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A B S T R A C T

This paper presents a multishear bounding surface model for sands that considers evolving fabric anisotropy. The
model is formulated by decomposing the overall response into a macro volumetric response and a set of spatially
distributed micro shear responses. The micro stress–strain and stress–dilatancy relationships are defined for each
direction of the micro shear structure. The evolving fabric tensor and anisotropic state parameter are used to
characterize changes in the anisotropic structure and to satisfy the anisotropic critical state theory. The model
performance is validated by the test data under different confining pressures, densities, loading modes, and
loading directions.

1. Introduction

Sand deposits usually exhibit fabric anisotropy owing to gravita-
tional sedimentation or artificial densification. The fabric anisotropy
has an important influence on the sand response and needs to be
carefully taken into account in the design of infrastructures related to
sand deposits. Recently, the fabric anisotropy of sands and its evolution
have attracted increasing attention and have become one of the main
topics of experimental and theoretical studies in soil mechanics and
geotechnical engineering problems.

Over the past several decades, the effects of the magnitude of fabric
anisotropy and the inclination of fabric structure relative to the direc-
tion of loading on sand responses have been experimentally in-
vestigated. For instance, Yoshimine et al. [1] carried out a set of triaxial
compression and extension tests, hollow cylindrical torsion shear tests,
and simple shear tests on Toyoura sand under undrained loading. Their
experimental results indicated that the undrained stress–strain curves
and stress paths are strongly associated with the inclination of the
principal stress relative to the sedimentary axis of a sand specimen.
Yang et al. [2] studied the impact of anisotropic fabric on the de-
formation and strength of sands through undrained triaxial extension
and compression tests and concluded that the undrained shear behavior
in the triaxial extension is more contracting and softening than that in
the triaxial compression. Sun et al. [3] investigated the failure and
softening behavior of dense sands under three-dimensional stress con-
ditions using a true triaxial apparatus. Sze and Yang [4] conducted a

systematic experimental investigation into the effects of sample pre-
paration on the cyclic loading behavior of saturated sands, including
the deformation pattern, pore-water pressure generation, stress–strain
relationship, and cyclic shear strength. Yang and Luo [5] investigated
the relationship between the critical state and the particle shape
through macro-scale and micro-scale laboratory experiments in con-
junction with interpretation and analysis in the framework of critical
state soil mechanics. Oboudi et al. [6] carried out triaxial compression
tests under drained conditions on sand specimens prepared at two
different orientations of material axes and revealed that the strain and
stress behaviors of dense sands depend significantly on the direction of
loading.

Although some of the experimental studies mentioned above re-
vealed some microstructural characteristics of the sand fabric, it is not
easy to quantitatively measure the evolution process of the fabric with
regard to the critical state [7]. Recently, as a micromechanical nu-
merical analysis approach, the discrete element method (DEM) has
turned into an efficient means to investigate the physical and me-
chanical characteristics of granular materials. Some microstructural
studies have focused on the fabric evolution and the uniqueness of the
critical state. For example, Li and Li [8] investigated the anisotropic
behavior of granular materials through two-dimensional DEM simula-
tions, and showed that a void-based fabric tensor evolves toward the
same direction and anisotropy intensity when virtual specimens with
different initial fabrics deform toward the critical state. Yimsiri and
Soga [9] studied the influences of an initial fabric and its evolution on
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the shearing characteristic of virtual granular materials in terms of two-
dimensional DEM analyses. Zhao and Guo [10] conducted three-di-
mensional DEM simulations and indicated that the contact normal
fabric of initially isotropic specimens with different void ratios reaches
the same critical state. More recently, Yang and Wu [11] performed
three-dimensional undrained DEM simulations and concluded that the
contact normal fabric tensor at the critical state has nothing to do with
the intensity of the initial fabric anisotropy. Wang et al. [12] studied
the evolution characteristics of contact normal-, particle orientation-,
and void vector-based fabric tensors under biaxial loading with a con-
stant mean effective stress using the two-dimensional DEM. The results
confirmed the existence of a unique fabric tensor at the critical state for
these three types of fabric tensors, regardless of initial void and fabric
anisotropy.

On the other hand, many theoretical studies have been conducted to
develop constitutive models for sands containing some initial aniso-
tropic information of the fabric but ignoring its evolution during plastic
deformation [13–24]. For example, Li and Dafalias [13] and Dafalias
et al. [15] proposed bounding surface models using different aniso-
tropic state variables associated with the inherent fabric tensor of
sands. Rahimi et al. [21] presented a bounding surface model ac-
counting for the influences of inherent fabric anisotropy for un-ce-
mented and cemented sands and showed that the simulation values
agreed well with the torsional shear test data. However, the hypothesis
of a constant fabric with inherent initial fabric anisotropy during plastic
deformation may sometimes lead to inconsistencies between the ex-
perimental data and model simulations. For this reason, some attempts
have been made to consider the variation of fabric anisotropy during
plastic deformation in constitutive models. Wan and Guo [25] and Wan

et al. [26] proposed a micromechanical approach incorporating an
evolving second-order fabric tensor into the stress–dilatancy relation. Li
and Dafalias [27] established the theory of an anisotropic critical state.
They proposed the approach by introducing an additional term with a
scalar variable of fabric anisotropy, which is defined as the double dot
product of the tensor of the normalized deviatoric loading direction and
the tensor of the deviatoric fabric into the expression of Been and Jef-
feries’s state parameter [28]. Iai et al. [29] studied the evolution of
fabric anisotropy for granular materials using the strain space multi-
mechanism model. A comparison of simulation results by the model and
DEM indicated that the model captured the basic characteristics of the
induced fabric evolution. Kruyt [30] and Kruyt and Rothenburg [31]
proposed a fabric-based micromechanical dilatancy relation and con-
firmed that its predicted value was in good agreement with the result of
a two-dimensional DEM simulation. Recently, Gao et al. [32], Zhao and
Gao [33], Woo and Salgado [34], Gao and Zhao [35,36], and Yang et al.
[37] developed constitutive models with the evolution of fabric aniso-
tropy using the approach proposed by Li and Dafalias [27]. Dashti et al.
[38] presented a multilaminate model containing an evolving fabric
dilatancy tensor and investigated the effect of stress-induced anisotropy
on the response of liquefied sandy soils using the proposed model. In
addition to the above constitutive studies of anisotropic sands, some
constitutive models of anisotropic soft clays have been proposed. For
example, Wheeler et al. [39] presented the S-CLAY1 model, which ac-
counted for the initial anisotropy of soft clays and its evolution. Castro
and Karstunen [40] studied the installation effects of stone columns in
natural soft clays using the S-CLAY1 model. Rezania et al. [41,42] in-
vestigated the performance of the S-CLAY1 model by changing the yield
function equation and predicted the behavior of natural soft clay

Nomenclature

A fabric anisotropy variable
b intermediate principal stress ratio
d1 dilatancy parameter
Dijst stiffness tensor
e, ec current and critical state void ratios
eA, e model parameters
eij

p plastic deviatoric strain tensor
Fd0 initial fabric norm
Fij, Fij

d fabric tensor and deviatoric fabric tensor
fb, fc, fd, fm macro model surfaces
f nk

b
( ), f nk

c
( ), f nk

d
( ), f nk

m
( ) micro model lines

Ge elastic shear modulus
G nk( ), G nk

e
( ), G nk

p
( ) micro total, elastic, and plastic shear moduli

G0 shear modulus parameter
g ( ) yield shape function

xh( ) heaviside step function
h1, h2, h3 model parameters
H nk( ), H nk

p
( ) micro total and plastic shear moduli

I1, I2, I3 stress invariants
K , Ke, Kp total, elastic, and plastic bulk moduli
K0 initial consolidation stress ratio
k1, k2, kF model parameters
I unit tangential vector
Mb, Mc, Md, Mm bounding, critical, dilatancy, and maximum stress

ratios in triaxial compression
m unit tangential vector
n unit normal vector
nb, nc, nd model parameters
Nij

nk( ) projection tensor
p mean effective stress
pa atmospheric pressure
pc initial consolidation stress

pm maximum mean effective stress
pr projection center of mean effective stress
R stress ratio invariant
rij stress ratio tensor
r nk( ) micro stress ratio
r nk

b
( ), r nk

c
( ), r nk

d
( ), r nk

m
( ) micro bounding, critical, dilatancy, and max-

imum stress ratios
r nk

r
( ) projection center of micro stress ratio

sij deviatoric stress tensor
tij tensor of normalized deviatoric loading direction
w m( ) weight coefficient

angle between major principal stress and vertical axis
ij Kronecker delta

1, 2, 3 major, intermediate, and minor principal strains
ij, ij

p total and plastic strain tensors
q
p equivalent deviatoric plastic strain
v , v

e, v
p total, elastic, and plastic volumetric strains

vd volumetric strain caused by dilatancy
nk

vd
( ) micro volumetric strain caused by dilatancy
nk( ), nk

e
( ), nk

p
( ) micro total, elastic, and plastic shear strains

, 0 material parameter in bulk modulus
, 0 material parameter in bulk modulus
c critical state parameter

lode angle
nk

1
( ), ¯ nk

1
( ) mapping distances for micro stress ratio

2, ¯2 mapping distances for mean effective stress
1, 2, 3 major, intermediate, and minor principal stresses
ij effective stress tensor
nk( ) micro shear stress

state variable
anisotropic state parameter

x Macaulay bracket
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deposits during the installation of a pile with this model.
This study proposes a multishear bounding surface model for sands

considering the influence of fabric anisotropy and its evolution. A
constitutive formulation is obtained based on the multishear concept
that the macro constitutive response can be split into a macro volu-
metric response and a set of spatially distributed micro shear responses
associated with virtual micro shear structures [43,44]. This concept
originated from the slip theory of plasticity proposed by Taylor [45] for
polycrystalline metals, which was also used in the multilaminate model
[17,23], the microplane model [46], and the micro-contact model [16].
Each micro shear structure characterizes three individual micro shear
responses and three individual micro volumetric responses caused by
dilatancy in three mutually perpendicular directions. Two micro re-
lationships of stress–strain and stress–dilatancy are defined for each
direction of the micro shear structure. The evolving fabric tensor de-
pendent on the deviatoric plastic strain is used and the state parameter
associated with a scalar variable of fabric anisotropy is introduced into
the expressions for the plastic modulus and dilatancy. The applicability
of the proposed model is confirmed by comparing the predicted values
with the experimental data.

2. Model formulation

2.1. Framework of multishear model

The multishear framework can be considered to be a semi-multi-
scale modelling approach. Its basic concept is to characterize the macro
constitutive relation of sands in terms of a macro volumetric response
and a set of spatially distributed virtual micro shear responses asso-
ciated with various micro-contacts of all possible orientations in sands.
The micro-contact is randomly distributed and is a virtual representa-
tion of the contact between particles. Fig. 1 shows the representative
elementary volume of sands with a unit sphere, indicating the con-
ceptual framework for the multishear model. The normal direction of a
micro-contact in yellow is defined as the unit normal vector n on the
sphere. Corresponding to each micro-contact, a micro shear structure is
defined and its direction is assumed to be the same as that of the micro-
contact. The component of n is represented by ni, where the subscript i
(=1, 2, and 3) refers to the global Cartesian coordinate xi. The ortho-
gonal unit vectors l and m within the micro-contact are defined as two
tangential directions of a micro shear structure. Their components are
represented by li and mi. The projection of a macro deviatoric strain
tensor onto the micro-contact usually produces three micro strain
components, one of which is normal while the other two are tangential.
As the projection of a deviatoric strain tensor, they are not distin-
guishable apart from their different orientations. Therefore, they can be
termed as the micro shear strain, given by

= =N k( 1, 2, 3)nk
ij

nk
ij

( ) ( ) (1)

where the superscript (nk) of a function refers to its kth component in
the nth micro shear structure; k=1, 2, and 3 denote the l, m, and n
directions of a micro shear structure, respectively; nk( ) represents the
kth micro shear strain component in the nth micro shear structure; ij

denotes the macro strain tensor; and Nij
nk( ) refers to the projection tensor

of the kth micro shear strain component in the nth micro shear struc-
ture, expressed as

= + = + =N l n l n N m n m n N n n1
2

( ), 1
2

( ), 1
3ij

n
i j j i ij

n
i j j i ij

n
i j ij

( 1) ( 2) ( 3)

(2)

where ij refers to the Kronecker delta.
The corresponding kth micro shear stress component in the nth

micro shear structure is defined as nk( ). By assuming that the micro
shear structures are independent of each other and that the strain and
stress in each micro shear structure are uniform, and by using the vir-
tual work theorem for all strain and stress components, the macro

effective stress increment can be expressed as [44]

= +
= =

p w Nd d 2 dij ij
n

N

k

n
ij

nk nk

1 1

3
( ) ( ) ( )

(3)

where ij and =p /3ii refer to the tensor of the macro effective stress
and the macro mean effective stress, respectively; w n( ) represents the
weight coefficient for the nth micro shear structure; and N denotes the
total number of micro shear structures, which is set to 21 for an ac-
ceptable accuracy. The second term on the right side of Eq. (3) indicates
that the total deviatoric stress is equal to the superposition of the micro
shear stresses for all micro shear structures. Note that although the
micro shear structures are assumed to be independent of each other,
they are coupled macroscopically because of their integrated interac-
tions.

2.2. Fabric tensor and its evolution

The fabric of granular materials is dependent on the shape and
spatial arrangement of particles, as well as the related void and their
interactions. There are several approaches to describe the intensity of
the fabric anisotropy and the orientation of the particle arrangement.
Most of them are associated with the particle direction, void, and
contact normal. They are usually expressed by a second-order sym-
metric tensor Fij [47]. Generally, Fij can be decomposed into its sphe-
rical and deviatoric parts as

= +F F F1
3ij kk ij ij

d
(4)

where Fij
d represents the tensor of the deviatoric fabric related to ani-

sotropy, which is symmetric and traceless. In order to describe the
magnitude of fabric anisotropy, the fabric norm is defined as

=F F Fij ijd
d d . For the sake of convenience, the tensor of the deviatoric

fabric is normalized so that the critical value of a fabric norm is equal to
1. For initially orthotropic sand deposits in which the x x-1 2 plane is
located in the isotropic plane (usually sedimentary plane) and the
x3-axis is along the orientation of sedimentation, Fij

d can be expressed as

=F
F

F
F

2
3

/2 0 0
0 /2 0
0 0

ij
d

d0

d0

d0 (5)

where Fd0 is the initial fabric norm. Note that Eq. (5) follows the co-
ordinate system being consistent with the sedimentary orientation of
the sand deposits. If the coordinate system is not consistent with the
sedimentary orientation of the sand deposits, a coordinate transfor-
mation needs to be carried out.

The existing knowledge of the fabric evolution of sands is mainly
based on micromechanical investigations in terms of DEM simulations

(c) Micro shear structure

x1

α

β
n

x3

dΩ

x2

(a) Assemblage and contacts

0

n

l
m

(b) A unit sphere

Fig. 1. Illustraction of conceptal framework for multishear model.
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(e.g. [8,12]). The results of the micromechanical studies indicated that
the fabric structure at the critical state is associated with the loading
path but has nothing to do with the anisotropy of the initial fabric.
According to the study by Li and Dafalias [27], a simple fabric evolution
law is adopted as

=F k t Fd ( )dij ij ij
d

F
d

q
p (6)

where = e e2 /3ij ijq
p p p represents the equivalent macro deviatoric

plastic strain; =eij ij ij ij
p p p refers to the tensor of the macro deviatoric

plastic strain; ij
p denotes the tensor of the macro plastic strain; and tij

represents the tensor of the normalized deviatoric loading direction,
which is defined as the direction of the deviatoric plastic strain incre-
ment. For triaxial monotonic loading, tij can be expressed by the de-
viatoric stress direction =t s s s/ij ij ij ij , in which =s pij ij ij denotes
the tensor of the macro deviatoric stress. kF refers to the dimensionless
parameter that represents the rate of fabric evolution, given by

=k k k eexp( )F 1 2 , where e is the current void ratio, and k1 and k2 are
model constants. The introduction of e into the expression of kF better
simulates the constitutive response of sands with different densities.
Following the evolution law of Eq. (6), the sand fabric evolves toward
the direction of loading along with the development of deviatoric
plastic strain, and finally arrives at its critical structure.

2.3. Anisotropic state parameter

The experimental and micromechanical numerical studies showed
that the void, stress level, and fabric structure significantly affect the
sand response during loading. To consider the influence of the stress
and void, Been and Jefferies [28] proposed a simple and effective
method using a state parameter , which measures the interval between
the current and critical void ratios under the identical mean effective
stress, defined as = e ec, where ec represents the critical void ratio.
This state parameter is essentially an isotropic measure compatible with
the conventional critical state theory of granular soils. Because the
expression of this state parameter has nothing to do with the fabric
anisotropy, it is not suitable for anisotropic sands in principle. To make
this state parameter applicable to anisotropic sands, Li and Dafalias
[27] proposed an approach by introducing an additional term with the
scalar variable of fabric anisotropy into the expression of Been and
Jefferies. This scalar variable is defined as the double dot product of the
tensor of the normalized deviatoric loading direction and the tensor of
the deviatoric fabric, given by

=A F tij ij
d (7)

where A represents the scalar variable of fabric anisotropy, which
reaches 1 at the critical state. Following the proposition by Li and
Dafalias [27], the modified state parameter is defined in a simple form
as

= e A( 1)A (8)

where eA denotes the model constant and is called the anisotropic
state parameter. Note that Eq. (8) becomes identical to the expression of
Been and Jefferies when the scalar variable of fabric anisotropy is equal
to its critical value, which means that Eq. (8) has nothing to do with the
fabric anisotropy at the critical state and satisfies the uniqueness of the
critical state for anisotropic sands. The empirical expression for the
critical void ratio can be written as [13]

=e e p p( / )n
c c a c (9)

where e , c, and nc represent material constants associated with the
critical state; and pa denotes the atmospheric pressure.

2.4. Macro bounding surfaces and micro bounding lines

Based on the double-hardening bounding surface theory, two kinds

of macro model surfaces are defined as a cone and flat cap in shape. The
conical surfaces are related to the elastoplastic loading caused by a
variation in the macro stress ratio, and the cap is related to the elas-
toplastic loading caused by a variation in the mean effective stress
under a constant stress ratio. Fig. 2 shows four conical surfaces with
vertices at the origin in the principal stress space. These surfaces are
determined by the macro stress ratio invariant, their stress ratios under
triaxial compression, and the shape function of the yield surface as

= = =f R M g i( ) 0 ( b, c, d,m)i i (10)

where fb, fc, fd, and fm represent the macro bounding, critical state,
dilatancy, and maximum stress ratio surfaces, respectively;

=R r r3/2 ij ij denotes the macro stress ratio invariant, in which
=r s p/ij ij is the macro stress ratio tensor; g ( ) refers to the shape

function of the yield surface; represents the Lode angle; and Mb, Mc,
Md, and Mm denote the macro bounding, critical, dilatancy, and max-
imum stress ratios in triaxial compression, respectively. Mm is calcu-
lated by Eq. (10) when the maximum stress ratio occurs. Mb and Md
[27] are defined as =M M nexp( )b c b and =M M nexp( )d c d , re-
spectively, where nb and nd represent model constants.

To consider the impact of the intermediate principal stress on the
yield criterion, the Matsuoka–Nakai yield criterion [48] or the Lade–-
Duncan yield criterion [49] can be employed. For the Matsuoka–Nakai
yield criterion, g ( ) can be expressed as

=g R I I I I I I( ) 1
6

(3 ( )/( 9 ) 1)1 2 3 1 2 3 (11)

where =I ij1 , =I ( )/2ii rs sr2
2 , and =I3

+/3 /2 /6ij jk ki rs sr mm nn
3 represent three stress invariants. For

the Lade–Duncan yield criterion, g ( ) can be expressed as

=g R
p

I p I p( )
3

1 1
2

/ cos 1
3

cos ( / )3
3 1

3
3

1 1

(12)

The bounding surface of flat cap fp can be defined as

= =f p p 0p m (13)

where pm represents the maximum mean effective stress in the past
loading process.

Corresponding to the above macro model surfaces, four micro
model lines for the kth component in the nth micro shear structure, as
shown in Fig. 3, are defined in the pnk( ) plane as

Dilatancy surface

Critical state surface

ratio surface

CBounding surface

ratio surface
Maximum stress 

1

0

2

3

1 2 3

Fig. 2. Model surfaces in macro stress space.

H. Fang, et al. Computers and Geotechnics 110 (2019) 57–70

60



= = =f r p i0 ( b, c, d, m)nk nk nk
i
( ) ( )

i
( ) (14)

where f nk
b
( ), f nk

c
( ), f nk

d
( ), and f nk

m
( ) represent the micro bounding, critical

state, dilatancy, and maximum stress ratio lines for the kth component
in the nth micro shear structure, respectively; =r p/nk nk( ) ( ) refers to the
micro stress ratio; and r nk

b
( ), r nk

c
( ), r nk

d
( ), and r nk

m
( ) denote the micro

bounding, critical, dilatancy, and maximum stress ratios, respectively.
r nk

b
( ), r nk

c
( ), and r nk

d
( ) can be calculated by the corresponding macro

parameters and the yield shape function (see A.4 in the Appendix A).
r nk

m
( ) is calculated by Eq. (14) when the maximum micro stress ratio
occurs.

2.5. Macro volumetric deformation

The incremental stress–strain relationship for the macro volumetric
deformation can be written as (see A.1 in the Appendix A for the de-
rivation procedures)

= +
K

p
K

p p p
p

pd d 1 d 1 h( ) d
|d |

dv vd
e p

m (15)

where v represents the macro volumetric strain; vd denotes the macro
volumetric strain caused by dilatancy; Ke refers to the elastic bulk
modulus; Kp represents the plastic bulk modulus; xh( ) denotes the
Heaviside step function, given that =xh( )  0 when x 0 and =xh( )  1
when >x 0; and pd represents the Macaulay bracket, given that

=p pd  d when >pd 0 and when <pd 0.
The elastic bulk and shear moduli are given by

= +K e p p
p

1
e a

a

0.5

(16)

where is the material parameter associated with the isotropic com-
pression unloading, given by = + e e[(1 )/(2.97 )]0

2 in which 0 is
the material parameter.

The plastic bulk modulus is defined as [50]

= +K e p p
p

M g
M g R

1 ( )
( )p a

a

0.5
c

c (17)

where is the material parameter associated with the isotropic com-
pression loading, given by = + e e[(1 )/(2.97 )]0

2 in which 0 is
the material parameter.

The macro volumetric strain induced by dilatancy involves a set of
micro volumetric strains caused by dilatancy in the micro shear struc-
tures, given by

=
= =

wd 2 d
n

N

k

n nk
vd

1 1

3
( )

vd
( )

(18)

where nk
vd
( ) represents the kth micro volumetric strain component

caused by dilatancy in the nth micro shear structure. According to the
experimental results of cyclic torsional shear tests [51], the microscopic
stress–dilatancy relation is defined as

= ±d r rd ( )dnk nk nk nk
vd
( )

1 d
( ) ( )

p
( )

(19)

where d1 represents the micro dilatancy constant, assuming that the
micro dilatancy constant is the same for all micro shear structures; nk

p
( )

refers to the micro plastic shear strain, defined in Eq. (A9) in the
Appendix A; and ± is taken as positive when >d 0nk

p
( ) and negative

when <d 0nk
p
( ) .

2.6. Micro shear deformation

Following the theory of bounding surface plasticity [50], the in-
cremental stress–strain relationship for the micro shear deformation
can be written as (see A.2 in the Appendix A for the derivation proce-
dures)

= + +
G G

p r
H

p p p
p

r pd 1 d 1 d 1 h( ) d
|d |

dnk
nk

nk
nk

nk
nk

nk( )

e
( )

( )

p
( )

( )

p
( ) m

( )

(20)

where nk( ) represents the micro shear strain; G nk
e
( ) refers to the micro

elastic modulus, which can be calculated by the macro elastic shear
modulus (see A.5 in the Appendix A); and G nk

p
( ) and H nk

p
( ) denote the

micro plastic shear moduli associated with rd nk( ) and pd , respectively.
Based on the multishear bounding surface model for isotropic sands

[44], the micro plastic shear modulusG nk
p
( ) related to rd nk( ) is defined as

=G h h A G
r
r

exp( ( 1))
¯

1nk nk
nk

nk

nk

nkp
( )

1 2 e
( ) b

( )

m
( )

1
( )

1
( )

(21)

where h1 and h2 denote model constants; = r r| |nk nk nk
1
( ) ( )

r
( ) represents

the distance between the current point and the projection center for the
micro stress ratio; r nk

r
( ) refers to the projection center of the micro stress

ratio, defined as the last inflection point of the micro stress ratio in the
reverse loading or the origin in the virgin loading; and

= ±r r¯ | |nk nk nk
1
( )

m
( )

r
( ) represents the distance between the maximum

point and the projection center for the micro stress ratio, in which ± is
taken as positive when >rd 0nk( ) and negative when <rd 0nk( ) . Note

Dilatancy line

Critical state line

Bounding line

Maximum stress ratio line

( )nk

p
0

( )
c

nkr
( )

m
nkr

( )
d

nkr

( )
m

nkr

Fig. 3. Model lines in pnk( ) plane.

1
z

r 2
θ

3

zθ

zF
θM

ipop

z

Deposition plane

Fig. 4. Setup of a hollow cylindrical torsion shear test.

Table 1
Model constants for Toyoura sand.

Elasticity Critical state Plastic modulus Dilatancy Fabric

G0 =125 Mc =1.25 h1 =0.7 d1 =0.4 Fd0 =0.45
0 =0.01 e =0.934 h2 =1.8 nd =7.0 k1 =0.016

c =0.019 h3 =0.5 k2 =8.03
nc =0.7 nb =3.0 eA =0.11

0 =0.02
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that the introduction of the term with the scalar variable of fabric an-
isotropy A in Eq. (21) better simulates the constitutive response of
sands.

The micro plastic shear modulus H nk
p
( ) related to pd is given by [44]

=H h G r
r

¯nk nk
nk

nkp
( )

3 e
( ) c

( )

( )
2

2 (22)

where h3 refers to the model constant; = p p| |2 r represents the dis-
tance between the current point and the projection center for the mean
effective stress; pr denotes the projection center of the mean effective
stress, defined as the last inflection point of the mean effective stress in
the reverse loading or the origin in the virgin loading; and

= p p¯ | |2 m r refers to the distance between the maximum point and
the projection center for the mean effective stress, in which = p¯2 r
when <pd 0.

2.7. Macro stress–strain relationship

The incremental relationship between the macro stress and strain
can be expressed as

= Dd dij ijst st (23)

where Dijst represents the macro elastoplastic stiffness tensor associated
with the macro and micro quantities (see A.3 in the Appendix A).

3. Model verification

3.1. Calibration of model constants

The proposed model has 17 constants: two constants related to the
elasticity (G0 and 0), four constants associated with the critical state
(Mc, e , c, and nc), five constants related to the plastic modulus (h1, h2,
h3, nb, and 0), two constants associated with the dilatancy (d1 and nd),
and four constants related to the fabric and its evolution (Fd0, k1, k2, and
eA). These model constants can be calibrated by the following proce-
dures:

(1) G0 can be determined by the deviator stress versus axial strain re-
lationship at a very small strain of the triaxial compression tests. 0
and 0 can be inferred according to the e-p relation in the constant
stress ratio loading and un-loading in the isotropic consolidation
tests, respectively. Alternatively, 0 can be obtained fromG0 and the
elastic Poisson’s ratio by using the linear elasticity relation of the
shear and bulk moduli, i.e. = + G3(1 2 )/[2(1 ) ]0 0 in which
is the elastic Poisson’s ratio. 0 can be set to about 2–10 times of 0
if the related test data are not available.

(2) Mc, e , c, and nc can be obtained directly from the results of the
triaxial compression tests for the critical state stress ratio and the
critical state line in the e-p plane.

(3) Fd0 depends on the particle characteristics and sample preparation
methods. Its quantification is a continuing research challenge. It
can be estimated by small strain measurements performed in
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Fig. 5. Test and simulation results on undrained triaxial compression tests.
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Fig. 6. Test and simulation results on undrained triaxial extension tests.
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different directions (e.g. bender elements in the horizontal and
vertical directions) or by measuring the direction of the sand par-
ticles, the spatial distribution of voids, and the anisotropic shear
stiffness [7]. Alternatively, it can be determined based on the value
of dq/dp at the very beginning of the undrained triaxial tests [33].

(4) By ignoring the small elastic deformation, nd, eA, and kF can be
approximately estimated by =M M nexp( )d c d and Eqs. (5)–(9) at
the phase transformation state, measured from the results of the
drained or undrained triaxial compression tests for the three
loading cases under different initial states, in which Md takes the
value of the stress ratio at the phase transformation state. Further
fitting theses values of kF into =k k k eexp( )F 1 2 yields k1 and k2. After
eA, k1, and k2 are determined, nb can be obtained by

=M M nexp( )b c b at the peak stress ratio state, measured from
the results of the drained triaxial compression tests, in which Mb
takes the value of the stress ratio at the peak stress ratio state. If
different test data give different values for these model constants,
their average values can be taken. Alternatively, nb can be esti-
mated by the trial-and-error method if the drained triaxial com-
pression test data are not available.

(5) d1 can be determined based on stress–dilatancy data such as the
relationship between the volumetric and deviatoric strains in the
drained triaxial compression tests. Alternatively, it can be obtained
by the trial-and-error method if the proper stress–dilatancy data are
not available.

(6) h1, h2, and h3 control the value of the plastic modulus and can be

determined through the trial-and-error method by best matching
the model predictions to the stress–strain curve and the effective
stress path in the tests.

3.2. Model performance

Simulations of the laboratory tests by Yoshimine et al. [1] are per-
formed to confirm the prediction ability of the proposed model. The test
samples of Toyoura sands were prepared by a dry-deposited method.
Yoshimine et al. [1] systematically studied the undrained anisotropic
response of sands with a variety of confining pressures and densities
under different loading modes and directions through the triaxial
compression and extension tests, the hollow cylindrical torsion shear
tests, and the simple shear tests. Fig. 4 shows the setup of a hollow
cylindrical torsion shear test, in which 1, 2, and 3 represent the major,
intermediate, and minor principal stresses, respectively. The inter-
mediate principal stress is fixed in the horizontal direction and its value
is equal to the radial normal stress. The major and minor principal
stresses are located on the z plane. The angle α represents the in-
clining angle of the major principal stress relative to the vertical axis. As
shown in Fig. 4, because the deposition plane of the samples is hor-
izontal, this angle also reflects the inclination relationship between the
major principal stress and the deposition plane. Torsional shear tests
involve the full range of 0°–90° for angle α and 0–1 for the intermediate
principal stress ratio b where =b  ( )/( )2 3 1 3 . The model con-
stants used in all simulations are listed in Table 1, where the parameters
G0, 0, Mc, e , c, nc, nb, d1, nd, Fd0, and eA are calibrated with reference
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Fig. 7. Test and simulation results on undrained torsional shear tests
(pc = 100 kPa, b=0).
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to other macro constitutive models by Li and Dafalias [27] and Gao
et al. [32] and 0 is set to 2 times of 0. Note that some parameter
symbols in the proposed model are different from those in the macro
constitutive models. In addition, the Matsuoka–Nakai yield criterion is
employed in all simulations.

Fig. 5 shows comparisons of the simulation results and experimental
data on undrained triaxial compression tests under different initial
confining pressures and densities, where pc is the initial consolidation
stress. As can be seen from this figure, the calculated stress–strain
curves and effective stress paths are generally consistent with those of
the experimental data. The stress–strain curves for pc= 300 kPa and
pc= 500 kPa agree well with the experimental data except that the
peak stresses at low shear strains are overestimated in the calculations.
However, there are some differences between the predicted and ex-
perimental results at large strains for the stress–strain curves with
pc= 50 kPa and pc= 100 kPa. Fig. 6 illustrates comparisons of the si-
mulation results and experimental data on undrained triaxial extension
tests under different initial confining pressures and densities. As can be
observed from this figure, the calculated stress–strain curves and ef-
fective stress paths are in good agreement with the experimental data
for the cases with pc= 50 kPa and pc= 100 kPa. However, for the cases
with pc= 300 kPa and pc= 500 kPa, the model underestimates the
peak shear strengths at low strains and overestimates the dilative re-
sponses at relatively large strains after the descending post-peak re-
gime. The above comparisons indicate that the model can reflect the
influences of confining pressure and density on sand responses under
undrained triaxial compression and extension. Depending on the com-
bination of confining pressure and density associated with the value of
the anisotropic state parameter, the simulation results generally exhibit

the same characteristics for the dilative and contractive responses as
those observed in the tests. Moreover, by comparing Fig. 5 with Fig. 6,
it is found that the shear responses for triaxial compression and ex-
tension are very different under the same initial confining pressure and
density. This different behavior clearly indicates that the initial in-
herent anisotropy can significantly affect the undrained response of
sands.

Figs. 7–11 show comparisons of the simulation results and experi-
mental data for the undrained torsional shear tests under constant va-
lues of b=0, 0.25, 0.5, 0.75, and 1, respectively. Each of the figures
describes the experimental and predicted results in the stress–strain
relation and the stress path at the same b-value and different inclining
angles of the major principal stress relative to the vertical axis. Fig. 7
shows comparisons of the simulation results and experimental data
under a constant value of b=0 and angles of 0°, 15°, 30°, and 45°. As
can be seen from Fig. 7, the simulation and test results are close to each
other when the angle is equal to 30° and 45°, and there are some dif-
ferences between them when the angle is equal to 0° and 15°. Fig. 8
shows comparisons of the simulation results and experimental data
under a constant value of b=0.25 and angles of 0°, 15°, 30°, 45°, and
60°. As can be observed from Fig. 8, the model predictions are in good
agreement with the test data when the angle is equal to 30°, and there
are some differences between them when the angle is equal to other
values. In particular, for the cases of 45° and 60°, the calculated stresses
are much higher than those of the experimental data because the model
overestimates the dilative responses. Fig. 9 shows comparisons of the
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Fig. 9. Test and simulation results on undrained torsional shear tests
(pc = 100 kPa, b=0.5).
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simulation results and experimental data under a constant value of
b=0.5 and angles of 15°, 30°, 45°, 60°, and 75°. As can be seen from
Fig. 9, the simulation results are very consistent with the test data for all
angles. To compare with the existing macro constitutive models with a
similar concept, the simulation result of the macro bounding surface
model created by Gao et al. [32] is also illustrated in Fig. 9. A com-
parison of the simulated results by Gao et al.’s model, the present
model, and the experimental data indicates that the present model
provides a better prediction than the macro constitutive model in this
case. Fig. 10 shows comparisons of the simulation results and experi-
mental data under a constant value of b=0.75 and angles of 30°, 45°,
60°, 75°, and 90°. As can be observed from Fig. 10, the model predic-
tions are close to the test data when the angle is equal to 30°, 45°, 60°,
and 90°, and there are some differences between them when the angle is
equal to 75°. Note that the predicted stress–strain curve for the angle of
75° is situated below the curve for the angle of 90°. The reason is that
different void ratios are used in the calculations. For convenience of
explanation, the result with the same void ratio is shown in violet in
Fig. 10, indicating that there is no such reversal. Fig. 11 shows com-
parisons of the simulation results and experimental data under a con-
stant value of b=1 and angles of 45°, 60°, 75°, and 90°. As can be seen
from Fig. 11, the results of the simulations and tests are in good
agreement when the angle is equal to 60° and 90°, and there are some
differences between them when the angle is equal to 45° and 75°.
Moreover, it can be observed from Figs. 7–11 that the proposed model
can accurately predict the overall trends of the sand responses observed

in the tests, i.e. the dilative and contractive responses of sands generally
increase with an increase in angle α. This characteristic indicates that
the fabric anisotropy acts a significant part in the undrained sand re-
sponse under the same loading in different directions.

Fig. 12 shows comparisons of the simulation results and experi-
mental data from the undrained simple shear tests under initial iso-
tropic consolidation stresses of 100 kPa. K0 in the figures represents the
initial consolidation stress ratio, defined as the initial value of the ratio
of the lateral effective stress to the vertical effective stress. Fig. 13
shows comparisons of the simulation results and experimental data for
the undrained simple shear tests in the initial anisotropic consolidation
state, where the initial vertical effective stress is equal to 200 kPa and
K0 is equal to 0.5. The simulation results in Figs. 12 and 13 show that
the model can reasonably predict the general responses of sands ob-
served in undrained simple shear tests under the initial isotropic and
anisotropic consolidation states, although there are some differences in
magnitude between them.

By comparing the simulated results with the experimental data in
Figs. 5–13, it can be concluded that all 41 simulations are able to
capture the general trends of the experimental data with a single set of
model parameters given in Table 1. These simulation results confirm
that the scalar fabric anisotropy variable A and the anisotropic state
parameter are very useful in accounting for the effect of fabric ani-
sotropy on the sand responses. As can be seen from the above simula-
tion results, however, in some cases, the simulation results and ex-
perimental data are different in magnitude to a certain degree. In fact,
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Fig. 11. Test and simulation results on undrained torsional shear tests
(pc = 100 kPa, b=1).
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Fig. 12. Test and simulation results on undrained simple shear tests
(pc= 100 kPa, K0= 1).
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the parameter eA, which controls the plastic response of sands, is set as a
constant for simplicity in the proposed model, but the dependences of eA
on the confining pressure and density are neglected. By introducing eA
dependent on e and p, the simulated results may be further improved.
Therefore, it is necessary to propose a better expression for eA related to
e and p in the future.

3.3. Fabric evolution

Figs. 14 and 15 show the variations of the fabric anisotropy variable
and fabric norm with shear strain under triaxial compression (b=0,
α=0° and b=0, α=45°) and extension (b=1, α=60° and b=1,
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Fig. 13. Test and simulation results on undrained simple shear tests
(pc = 133 kPa, K0= 0.5).
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Fig. 17. Evolution of fabric norm for torsional shearing.
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α=90°), respectively. From these two figures, it can be seen that the
fabric anisotropy variable and the fabric norm are directly proportional
to the shear strain except that the values of the fabric norm under
triaxial extension first decrease and then continuously rise to the cri-
tical value of 1. This property is similar to that predicted by the macro
constitutive model [27].

Fig. 16 shows the variation of the fabric anisotropy variable with the
shear strain for different angles at b=0.5. As can be seen from this
figure, the fabric anisotropy variable is directly proportional to the
shear strain during loading and finally arrives at the critical value of 1.
Fig. 17 illustrates the variation of the fabric norm with shear strain for
different angles at b=0.5. As can be observed from the figure, the
fabric norm decreases during the initial stage of loading when the angle
α is greater than 45°, and then increases to the critical value of 1. The
reason for this behavior is that the fabric tensor changes from its initial
structure caused by the specimen preparation to that corresponding to
the applied stress at b=0.5, while its fabric norm decreases to adapt
for this change. However, for a small angle, this adjustment is not very
large or there is no such adjustment. The similar behavior in which the
fabric norm first decreases and then increases toward its critical state

was also confirmed by the results of the DEM simulation [8] and the
macro constitutive model [32]. Figs. 16 and 17 also indicate that sands
can reach their critical states only at very high strain levels, where the
sand fabric is fully adapted to the loading direction, forming a stable
anisotropic structure.

Figs. 18 and 19 illustrate the variations of the fabric anisotropy
variable and fabric norm with a shear strain under triaxial compression
(b=0, α=45°) for different initial degrees of anisotropy, respectively.
The initial values of the fabric norm used in the simulations are equal to
0.2, 0.4, 0.6, and 0.8. From these two figures, it can be seen that under
different initial anisotropies, the fabric anisotropy variables change si-
milarly, while the fabric norms show different characteristics. When the
initial fabric norm is greater than 0.4, the fabric norm decreases in the
initial loading stage and then increases to a critical value of 1. In ad-
dition, the fabric anisotropy variable varies little with the initial ani-
sotropy, while the fabric norm varies greatly.

4. Conclusions

This paper presented a multishear bounding surface model for an-
isotropic sands in the framework of the bounding surface plasticity
theory and anisotropic critical state theory. This originated from an
existing multishear model for isotropic sands. The main features and
conclusions of the model can be summarized as follows:

(1) The model describes the complex multiaxial behavior of sands by
superposing a one-dimensional macro volumetric response and a set
of spatially distributed one-dimensional virtual micro shear re-
sponses. With this simple decomposition approach, the model can
automatically account for the noncoaxial behavior of strain and
stress increments without requiring additional model parameters,
while most macroscopic constitutive models lack this capability.

(2) The model adopts a simple evolution law of the fabric tensor de-
pendent on the deviatoric plastic strain and considers the effect of
evolving fabric anisotropy on sand responses. Following this evo-
lution law, the sand fabric evolves toward the loading direction
with the development of the deviatoric plastic strain, and finally
reaches the critical structure.

(3) The model uses the anisotropic state parameter in the expressions of
the plastic modulus and dilatancy. Thus, the model satisfies the
anisotropic critical state theory and has a unique critical state line
and unique critical fabric at the critical state.

(4) The model was used to simulate a series of undrained laboratory
tests on saturated Toyoura sand specimens prepared by the dry-
deposited approach under different confining pressures, densities,
principal stress directions, and intermediate principal stress ratios.
A comparison between the experimental data and model predic-
tions indicated that the model captured the complex behavior of
sands with a single set of model parameters.
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Fig. 19. Evolution of fabric norm for different initial degrees of anisotropy.
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Appendix A. . Constitutive relation

A.1. Stress–strain relationship for macro volumetric deformation

The volumetric strain increment includes elastic and plastic parts, i.e.

= +d  d  dv v
e

v
p (A1)

where v
e and v

p are the elastic and plastic volumetric strains, respectively. Moreover, the plastic volumetric strain involves one caused by a change in
the mean effective stress and one caused by dilatancy.

The elastic volumetric strain increment is given by

=
K

pd 1 dv
e

e (A2)

The plastic volumetric strain increment without one caused by dilatancy is given by

=
K

h p p p
p

pd d 1 ( ) d
|d |

dv
p

vd
p

m (A3)

From Eqs. (A1)–(A3), the incremental relationship between the mean effective stress and volumetric strain can be expressed as

= +
K

p
K

p p p
p

pd d 1 d 1 h( ) d
|d |

dv vd
e p

m (A4)

Eq. (A4) can also be written as

=
K

pd d 1 dv vd (A5)

where K is the bulk modulus, given by

= +K
K K

h p p p
p

1 1 ( ) d
|d |e p

m

1

(A6)

A.2. Stress–strain relationship for micro shear deformation

The micro shear strain increment includes elastic and plastic parts, i.e.

= +d  d  dnk nk nk( )
e
( )

p
( )

(A7)

where nk
e
( ) is the micro elastic shear strain. Its increment is given by

=
G

d 1 dnk
nk

nk
e
( )

e
( )

( )

(A8)

The micro plastic shear strain increment is given by

= +
G

p r
H

h p p p
p

r pd 1 d 1 ( ) d
|d |

dnk
nk

nk
nk

nk
p
( )

p
( )

( )

p
( ) m

( )

(A9)

From Eqs. (A7)–(A9), the micro shear strain increment can be expressed as

= + +
G G

p r
H

p p p
p

r pd 1 d 1 d 1 h( ) d
|d |

dnk
nk

nk
nk

nk
nk

nk( )

e
( )

( )

p
( )

( )

p
( ) m

( )

(A10)

A.3. Macro stress–strain relationship

The micro shear stress increment can be written as

= +p r r pd d dnk nk nk( ) ( ) ( ) (A11)

From Eqs. (A10) and (A11), the micro shear stress increment can be expressed by

= +G G H r pd d (1 / ) dnk nk nk nk nk nk( ) ( ) ( ) ( ) ( ) ( ) (A12)

where G nk( ) and H nk( ) are micro shear moduli related to the micro stress ratio and mean effective stress, respectively, given by

= +G
G G

1 1nk
nk nk

( )

e
( )

p
( )

1

(A13)

= +H
G H

p p p
p

1 1 h( ) d
|d |

nk
nk nk

( )

e
( )

p
( ) m

1

(A14)

From Eqs. (18), (19), (A7), (A8), and (A12), the volumetric strain increment caused by dilatancy can be expressed by
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= ±
= =

w d r r G
G G

G
H

r pd 2 ( ){(1 )d 1 (1 ) d }
n

N

k

n nk nk
nk

nk
nk

nk

nk

nk
nk

vd
1 1

3
( )

1 d
( ) ( )

( )

e
( )

( )

e
( )

( )

( )
( )

(A15)

Substituting Eq. (A15) into Eq. (A5) yields

= ±
= =

p K w d r r G G dd {d 2 ( )(1 / ) }
n

N

k

n nk nk nk nk nk
1 v

1 1

3
( )

1 d
( ) ( ) ( )

e
( ) ( )

(A16)

where K1 is given by

=
±= =

K K
K w d r r r G H G1 2 ( ) (1 / )/n

N
k

n nk nk nk nk nk nk1
1 1

3 ( )
1 d

( ) ( ) ( ) ( ) ( )
e
( ) (A17)

From Eqs. (1), (3), (A12), and (A16), the incremental relationship of the macro stress and strain can be expressed as

= Dd dij ijst st (A18)

where Dijst is given by

= + +
= =

D K Q w Q Q G N N2 ( )ijst ij st
n

N

k

n nk
ij

nk
ij

nk
st

nk
1

1 1

3
( ) ( ) ( ) ( ) ( )

(A19)

where

= +
= =

Q w r G H N2 ( 1 / )ij ij
n

N

k

n nk nk nk
ij

nk

1 1

3
( ) ( ) ( ) ( ) ( )

(A20)

= ±Q K d r r G G( )(1 / )nk nk nk nk nk( )
1 1 d

( ) ( ) ( )
e
( ) (A21)

A.4. Relationship between macro and micro stress ratio parameters

The relationship between the micro and macro stress ratio parameters can be expressed as [44]

= =
= =

r M g
w N

i2
3

( )
2 | |

( b, c, d)i
nk i

n
N

k
n nk

( )

1 1
3 ( )

33
( ) (A22)

A.5. Relationship between macro and micro elastic shear moduli

The relationship of the micro and macro elastic shear moduli can be expressed as [44]

=
= =

G G
w N

4
3 2 | |

nk

n
N

k
n nke

( ) e

1 1
3 ( )

33
( ) 2 (A23)

where Ge is the macro elastic shear modulus, given by the empirical equation [52] as

=
+

G G e
e

p p
p

(2.97 )
1e 0

2

a
a

0.5

(A24)

where G0 is the elastic shear modulus parameter.
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