RAC

CA
RAC (3)

whereVOVA
RAC is the volumetric content of the OVA in the RAC andVCA

RAC is
the volumetric content of the coarse aggregate (CA) in the RAC.

Generally, the shrinkage performance of the cement paste of RAC is
similar to that of NAC, and the volumetric content of NCA in NAC
(VNCA

NAC) is equal to the total volumetric content of coarse aggregate
(VCA

RAC, including both NCA and RCA). Considering the relationship
between VNCA

NACand VCA
RAC, the shrinkage strain of RAC can be estimated

by combining Eqs. (1)–(3), to obtain Eq. (4). Furthermore, the constant
factor n was set to 1.45, which is the mean of the empirical values of
1.2–1.7.

⎜ ⎟= = ⎛
⎝

− −
−

⎞
⎠

κ
ε
ε

ε
ε

r C V
V

·
1 (1 · RM)·

1

n

sh
sh
RAC

sh
NAC

sh
TM

sh
NM

CA
RAC

CA
RAC (4)

To ease understanding this equation, the shrinkage amplification
factor κsh can be expressed as the product of κsh,f and κsh,a, as shown in
Eq. (5).

=κ κ κ·sh sh,f sh,a (5)

where κsh,f represents the difference in the drying shrinkage between
the total mortar (natural mortar and residual mortar) in RAC and nat-
ural mortar in NAC, as shown in Eq. (6).

=κ ε ε/sh,f sh
TM

sh
NM (6)

while κsh,a represents the reduction in the capacity of restriction to the
drying shrinkage of natural mortar, which is caused by the volume
change of the stone particles in RAC.

⎜ ⎟= ⎛
⎝

− −
−

⎞
⎠

κ
r C V

V
1 (1 · RM)·

1

n

sh,a
CA
RAC

CA
RAC (7)

Considering that concrete with higher compressive strength causes
lower shrinkage in the corresponding mortar and vice versa, the
shrinkage of mortar is influenced by the compressive strength of the
concrete according to EC2 model [80]. Thus, the drying shrinkage of
natural mortar is related to the strength of the concrete, as shown in Eq.
(8), wherein, f (RH) is a function of the ambient relative humidity (RH),
fcm

NAC is the compressive strength of NAC, exp() refers to e(), and a is a
coefficient that reflects the correlation between the mortar shrinkage
and the compressive strength of concrete.

=ε f R a f( )·exp( · )sh
NM

H cm
NAC (8)

Similarly, the shrinkage of the total mortar (new mortar and re-
sidual mortar) can be calculated using Eq. (9).

= ⎡
⎣⎢

+ ⎤
⎦⎥

ε f R
V
V

a f
V
V

b f( )· ·exp( · ) ·exp( · )sh
TM

H
NM
RAC

TM
RAC cm

NAC RM
RAC

TM
RAC cm

PC

(9)

where VRM
RAC, VNM

RAC, and VTM
RAC are the volume fractions of the residual

mortar, natural mortar, and total mortar in RAC, respectively, fcm
PC and

fcm
NAC are the compressive strengths of the parent concrete and NAC,

respectively, and b is a coefficient that reflects the correlation between
the drying shrinkage of residual mortar and the compressive strength of
the parent concrete.

Thus, κsh,f in Eq. (6) is rewritten as Eq. (10) to quantify the influence
of the residual mortar quality on the drying shrinkage of RAC.

=
+

κ
a f b f

a f

·exp( · ) ·exp( · )

exp( · )

V

V

V

V
sh,f

cm
NAC

cm
PC

cm
NAC

NM
RAC

TM
RAC

RM
RAC

TM
RAC

(10)

To predict the drying shrinkage of RAC, its compressive strength is
preferred over that of NAC, in which case, a fexp( · )cm

NAC can be replaced
by c fexp( · )cm

RAC , and Eq. (10) can be rewritten as Eq. (11).
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TM
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RAC

TM
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(11)

where c is the coefficient that reflects the correlation between the
shrinkage of natural mortar in RAC and the RAC compressive strength.
Accurately estimating the values of b and c in Eq. (11) is of great im-
portance. A drying capacity of 70% can be observed in old concrete
when it is placed in water (or in an environment with higher humidity)
[81], which is similar to the process used to prepare RCAs under sa-
turated-surface-dry (SSD) condition. Therefore, b fexp( · )cm

PC can be esti-
mated to be 70% of c fexp( · )cm

RAC . Using the 1stOpt software, the coeffi-
cients b and c were regressed to −0.040 and −0.045, respectively,
based on the 20 groups of measurements performed in this study. It is
worth noting that the proposed model is almost entirely theoretical,
with only two regressed coefficients. Therefore, it should provide a
higher accuracy across a wider range of parameter values than the
existing models that are directly regressed based on a limited database.

6.2. Validation of the proposed drying shrinkage model

Eqs. (7) and (11) were combined with the EC2 model to predict the
drying shrinkage of RAC, and the proposed model was benchmarked
against the measured drying shrinkage of the RAC specimens from this
study and others [21,25,26,36,54,59,60,65,66]. Detailed information of
these tests is listed in Table 6. In particular, the material properties
included the compressive strengths of the parent concrete that range
from 20MPa to 110MPa, and the crushing age that ranges from
2months to 42 years. RCA r ratios of 0–100% were used to prepare the
RAC with compressive strengths of 20–104MPa. The relative humidity
during the test ranged from 40% to 77% over a duration of
54–448 days.

Fig. 1 compares the measured and predicted drying shrinkage using
the proposed model. As illustrated in Fig. 1(a), (g), and (o), a maximum
underestimation of 20% was obtained for the reference NAC with dif-
ferent w/c ratios of 0.30, 0.45, and 0.60, during the test period. This
variation is quite acceptable, as a difference of almost 30–40% between
the measured and predicted shrinkage values occurs due to the com-
bined effect of the variations in the experiment [81]. Similarly, the
proposed model slightly underestimated the drying shrinkage of the
RAC, as illustrated in Fig. 1(b)–(f) for a w/c ratio of 0.30, Fig. 1(h)–(n)
for a w/c ratio of 0.45, and Fig. 1(p)–(t) for a w/c ratio of 0.60. As the
aim of this study is to propose an RAC drying shrinkage model with a
similar degree of accuracy to that of NAC, a comparison between the
measured and calculated κsh, using the proposed model, is illustrated in
Fig. 8. To highlight the influence of parent concrete strength on the
drying shrinkage of RAC, the predicted results without the influence of
parent concrete strength (κsh,f = 1.0) are also illustrated in Fig. 8. No-
tably, for all three concrete mixtures, the proposed model can predict
κsh of RAC reasonably well, however, a different trend could be cap-
tured by ignoring the influence of the parent concrete strength.

A comparison between the predicted κsh values at the end of the
experiment, and the measured κsh values of the RAC specimens from
this study and others, a total of 95 groups of results from 262 samples, is
illustrated in Fig. 9. While several more drying shrinkage measurements
could have been obtained from similar literature, they are not included
in this study due to a lack of details regarding the parent concrete
strength. For comparison, the predicted results using RAC drying
shrinkage models available in similar literature are also illustrated in
Fig. 9, including models considering the residual mortar content [45],
weighted aggregate density [62,63], and weighted aggregate water
absorption [62,63]. Fig. 9(a) illustrates that the modified shrinkage
model proposed herein matches with the RAC κsh reasonably well, ex-
hibiting the closest mean value and the smallest coefficient of variation
(COV). The mean value of the predicted and experimental κsh values
was 0.992, and the corresponding COV was 9.10%. The other models Ta
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generated mean values of 0.908–0.969, and COVs between 16.92% and
19.60% (Fig. 9(b)–(d)).

Furthermore, the error between the calculated and measured κsh
values are almost entirely within a range of± 15% for the proposed
model (Fig. 9(a)), while the shrinkage models that do not consider the
parent concrete strength significantly overestimated or underestimated
the shrinkage of RAC, particularly when the difference between the
RAC strength and parent concrete strength is reasonably large. For
example, as illustrated in Fig. 9(b), the model only considering the
influence of CRM overestimated the shrinkage amplification factor by
33.5–35.1% for the 40–80MPa RAC prepared using 110MPa parent
concrete [65], and significantly underestimated the shrinkage amplifi-
cation factor by up to 67.2% for the 100MPa RAC prepared using RCAs
from lower-strength parent concrete [59].

6.3. Parametric study

To identify the quality of newly proposed model, a parametric study
was conducted. The considered parameters included compressive
strength of parent concrete and recycled concrete in the range of
20–80MPa, RCA r ratio of 0–100%, CRM of RCA between 20% and 60%.
The drying shrinkage were estimated under the relative humidity of
30–80% for 50 years.

Fig. 10 illustrates the influence of r ratios on the drying shrinkage of
RAC when using RCAs with different CRM values. Identical strengths of

20–80MPa were specified for both the RAC and the parent concrete.
For RCA r=100%, with a CRM of 20%, the drying shrinkage of the RAC
with strengths of 20MPa, 50MPa, and 80MPa increased by 17.4%,
20.2%, and 20.7%, respectively, compared to that of the NAC. These
percentages significantly increased with the increase in CRM values. For
example, when using RCAs with a CRM of 60%, the increase in drying
shrinkage of the corresponding RAC specimens were 55.2%, 64.0%, and
64.8%, respectively. These increments are consistent with those re-
ported previously [20]. Notably, when identical compressive strengths
were specified for both the RAC and the parent concrete, as illustrated
in Fig. 10, the shrinkage increases in the RAC were similar, with a
maximum error of 2.8% and 6.1%, for CRM values of 20% and 60%,
respectively. This phenomenon is also consistent with previous studies
[66].

Fig. 11 describes the changes in the drying shrinkage of RAC when
using RCAs with varying parent concrete strengths and the drying
shrinkage of RAC specimens with strengths of 30MPa and 60MPa, and
RCA r ratios of 0%, 25%, 50%, 75%, and 100% are illustrated. The
utilisation of higher strength parent concrete clearly helps reduce the
drying shrinkage of RAC, regardless of the strength of the RAC. When
using RCA r=100% from 30MPa parent concrete, drying shrinkage
increases of 20.1% and 67.0% were observed in the RAC with strengths
of 30MPa and 60MPa, respectively, compared to that of the NAC. This
significantly decreased to 9.3% and 12.5%, respectively, when using
RCAs from 80MPa parent concrete. This trend coincides with the
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findings reported previously in Section 5.
Fig. 12 illustrates the effect of relative humidity on the drying

shrinkage of NAC and RAC, with identical strengths specified for the
RAC and the parent concrete. The drying shrinkage decreased with the

increase in relative humidity, and identical decreases of 34.5% were
obtained for both NAC and RAC. This is primarily because, according to
EC2 model (shown in Appendix A), the effects of relative humidity and
compressive strength on the drying shrinkage of concrete are separate.
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Fig. 9. Comparison between the predicted and measured κsh using different models.
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Further experimental effort to evaluate the influence of relative hu-
midity on the drying shrinkage of concrete is required to properly
benchmark the proposed model.

The above comparative results showed that the proposed model
could provide reasonable predictions in the drying shrinkage for RAC
with a relatively wide range of parameters, as it was theoretically de-
veloped based on the shrinkage mechanism and was capable of re-
flecting the characteristics of RCAs. Despite of this, further investiga-
tion may still be required to simplify this refined model and finally
include the simplified one in the designing code. For the simplification,
the parameters in this refined model, e.g. the volume of coarse ag-
gregate in concrete, the residual mortar content, and the parent con-
crete strength, etc., could be replaced with the ones that are more ap-
plicable in structural design, e.g. the concrete mix, the bulk density of
the coarse aggregate, and the compressive strength of the resulting
concrete, etc. For instance, with proper research procedures, the ag-
gregate-to-cement mass ratio can be used to replace the coarse ag-
gregate volume in the newly model; and the RCA density can be used to
reflect the combined effect of the residual mortar content and parent
concrete strength on the shrinkage behaviour. Similar research proce-
dures could be found in research papers on lightweight aggregate
concrete.

7. Conclusions

This study aims at investing the effects of parent concrete on the
drying shrinkage of RAC, and theoretically proposing a drying
shrinkage model for RAC to account for these influences. Hence, RAC
was prepared with three groups of RCAs from the laboratory and two
groups of RCAs from real demolished projects. The compressive
strength of the parent concrete was controlled by water-to-cement ra-
tios of 0.30, 0.45, and 0.60; meanwhile, the service time of the parent
concrete ranged from 20–42 years to 1 year. The water-to-cement ratios
of 0.30, 0.45, and 0.60, and the RCA replacement ratios of 0%, 50%,
and 100% were assessed for the RAC. The drying shrinkage test was
conducted for 360 days. Using the test data obtained from this test, a
new drying shrinkage model was theoretically derived and bench-
marked against available experimental data collected from this study
and from the literature.

Similar shrinkage amplification factors κsh were observed when the
properties of the parent concrete and the RAC were similar, while
varied shrinkage amplification factors were observed when the prop-
erties of the parent concrete and the RAC were different, i.e. larger
shrinkage amplification factors for lower strength parent concrete and
vice versa. For an RCA replacement ratio of 100%, the RCAs sig-
nificantly influenced the 360-day drying shrinkage of the RAC by up to
27.6–59.6%. The variations in the κsh measurements induced by the
different strengths of the parent concrete could not be accurately re-
presented by the replacement ratio, physical properties (aggregate
density or water absorption), or residual mortar content of the RCA.
Additionally, the influence of the parent concrete service time (ranging
from 1 year to 42 years) on the drying shrinkage of RAC was limited,
with a maximum error of 8.4% in the 360-day measurements.

A new theoretical shrinkage model was proposed based on the two-
phase composite material theory to account for the influence of parent
concrete, by introducing two new parameters, namely, “κsh,a” to con-
sider the effect of the residual mortar content and “κsh,f” to account for
the difference in the shrinkage behaviour between the residual mortar
and natural mortar. The proposed drying shrinkage model could de-
scribe the drying shrinkage of RAC with different concrete strengths
reasonably well, with a mean value between the predicted and ex-
perimental values of κsh of 0.992, and a corresponding coefficient of
variation of 9.10%.
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Table A.1
Values for kh.

Notional size h0 (mm) 100 200 300 ≥500
Size coefficient kh 1.00 0.85 0.75 0.70
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Further studies to investigate the influence of the parent concrete
strength on the drying shrinkage of RAC, and the preconditions under
which this influence is significant, are necessary. Moreover, further
research is required to comprehensively evaluate the adequacy of the
proposed shrinkage model and to further simplify the design expres-
sion.
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Appendix A

The drying shrinkage of natural concrete at t days could be predicted in accordance with Eq. (A.1) and composed of three parts: βds (t, ts)
describing the shrinkage development trend; εcd,0 representing the final drying shrinkage; and kh referred to as the size coefficient depending on the
notional size h0 (mm), e.g. h0= a/2 for prism samples and h0= d/2 for cylinder samples.

=ε t β t t ε k( ) ( , )· ·cd ds s cd,0 h (A.1)

Part 1: βds (t, ts) could be calculated by Eq. (A.2) and is independent of the relative humidity. t – ts is the drying time of test samples, with the
beginning day of drying shrinkage referred to as ts.

= −
− +

β t t t t
t t h

( , ) ( )
( ) 0.04ds s

s

s 0
3 (A.2)

Part 2: εcd,0 could be estimated via concrete strength (fcm) and relative humidity RH, as shown in Eq. (A.3a)–(A.3b). αds1 and αds2 are the
coefficients depending on the cement type, e.g. values of 4 and 0.12 specified for concrete using Class N cement.
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β0.85 (220 110· ). exp ·
10

·10 ·cd,0 ds1 ds2
cm 6

RH
(A.3a)
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⎦
⎥β RH

RH
1.55 1RH

0

3

(A.3b)

Part 3: kh could be estimated using the notional size h0 (mm), and could easily obtained from Table A.1.

Appendix B. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.engstruct.2019.109888.
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