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A B S T R A C T

The relationship between built environment and travel behaviour has been a topical subject of academic debate over
the last two decades. This has given rise to a plethora of empirical literature in this area of study. Ultimately, these
studies were conducted using statistical models that fail to explain spatial non-stationarity of the processes in their
dataset. To improve understanding concerning built environment and travel behaviour interactions, local model
against global model is suggested. The aim of this study is to analyze the spatial variation in travel behaviour and
built environment interactions using Geographically Weighted Logistic Regression (GWLR) and at the same time
accounting for the individual attributes of commuters (e.g., demographic and socioeconomic characteristics). Based
on valid responses from 1028 survey points carried out in Benin metropolitan region, a GWLR of travel mode choice
was estimated. The result shows that unlike global statistics, local model revealed a significant spatial variation in the
association between travel mode choice and the factor scores of demographic and socioeconomic variables across
neighbourhoods. GWLR model also revealed the occurrence of spatial mismatch between demographic and socio-
economic characteristics, and this created a dichotomy by demarcating the neighbourhoods into two levels of in-
fluence. The result further showed that built environment variables are weak predictors of mode choice in the region.
Local model proved to be most suitable for exploring this relationship since it accounted for local variation which is
often lost when using global models.

1. Introduction

The interaction between urban built environment and travel behaviour
has provoked global responsiveness over the last two decades. Though
studies on such association has been linked to the work of Mitchell and
Rapkin (1954), many contemporary scholars and associated practitioners
still show keen interest in the study of this relationship perhaps, owing to
the growing importance and effectiveness of using the resultant informa-
tion for policy reasons and achieving desirable transport objectives in-
cluding the issue of excessive carbon emission from car exhaust and over-
reliance on fossil fuel. Indeed, the non-spatial and spatial changes that take
place in the urban environment have created diverse problems that need
to be managed to achieve sustainable development. The need to under-
stand these problems has given rise to a plethora of literature which cut
across various regions and diverse disciplines.

Transport planners and other applied geographers have dedicated a
chunk of their time and energy to study the relationship between travel

behaviour and series of explanatory variables which are classified into
individual and built environment attributes. Ultimately, these studies were
carried out using statistical models that fail to account for spatial non-
stationarity of the processes in their dataset (Rahul & Verma, 2017; Sun,
Yan, & Zhang, 2017; Zhang, Yao, & Liu, 2017; Zwerts, Allaert, Janssens,
Wets, & Witlox, 2010). From the geographers’ perspective, understanding
local variability in a relationship is key to remedying spatial disparities.
However, global models of travel behaviour are hinged on the choice of
individual decision-maker who is seen as the actor assessing the benefits
and cost of their travel choices (Pike & Lubell, 2016) and the personal and
environmental factors that influence such behaviour. These global models
often return aggregated result which is generalised for an entire region of
interest. Clearly, the parameters in such models assume fixed relationships
between the built environment, individual characteristics and travel be-
haviour across space. Hence, spatial heterogeneity or disparity in re-
lationships is lost.

To address the limitation of global models of travel behaviour and built
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environment interactions, Geographically Weighted Logistic Regression
(GWLR) approach (credited to Brunsdon, Fotheringham, & Charlton,
1996) is suggested. This is because the parameters of the model are al-
lowed to vary over a geographic area of interest and thereby highlighting
the spatially varying relationships between variables. Yet, no earlier stu-
dies have accounted for the spatial dimension of this relationship or ex-
plore the local variability using spatial logistic model. In other words,
there is a dearth of literature on this topic that adopted a location-specific
approach while using a logistic modelling framework for data analysis.
The underlying idea is to understand the spatial (i.e. the built environ-
ment) and non-spatial (i.e. the individual attributes) factors that influences
travel behaviour and how such influence varies in space. The need to
improve understanding on spatially varied relationships over a geographic
area of interest is increasingly gaining momentum among geographers and
transport planners (Brunsdon et al., 1996; Du & Mulley, 2012; Wang &
Chen, 2017). The reason is credited to the usefulness of the derived in-
formation which serves as a valuable tool for strategic planning and policy,
such as resource allocation and projection, transport infrastructural de-
velopment and adjustment, land use planning and restructuring, etc.

In this study, the spatial variation in travel behaviour and built en-
vironment interactions were explored using GWLR and simultaneously
account for the individual attributes of commuters which are composed of
their demographic and socioeconomic characteristics. The GWLR model
was computed for Benin Metropolitan Region (BMR) to explore the in-
trinsic relationships that may exist between the explanatory variables and
travel mode choice, focusing more on the significant spatial varying re-
lationships at the neighbourhood-level which global models could not
achieve. BMR is characterised by varying travel behaviour which is in-
herent in the travel mode choices of people across neighbourhoods. For
example, some neighbourhoods are mostly car dependent and yet some
are essentially bus dependent. These different choices in travel mode
utilisation may be influenced by factors that are equally heterogeneous
across neighbourhood space. It is expected that when global models are
used for this kind of analysis, neighbourhood-level relationships may be
masked. Since it is assumed that the neighbourhoods may present distinct
pattern of relationship when results are disaggregated. By employing
GWLR to analyse the relationship between the travel behaviour of the
commuters in BMR and their various individual and built environment
characteristics, it is expected that each neighbourhood may present dis-
tinct pattern of relationship such as strong and weak magnitude or ne-
gative and positive direction. In fact, GWLR has the proficiency of pre-
senting spatially varying regression coefficient values and strength of
relationship for each neighbourhood in BMR on a map. Neighbourhoods
were chosen as the geographic element of analysis and mapping.
Specifically, the study is designed to evaluate the performance and pre-
dictive capability of GWLR model of travel behaviour and built environ-
ment interactions so as to compare the fitness and outcomes with those of
Global Logistic Regression (GLR) model.

The rest of the article is categorized into Section 2 which focused on
the background literature; Section 3 description of the data and study
area; Section 4 explains the methodology of the study; Section 5 pre-
sented and discussed the empirical modelling results, Section 6 focused
on the discussion of the implication of the results and in section 7 the
study was concluded.

2. Background literature

Several studies have been dedicated to the investigation of the inter-
action between travel behaviour and built environment characteristics.
The most prominent technique for modelling this relationship is the GLR
models (Antipova, Wang, & Wilmot, 2011; Haybatollahi, Czepkiewicz,
Laatikainen, & Kytta, 2015; Kim & Wang, 2015; Sun et al., 2017; Taaffe,
Gauthier, & O'Kelly, 1996; Vega & Reynolds-Feighan, 2009; Vovsha,
1997). This modelling technique is designed to return fixed parameter
estimates which are used exclusively to explain the relationship between
the built environment, individual characteristics and travel behaviour.

Even though the GLR models utilize disaggregate data (Ben-Akiva &
Bierlaire, 1999), it results are often aggregated using one value to explain
the relationship between variables of an entire region with varying en-
vironmental and social characteristics. For example, people often choose
different neighbourhood environment to reside depending on their per-
sonal and household characteristics with particular concern to the distance
they are eager to commute for work purposes. Thus, groups of people who
live in different places with diverse attributes associated with their social,
demographic and physical characteristics, can exhibit different travel be-
haviours (Pitombo, Kawamoto, & Sousa, 2011). Travel behaviour has been
argued to be influenced by a diversity of factors and such relationship may
strongly vary in space.

Previous literature suggests that these factors are either built en-
vironment related (Banister, 1997; Boarnet & Crane, 2001; Cao, 2014;
Dieleman, Dijst, & Burghouwt, 2002; Ewing & Cervero, 2010; Zhang,
Hong, Nasri, & Shen, 2012) or individually oriented such as demo-
graphic and socioeconomic (Bhat & Koppelman, 1993; Cheng, Bi, Chen,
& Li, 2013; Pitombo et al., 2011; Xiong & Zhang, 2014). It is certainly
equivocal why the estimated impact varies with places and regions and
how the variables of differential regional policies on land use would
likely change commuters travel behaviour. Such knowledge gap (as
noted by Zhang et al., 2012), has made it tough for decision-makers to
appraise land use policies and plans according to their impact on travel
behaviour, and thus, their effect on congestion mitigation, greenhouse
gas emission reduction and energy conservation.

GLR is the most common technique in the built environment and travel
behaviour interaction literature. For example, choice models (discrete)
have recently become increasingly appealing to transport geographers for
the study of travel behaviour applications such as mode choice and travel
time choice (Ben-Akiva & Bierlaire, 1999; Bierlaire, 2006; Pike & Lubell,
2016; Rahul & Verma, 2017; Sun et al., 2017; Varotto, Glerum,
Stathopoulos, Bierlaire, & Longo, 2017; Vovsha, 1997; Zhang et al., 2017).
The major advantages of GLR models are that they have the ability to
account for parameter and error estimation since the aggregation within
the data group has been taken into consideration. In addition, the model's
outstanding performance depends on the identification and categorization
of the key influencing factors (Zhang et al., 2017).

Interestingly, GWLR models extend the benefits of global models
two steps further by strengthening of fixed parameters across space.
GWLR can capture potential heterogeneity in the process of measuring
the relationship between travel behaviour and the highlighted ex-
planatory variables. Furthermore, the model can display the parameter
estimates and strength of relationship on a map, depicting spatial var-
iation by neighbourhoods. However, one debatable assumption of the
GLR models is that the impact of explanatory factors on travel beha-
viour is stationary across neighbourhoods.

To account for the presence of potential spatial non-stationarity in the
process of producing the geographic data several empirical spatial models
which have emerged in recent years, and have been appropriately applied
in diverse areas of interest. Some examples of these applications are the
Brunsdon, Fotheringham and Charlton Geographically Weighted
Regression (GWR) method (Du & Mulley, 2012; Fernandez, Chuvieco, &
Koutsias, 2013; Mathews & Yang, 2012; Nkeki & Osirike, 2013; Pirdavani,
Bellemans, Brijs, Kochan, & Wets, 2014; Rodrigues, de la Riva, &
Fotheringham, 2014; Selby & Kockelman, 2013; Wang & Chen, 2017;
Zhao, Chow, Li, & Liu, 2005), Bayesian Poisson models (Abdel-Aty, Lee,
Siddiqui, & Choi, 2013; Aguero-Valverde, 2013; Aguero-Valverde &
Jovanis, 2008; Huang et al., 2016; Lee, Abdel-Aty, & Jiang, 2014), auto-
logistic models (Augustin, Mugglestone, & Buckland, 1996; Flahaut,
2004), and Geographically Weighted Poisson Regression (GWPR) tech-
nique (Hadayeghi, Shalaby, & Persaud, 2010; Nakaya, Fotheringham,
Brunsdon, & Charlton, 2005).

GWR is the widely adopted spatial modelling technique. This is
because it outperforms global models and disaggregates results into
geographic units. Few or no studies have used such spatial parameters
to explain the spatial variability in travel behaviour and built
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environment interaction. GWR is a semiparametric Gaussian error term
designed for estimating numerical responses (Nakaya, 2014). However,
the response data for travel behaviour (such as mode choice) is often
discrete (dichotomous) in format and such can appropriately be ana-
lysed using a spatially-based logistic model. The GWLR model that is
applied in this study is a modified extension of GWR specifically de-
signed to fit binary outcome with geographically varying coefficients
(Fotheringham, Brunsdon, & Charlton, 2002; Nakaya, 2014).

In summary, it is clear in previous literature that GWR and other
spatially weighted models outperforms global models for numerical and
count responses (Du & Mulley, 2012; Hadayeghi et al., 2010; Huang
et al., 2016; Nkeki & Osirike, 2013; Wang & Chen, 2017). Though
limited studies have analysed discrete responses using appropriate
spatial models such as GWLR, the conclusion still shows that such
models estimation returned better fitness than global models. For in-
stance, Wang, Kockelman, and Wang (2011) used combined multi-
nomial logit statistics with GWR approach to anticipate five classes of
land use change in Austin, Texas, and control for some built environ-
ment characteristics. Their result suggested that the multinomial logit-
based GWR model worked reasonably well with their discrete response
datasets. Furthermore, Paez (2006) used a binomial probit model which
was weighted geographically to model spatial variability using data
from California's BART system. The results show that considerable
parametric variation exists across geographical space and that statis-
tical fitness of the local models, was found, by means of a likelihood
ratio test, to be higher than the global (homoscedastic) model.

2.1. Geographically weighted regression

The model GWR was introduced by Brunsdon et al. (1996);
Fotheringham, Charlton, and Brunsdon (1998) and Fotheringham et al.
(2002). They used the term to describe a family of spatially derived
regression models that are designed to assign weight to the observations
in a dataset which is dependent on the distance from a particular
geographic location referred to as regression point. The con-
ceptualization of GWR is to model spatial data so as to understand
spatial processes and this was achieved using the concept of local
likelihood (Fotheringham et al., 2002). This technique is essentially
designed to explore process heterogeneity in the spatial dataset. Spatial
non-stationarity describes a scenario whereby global models cannot
properly explain the relationship between variables (Brunsdon et al.,
1996). Like some other local modelling techniques, GWR seeks to
model spatial process heterogeneity found in geographic datasets. It
provides regression estimates at every point within the sample region
and also points that may not have been sampled in the same region
(Wolf, Oshan, & Fotheringham, 2017).

The weight assigned to each observation in the data is based on
distance-decay conception in which the weight of the observations re-
duces as they move farther away. This distance-decay weighting system
operates by a kernel function mechanism designed to reduce the in-
fluence of the farther observations on the location of interest. The GWR
method uses the Ordinary Least Square (OLS) regression model's
equation (see Eq. (1)) in its initial development. The fundamental dif-
ference is that unlike the OLS the GWR take into cognizance the geo-
graphic characteristics of the dataset by incorporating the location co-
ordinates of each data points into the equation (see Eq. (3)). To
properly comprehend the development of the GWR model, considering
the global regression formulation is paramount. It is written as:

= + +y xi
k

k ik i0
(1)

where yi denotes ith observation of the criterion variable as it related to
each of the independent variable(s) xk, the beta signs ( 0 to k) re-
present the number of coefficients of the predictors to be estimated, xik
is the observation of the corresponding kth independent variables in the
model, while i represents the error term with zero means. If these

conditions are satisfied, the OLS parameter to be estimated using the
matrix notation, is written as:

= x x x yˆ ( )t t1 (2)

where x is a matrix of the independent observations with the elements
of the first column set to 1, y denotes the vector of the dependent ob-
servations, and ˆ denotes the vector of the OLS coefficients to be esti-
mated, while x x( )t 1 is the inverse of the variance matrix.

The GWR model extends the OLS equation by permitting local
parameters rather than global ones to be estimated (Fotheringham
et al., 2002). The model which assumes non-stationarity in the process
of exploring relationships produces an equation for all the components
in the data by standardizing each one using the target feature and its
corresponding neighbours. It is designed to consider the spatial element
in a dataset by integrating the geographic coordinates of each ob-
servation in the equation. The precept behind the GWR technique is
that parameters are estimated locally (that is anywhere within the re-
gion of interest) given a dependent variable and independent variables
which are often measured at any known location i (Brunsdon et al.,
1996). To disaggregate the parameters of the global model, Brunsdon
et al. (1996) and Fotheringham et al. (2002) rewrote Eq. (1) (by in-
corporating geographic coordinates) as:

= + +y u v u v x( , ) ( , )i i i
k

k i i ik i0
(3)

where u v( , )i i is a spatial element depicting the geographic location of
point i within the region of interest, u v( , )k i i is the value of the kth
parameter at location i. In otherwords, it is the coefficient of the in-
dependent variable(s) at point i. This parameter value is often presented
and measured in a smooth surface allowing certain points to indicate
the spatial variability of the surface (Fotheringham et al., 2002).

Eq. (3) simply shows that for each geographic location u v( , )i i , the
value of the criterion variable yi is explained by the changes in the
parameter estimates or coefficients k predictors xk. Unlike the OLS
model that absolutely generalizes the parameter estimate of the pre-
dictors at a point i where the data was collected as shown in Eq. (1), the
GWR compute the parameter estimates of each independent variables
for locations that lie between data points and this ease up the genera-
tion of a detailed smoothing map of the predicted spatial variations in
relationships (Brunsdon et al., 1996). In GWR, estimating the para-
meters requires extending the matrix notation in Eq. (2) (which uses a
constant weighting method) in such a way that each observation is
weighted according to its closeness to location i. The formulation by
Fotheringham et al. (2002) and Brunsdon et al. (1996) basically in-
troduced a spatial component and distance-decay concept in the
weighting which is written as:

=u v x w u v x x w u v yˆ ( , ) ( ( , ) ) ( , )i i
t

i i
t

i i
1 (4)

where ˆ denotes an estimated , and w u v( , )i i represents a n by n matrix
where each observed point i in the region under study is geographically
weighted. Hence, Eq. (2) was rewritten as:

=i x w i x x w i yˆ ( ) ( ( ) ) ( )t t1 (5)

where i is the location within the matrix element, while w i( ) is a
weighted structure that is based on the closeness of point i to the
sampling locations around i (capturing the variation of the weight w
with location i).

3. Study area and data preparation

To establish the travel behaviour and built environment interaction,
several types of data sets were used in this study such were grouped into
spatial and non-spatial data. Most of the spatial datasets were utilised in
defining the built environment (which describes the physical results of
land use planning and capital investments (Wang & Chen, 2017) of the
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Fig. 1. The 55 delineated neighbourhoods of Benin Metropolitan Region. Source: Updated by Authors from Connah (1975).
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study area while the non-spatial datasets described individual attributes
of household and travel mode characteristics (e.g. demographic and
socioeconomic datasets).

3.1. Study area

The data for this study is based on datasets available for Benin
metropolis one of the most vibrant traditional cities in Nigeria and a
fast-growing commercial area, supported by government and financial
institutions with over 50 identified major residential neighbourhoods.
The area is located geographically between latitudes 6° 16′ to 6° 33′ N
of Equator and longitudes 5° 31′ to 5° 45′ E of Greenwich Meridian and
serve the role of administrative capital of Edo State (see Fig. 1).

Right from the outset, BMR had always been a region of attraction
because of its commercial and administrative roles. For example, the
ancient Benin Empire was prominent and regarded as the centre for
trade in ivory, pepper and slaves. The kingdom's artisans were noted for
wood, ivory carving and bronze casting. These socioeconomic roles are
still functional (though gradually fading away) in this contemporary
era. Presently, BMR has experienced a transformation from agro-based
socioeconomic activities to a growth pole of commercial and adminis-
trative functionality, supported by numerous financial establishments,
educational, health and other plethora of corporate activities. Basically,
the urban economy is dominated by government in the formal sector
and trading in the informal sector.

The region is characterised by heterogeneous population consisting
of the indigenes and migrants from other parts of the country.
Originally, it was the hometown of the Binis or Edos. The region has
witnessed a tremendous growth in population (Onokerhoraye, 1977)
between 1952 and 2006. By 1952, the population of Benin was 53,753
and in 2006, the population for the region rose to 1,085,676 (NPC,
2006). Estimate from census statistics shows that the region is com-
posed of 248,620 households and an average of 6–7 persons per
household.

BMR is well-connected by road, though the region has poor quality
road structure and related infrastructure which has over the years in-
hibited accessibility and free traffic flow. The urban core is accessible
from every direction of the metropolitan region. This is very much tied
to the fact that access roads to such axis are mostly dual carriageways.
These roads are fairly well designed and have recently been upgraded
by constructing sidewalk on both sections of each road. However,
during peak hours, the expected ease in accessing the urban core or the
CBD is critically impeded by traffic congestion. This is owing to the
stark reality that an enormous amount of vehicles must access such
location within the time frame (peak hours).

The metropolitan region generally depends on vehicular mode for
urban travel, specifically, work-related travel. Unlike cities of most
developed countries, the region lacks effective means of mass transit
such as intracity rail or the modern speed rail system, intracity inland
water transport, effective bus services, etc. The major modes of urban
travel in the region are: private car, taxi, public minibuses (locally
called tuketuke), medium compartment bus (known as comrade bus),
small compartment bus (such as uniben shuttle bus) and recently in-
troduced engine-based tricycle (popularly called keke). The uniben
shuttle buses were originally designed to provide cheap transportation
services for the students of the University of Benin. These buses ply two
major routes within the metropolitan region-Ugbowo-Ring Road route
and Ugbowo-New Benin Market routes. Recent government policy ac-
tion took the tricycle off the major roads and restricted it to residential
access roads. The comrade bus is a joint government and private
partnership urban transit initiative that ply's the trunk roads connecting
the CBD (Ring Road axis) with the suburban areas of the region.
Basically, the taxis and tuketuke buses are not tailored to any custom
route as they are ubiquitous across almost every route within the me-
tropolitan region.

The public transport is uncoordinated and mainly in the hand of

individuals. Most often personal cars are converted to public transport
so as to increase household earnings. The region like most cities in
Nigeria is characterised by very low household earnings and income.
For example, a recently conducted survey (Nkeki, 2018) revealed that
over 61 percent of the households in the region earn less than ₦50,000
monthly (i.e. less than $130).

3.2. Spatial data

The built environment data was mined from the spatial data such as
Shuttle Radar Topography Mission (SRTM) elevation data of the region
with a resolution of 30 m and this was downloaded from NASA's web-
site through earth explorer platform. In addition, a high resolution (2 m
spatial resolution) Worldview satellite imagery of the City of Benin in
multispectral modes (captured on the 22nd December 2015 with 0.00%
cloud cover) were acquired from Digital Globe foundation, Colorado.
Road network (vector dataset) of the City was mined from open street
map 2016 database. These datasets were manipulated and analysed
using various GIS and spatial statistical techniques to generate data for
indexes adopted to define the built environment variables.

For survey and spatial statistical analysis purposes, neighbourhood-
level data was generated within the GIS system. This produced a con-
solidated shapefile of the neighbourhood boundary of the region. 55 of
these neighbourhoods were identified in the generality of the region
(see Fig. 1). This was delineated based on the prominent traditional
quarters of ancient Benin City as presented by Connah (1975). He de-
lineated the boundaries of Benin City quarters using the ancient linear
earthworks (moat and walls). Other areas that were not covered by
Connah's delineation (particularly, the northeast part of the metropolis
and most parts of the city of the edge) were updated from the field with
the aid of map archive from the Ministry of Physical Planning and
Urban Development and the Federal Surveys of Nigeria. Neighbourhood
was adopted as the base units of analysis for two reasons: it presents a
fine grain and micro-scale geographic units which will provide better
homogeneity in analysis and result; the city has no properly delineated
transportation planning structure or traffic analysis zone system, ex-
isting geographic units are politically delineated e.g. Local Government
Area (LGA), geopolitical zone etc.

3.3. Non-spatial data

The non-spatial datasets were collected from primary source fol-
lowing a personal household travel survey conducted in the last quarter
of 2017. The datasets which define the individual travel characteristics
of the households of the region was collected with the aid of ques-
tionnaire and the questionnaire was divided into five parts: The first
part includes the household socioeconomic characteristics; the second
part is comprising questions relating to the participant's demographic
characteristics; the third part includes questions on the respondent's
lifestyle; the fourth includes questions on the residential location and
other neighbourhood characteristics; the fifth was based on travel-re-
lated activities.

Using the central limit theorem sample size estimation as prescribed
by Lenth (2011) with 0.03 (3%) margin of error and 99% confidence
level, a total of 1,830 households were selected from the region's esti-
mated total of 248,621 (NPC, 2006). Residential houses were system-
atically selected from each of the 55 delineated neighbourhoods and
their respective GPS coordinates were captured using smartphone de-
vices. Neighbourhoods with high, medium and low urban density were
assigned 36, 32 and 30 questionnaires respectively. The home-based
survey which took roughly 3 months to complete, was conducted by the
researcher and 5 well-trained research assistants with a minimum
qualification of a national diploma. Out of a total of 1,836 ques-
tionnaires administered, 1,736 were considered valid.

Another source of non-spatial data is a checklist specially designed
to obtain land use information (with specific reference to residential
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and commercial types) at the neighbourhood level. This involves the
counting of residential, employment land uses and a mix of both. This
was carried out with the aid of 200 m × 200 m quadrat covering about
40,000 m2 of land. Ultimately, the delineated 55 neighbourhoods were
used for this data collection. The centre point of each neighbourhood
(polygon) was determined within the ArcGIS environment using the
mean centre workflow found in the spatial statistics tool of the Arc
toolbox. This tool statistically determined the mid-point of each
polygon and superimposed point feature on the locations. Using this
centre feature, a 200 m × 200 m quadrat was buffered out and with the
aid of the worldview satellite image, the locations on the ground were
identified prior to fieldwork. Progressively, the number of residential
dwellings, employment location and a mix of both were recorded for
the 55 locations from the field. Such data was employed for land use
mix (diversity) analysis.

3.4. Dependent variable: travel mode choice

In this study, travel mode choices were aggregated into private and
public modal characteristics. Data used here is of non-spatial type and
this was extracted from the questionnaire data. However, five mode
types were initially identified in the region and were entered into the
survey. These include a walk on foot, tricycle, bus, taxi and car.

Fig. 2 presents the percentage share of the number of commuters
that choose a particular mode for work travel at the neighbourhoo-
d–level. Generally, walking as a mode of getting to work seems to be
preferred by many commuters since it returned the highest percentage
of usage in most of the neighbourhoods. Region–wise, walking returned
a 40.6 per cent usage value, this is followed by bus which returned 27.1
per cent usage value. Car returned 23.4 per cent usage value, taxi re-
turned 4.5 per cent and tricycle returned 4.4 per cent. This means that
about 40 per cent of the commuters travel to work on foot, about 27 per
cent use the public bus, about 23 per cent depends on the private car,
while taxi and tricycle have a corresponding patronage level of 4.5 and
4.4 per cent.

3.5. Explanatory variables: built environment, demographic and
socioeconomic characteristics

To generate data for some explanatory variables which helped to
define the built environment of the region, indexes of urban density,
urban sprawl, urban design and land use diversity were first computed.
Computing urban density and sprawl indexes, urban patches were ex-
tracted from worldview satellite image by means of GIS and remote
sensing methodologies. The worldview image was subjected to various
photogrammetric techniques including land use classification.

Essentially, two types of image classification exist in GIS operations-
unsupervised and supervised classification. Both procedures were im-
plemented in the image classification because it would yield a highly
accurate result. The unsupervised classification with ISODATA clus-
tering approach was applied, this allowed preliminary pixel class as-
sortment and interpretation.

Performing a supervised classification, training samples were ex-
tracted with the aid of the region of interest tool (ROI) of ENVI software
and these sample polygons were stored as a spectral signature file to be
used in the classification analysis. The spectral data collected from the
unsupervised classification facilitated the supervised classification
procedure. The land use supervised classification was executed
adopting the maximum likelihood probability technique. The classified
land use data was exported and entered into ArcGIS 10.4.1 software
from where such data was manipulated using the raster calculator in
the ArcGIS toolbox. The raster calculator was used to extract the built-
up area from the classified raster. This facilitated statistical estimation
and disaggregation of the patches. The extracted urban patches were
used as data for calculating the urban density and sprawl indexes.

Urban growth is characterised by a complex multiplicity of

changing geographic dimensions (Taubenbock, Wegmann, Roth, Mehi,
& Dech, 2009). Growth either takes a radial pattern to build a huge
concentric agglomeration (monocentric configuration) or progress into
manifold centroid (polycentric configuration). Notwithstanding, urban
growth tends to advance towards the suburban area either by in-
creasing density or by sprawling. Based on evidence from previous
literature (Comendador, López-Lambasb, & Monzónb, 2014; Crane &
Chatman, 2003), density or compaction may reduce travel by car and
encourage non-motorised mode. Sprawl may initiate long-distance
travel, encouraging motorised travel particularly public mode, if such
sprawl occurs along trunk roads or may encourage private car mode if
sprawl is haphazard.

Urban density as an indicator of the built environment was quan-
tified using the patch density index (PD) spatial metrics. There are two
major techniques of computing urban density, these are patch density
and housing density. In this study patch density was preferred because
urban density is better measured using urban patches which consist of
buildings, roads and all built up surfaces and landscape within the
urban area. Housing density would only capture the residential density
of the area leaving other as much important constituent of the urban
landscape out of the data. Values of PD are the number of urban patches
of the conforming patch type divided by total landscape area in m2.
This was computed using the formula presented by McGarigal and Ene
(2014):

=PD N
A

(1000,000) (6)

where:

N= aggregate number of patches in the landscape, excluding any
background patches;
A= total area of landscape in m2 (the value of PD was multiply by
1000,000 to convert to km2 so as to interpret the PD based on
number of patches per km2). However, given any value of PD in-
dicates the number of patch per km2. PD increases as the urban
landscape continues to disaggregate and less compacted, while it
decreases as the urban landscape becomes compacted. FRAGSTATS
4.2.5 was used for this computation because of its prominence and
widely used for urban landscape characterisation (Deng, Wang,
Hong, & Qi, 2009; Nkeki, 2016; Ramachandra, Aithal, & Sanna,
2012; Taubenbock et al., 2009).

Urban sprawl is another important factor for measuring built en-
vironment. Quantifying urban sprawl has been a long time issue in
academic research. The formulation of empirical indicators has made
the burden of measuring sprawl lighter. Today, entropy index in its
various modification has become a dependable means of characterising
urban sprawl (Bhatta, Saraswati, & Bandyopadhyay, 2010; Nkeki, 2016;
Sarvestani, Ibrahim, & Kanaroglou, 2011; Sudhira, Ramachandra, Raj,
& Jagadish, 2004), this was made possible by the recent improvement
in remote sensing and GIS. In this study, Shannon's entropy index was
calculated to quantify urban sprawl manifestation by determining the
magnitude of concentration of patches within the various neighbour-
hoods. Entropy statistic was computed for the study region based on the
neighbourhood-level. The result of the entropy statistic was then used
as values for urban sprawl variable under the built environment factor.

Shannon's entropy index for urban sprawl was computed here with
the formulation by Bhatta et al. (2010):

=H P In P( )n i i (7)

where:

Hn = Shannon's entropy index;
Pi = proportion of built-up patches i in each neighbourhood;
n= aggregate number of neighbourhoods in the region. Shannon's
entropy index varies from 0 to In(n), and indicates compactness of
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Fig. 2. Percentage of travel mode choice by neighbourhoods.
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urban patches for values near to 0 and dispersed distribution for
values near to In(n). Entropy values larger or near to In(n) depicts
dispersion of urban patches or urban lands which is interpreted as
the occurrence of urban sprawl. This spatial index was calculated
using Eq. (7) which was entered into the field calculator of ArcGIS
and python platform was used to perform the computation. The data
for this analysis is the urban patch features that were mined from
the land cover classification.

Land use mix (entropy) was calculated using data from the
200 m × 200 m quadrat consisting of the number of residential dwell-
ings, employment location and a mix of both which was recorded for
the 55 neighbourhoods in the region. The purpose of modelling the
main land use types is to generate an additional variable which was
used for defining the urban built environment factor. The land use mix
analysis was modelled after Shannon's entropy index. However, the
entropy index has become the generally used technique of quantifying
land use mix and diversity in contemporary literature. For example, it
has been used to determine the level of homogeneity or diversity of
various land uses, such as employment, residential land uses (Strauss &
Miranda-Moreno, 2013; Zhang et al., 2012). The entropy index after
Zahabi, Miranda-Moreno, Patterson, and Barla (2012) is defined as:

= ×E
P In P

In J
( 1)

( )
( )j

j

j j

(8)

where:

Ej = land use mix entropy index
Pj = proportion of land use i in neighbourhood j
j= number of varying land use type in the neighbourhood

In this study, j = 2: residential and employment land uses. The
value of Ej varies between 0 and 1. 0 corresponds with homogenous
land use characterised by a single land use while 1 refers to a perfect
mix in which all land use types are represented equally. Eq. (8) was
briefly modified (Bahadure & Kotharkar, 2015) to allow computation of
a 2 category mix or diversity types (commercial and residential). The
equation is defined as:

= ×
× + ×( ) ( ) ( ) ( )

Land use mix EI
In In

In n
( ) ( 1)

( )

b
a

b
a

b
a

b
a

1 1 2 2

(9)

where:

EI = land use mix entropy index
a= aggregate number of land uses of the two land use types
b1 = the commercial land use type
b2 = the residential land use type
n= the aggregate number of land uses in the mix (in this case 2)

However, the calculation of this index was done with the field cal-
culator algorithm in ArcGIS software at the neighbourhood-level using
Eq. (9).

Urban design as an indicator of the built environment and ex-
planatory variable for this study has been characterised specifically by
site design, block size, dwelling and street characteristics. Prominent
among these is the use of street network features within an area (Ewing
& Cervero, 2010). In this study, urban design was quantified using a
four-way street intersection points extracted from the worldview sa-
tellite imagery. This was used to evaluate the number of street inter-
sections per square kilometre in each neighbourhood. To analyse the
geographic point data, a Street Intersection Density (SI Density) index
was developed and it is presented as:

=SIDensity NoN
A

(1000,000) (10)

where:

=SIDensity street intersection density
=NoN number of nodes (point of street intersections in a particular

neighbourhood)
=A total area of the neighbourhood in m2 (the value of SI Density

was multiply by 1000,000 to convert to km2 so as to interpret the
index based on number of nodes per km2). It is believed that where
intersections are more prevalent, travel tend to be shorter (Reiff,
2003). The density of the four-way intersection helps to define the
level of grid design that a particular neighbourhood is structured. A
grid street design may encourage short distance travel; it may also
discourage public mode of travel. This is because transit perfor-
mance is effective on a long distance and mostly corridor road. The
SI Density index was computed in ArcGIS from where the intersec-
tion points were extracted as vector format.

Other explanatory variables used to define built environment for
this study are distance of neighbourhood to CBD; transit accessibility;
availability of sidewalk in the neighbourhood and the number of
parking spaces within the neighbourhood. Distance to CBD was defined
using the average distance of the neighbourhood to the CBD through a
regular bus route or a major road in such neighbourhood. Transit ac-
cessibility was measured using field data on the number of regular bus
route within the neighbourhood. The data for the last two variables
were mined from the questionnaire survey. Data for demographic and
socioeconomic variables were mined from the questionnaire forms and
a description of these variables are highlighted in Table 1.

4. Methodology

A multivariate factor analysis technique was first computed as a
data reduction procedure of the dataset and retained only the sig-
nificant factors of built environment attribute, socioeconomic and de-
mographic characteristics. This was ascertained with both the positive
and negative high factor loadings. The principal component extraction
method was used to extract the sum of squared loadings and the ob-
limin factor rotation method with Kaiser normalisation was adopted for
the analysis. The components with eigenvalues above 1 were retained
as the extracted significant variables. Since categorical variables are not
appropriate for factor analysis, all such variables in Table 1 were
standardized before carrying out the analysis. The method used for the
transformation of the categorical variables is the nonlinear optimal
transformation (Meulman, 1992) which has the capability of assigning
quantitative values to qualitative scales. The statistical package for
social sciences (SPSS) was used to conduct the analysis. Within the SPSS
software an extension or plug-in known as CATPCA (categorical prin-
cipal components analysis) was used for the binary, ordinal and nom-
inal variable types transformation. The significant factors were then
extracted as independent variables to be used for GWLR model.

GWLR was used to explore the correlates between the explanatory
variables consisting of built environment characteristics, aggregated
household attributes and the dependent variable which is the travel
mode choice at the neighbourhood-level. The travel mode choices were
aggregated into private and public modal characteristics. The GWLR is
a modified extension of geographically weighted regression (GWR). The
latter is a Gaussian error term suitable for modelling numerical re-
sponses for all variables. With respect to modelling count or binary
(categorical or dichotomous) responses, like other global model types of
generalised linear modelling, particularly logistic and Poisson regres-
sion, the GWLR is a semi-parametric and a natural extension of GWR
designed to theoretically derive geographically weighted generalised
linear models.

GWLR can be used for modelling binary dependent variable, re-
spectively, with geographically varying coefficients using both local
and global terms (Nakaya, 2014). GWLR is a local spatial statistical

F.N. Nkeki and M.O. Asikhia Applied Geography 108 (2019) 47–63

54



model designed to capture both spatial association and diversity (het-
erogeneity) simultaneously. This model is frequently referred to as
disaggregate statistics (Fotheringham et al., 2002), because it has the
ability of spatially disaggregating global statistics into a defined area
unit, such as, neighbourhoods which are depicted in the geographic
information system (GIS) with polygon or point. Unlike the global
statistics, the final computation of the GWLR model yield multi-valued
results, such as the parameter estimate, R2, p-value, etc., and this can be
mapped in GIS using spatial features (in vector or raster grid format).
Although this model disaggregates the outcome of geographic data
spatially by presenting point by point or unit by unit (polygon) ex-
planation of the relationships that exist between variables, it uses ag-
gregated data of individual responses especially when samples are
drawn from defined area units. For example, the population distribu-
tion of a country does not show the actual spatial distribution or lo-
cation of people but an aggregated spatial distribution of people into
defined area unit or boundary.

The GWR in its modification include generalised weighted linear
models to allow for use in categorical response analysis. It has gained
widespread popularity and has been applied in diverse field of studies.
For example, in the health and epidemiological field (Nakaya et al.,
2005; Nkeki & Osirike, 2013), in demography (Mathews & Yang, 2012),
in accessibility study (Du & Mulley, 2012) in transit ridership modelling
(Zhao et al., 2005), ecological disaster (Fernandez et al., 2013;
Rodrigues et al., 2014), etc. The development of GWR is discussed in
further detail in section 2.

In this study, GWLR was used to show the relationship that exists
between the built environment, individual attributes and travel mode
choice based on point by point comparison. Fundamentally, a GWLR

model is shown as yi Bernoulli p[ ]i meaning approximate binomial
distribution which is explained by this equation:

=logit p u v x( ) ( , )i
k

k i i k i,
(11)

The dependent variable must be 0 or 1. However, pi is the modelled
probability that the dependent variable becomes 1. Its semi parametric
variant is described as:

y pBernoulli [ ]i i

= +logit p u v x Z( ) ( , )i
k

k i i k i
I

I I i, ,

Where:

u v,i i = the local coordinates in space of point i
ZI i, = the Ith independent variable with a fixed coefficient I
xk i, = the explanatory variables.

The last session of Eq. (12) represents the global statistic. Specifi-
cally, the GWR/GWLR modeller version 4.0 software was used for the
analysis. The dependent variable consists of the travel mode choice of
commuters aggregated into the two major modes-private and public.
However, the essence of this spatial modelling is in respect to the as-
sumption of this study that analysing individual-level data alone
without considering the neighbourhood effect, in which such individual
behaviour originate from, may lead to failure to account for the
variability between places.

The GWLR was computed using adaptive kernel type (adaptive bi-
square) because it has the ability to change local extent by controlling

Table 1
Definition of explanatory variables for GWLR.

Variables Description

Demographic:
1 Gender 0 = male; 1 = female (nominal variable)
2 Age of respondent 1 = below 20; 2 = 21–40; 3 = 41–60;

4 = above 61 (ordinal variable)
3 Household size Continuous variable
4 Marital status 1 = single; 2 = married; 3 = divorce (nominal variable)
5 Number of children Continuous variable
6 Period lived in the neighbourhood 1= < 1 year; 2 = 1–5 years; 3 = 6–10 years; 4 = 11–15 years; 5 = 16–20 years; 6 = 21 years and above (ordinal

variable)
7 Origin 0 = migrant; 1 = indigene (nominal variable)
8 Family orientation 0 = traditional; 1 = modern (nominal variable)

Socioeconomic
9 Household monthly incomea 1 = below N 50, 000; 2 = 50,000–69,000; 3 = 70,000–99,000; 4 = 100,000–169,000; 5 = 170,000–199,000;

6 = 200,000–269,000; 7 = 270,000–299,000; 8 = 300,000–369,000; 9 = 370,000–399,000;
10 = 400,000–469,000; 11 = 470,000–499,000; 12 = 500,000 and above per month (ordinal variable).

10 Job type/industry 1 = Farming; 2 = manufacturing; 3 = health; 4 = government/civil service; 5 = transportation;
6 = telecommunication; 7 = finance; 8 = wholesale and retail; 9 = education; 10 = services; 11 = legal and law
enforcement; 12 = applicant (nominal variable)

11 Number of jobs in the household Continuous variable
12 Number of cars per household Continuous variable
13 Education 1 = no formal education; 2 = primary education; 3 = secondary education; 4 = tertiary education (ordinal variable)
14 Number of driving license in the household Continuous variable
15 Residential tenure 1 = owner; 2 = rented (nominal variable)
Built environment
16 Land use mix (diversity) Value of entropy index (proportion of workplaces to residential places within the neighbourhood). Continuous

variable ranging from 0 to 1
17 Urban density Value of urban patch index (PD) (density of built-up patches in a neighbourhood). Continuous variable
18 Distance to CBD (km) The average distance of neighbourhood to CBD (continuous variable)
19 Urban design (neighbourhood street intersection

density)
Value of street intersection density index (SI Density) by neighbourhood. Continuous Variable

20 Urban sprawl Value of entropy index. Continuous variable ranging from 0 to 1
21 Availability of sidewalk in the neighbourhood (urban

design)
0 = yes; 1 = no

22 Number of parking space within the neighbourhood
(urban design)

Continuous variable

23 Transit accessibility Total number of regular bus route within the neighbourhood (continuous variable)

a When the survey was conducted ₦1.00 was roughly equal to $0.0026.
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the kth nearest neighbour distance for each regression location. The
golden section search option in the GWR software was selected because
it can automatically determine the optimized bandwidth size for the
data. However, the neighbourhood vector map of BMR which formed
part of the data used for analysis was entered into ArcGIS software from
where spatial and non-spatial attributes were manipulated. Such ma-
nipulation includes entering of the individual attributes, built en-
vironment characteristics and travel mode characteristics point data
into the corresponding neighbourhood polygon. The x and y co-
ordinates for each point data were automatically computed and loaded
into the attribute table within the ArcGIS-ArcMap workspace. In other
words, 1,028 data points with their corresponding coordinates were
created for all the variables and these were used to compute the GWLR.
Such detailed ArcGIS attribute table was then converted to CSV format
and entered into the GWR/GWLR modelling software for further com-
putation and analysis. Before then, factor analysis was used as data
transformation techniques for the set of predictors to reduce the
number of variables into significant factor scores which were then used
as explanatory variables for GWLR).

The reason for such process and interoperability of data between
ArcGIS and GWR modeller is that ArcGIS spatial statistical toolbox
presents GWR extension which can only compute linear GWR with the
assumption of linearity of the dependent variable which values must be
greater than zero. Put simply, ArcGIS-based GWR tool lacks the ability
to compute binary outcomes. While the GWR/GWLR modeller and
software presents three major algorithms–GWR-Gaussian model type,
GWLR-logistic with binary model type and GWPR (Geographically
Weighted Poisson Regression)-Poisson with count model type. The
GWLR algorithm is designed to run weighted logit models of binary
composition. The weakness of the GWR/GWLR software is that it lacks
the platform for data entering, editing and visualisation. Therefore, this
study relied on both software for this analysis. Progressively, the results
of the GWLR was reentered into the ArcGIS system for visualisation and
spatial interpolation of the local parameter estimate, local t-value and
local R2. The 1,028 points (result) were interpolated based on their
corresponding neighbourhood polygons for neighbourhood-level in-
terpretation.

5. Results

The GWLR model is adopted in this study to explore the intrinsic
relationship that may exist between the predictors and travel mode
choice, focusing more on the significant spatial varying relationships at
the neighbourhood-level which GLR models could not achieve. It is
assumed that the neighbourhoods may present distinct pattern of re-
lationship when results are disaggregated. In fact, GWLR has the pro-
ficiency of presenting spatially varying regression coefficient values and
strength of relationship for each neighbourhood in the region.

5.1. Defining the explanatory variables for GWLR

To conduct the GWLR model the predictors in Table 1 were entered
into factor analysis for the purpose of data transformation and data
reduction so as to reduce the chance of multicollinearity among pre-
dictors. Factor analysis was computed and instructed to retain eigen-
values above 1. Six factors were retained and these explained roughly
62 per cent of the variation in the data (see Table 2).

The result of the analysis was saved as a regression factor scores and
was employed for further analysis. For the purpose of factor naming,
the oblimin rotation method was used to generate a pattern matrix to
guide such a process (see Table 3). Factor analysis pattern matrix shows
that factor 1 loads high on the 6 neighbourhood characteristics, factor 2
loads high on 6 demographic characteristics, factor 3 loads high on 4
socioeconomic variables, factor 4 loads high on the 2 accessibility
variables, factor 5 loads high on 1 demographic variable (gender) and
finally, factor 6 load high on 2 demographic variables (origin and

period lived in the neighbourhood). Factor 5 and 6 seem to load high on
demographic variables after factor 2 has captured 6 other demographic
variables.

However, factor 1 was named neighbourhood characteristics be-
cause it loads high on such variables irrespective of the sign. Factor 2
was named demographic characteristics since it loads high on such
variables. Factor 3 was named socioeconomic characteristics in the
same way, factor 4 was named accessibility characteristics. Others are
factor 5 which was named gender because it returned high loading for
gender alone and factor 6 was named origin status and duration of stay
in the neighbourhood. Factor 5 and 6 are part of the demographic
variables but since they were retained as separate component factors,
they were named as such. Neighbourhood and accessibility character-
istics are interpreted generally as built environment factors even
though factor analysis split it into two dimensions.

To show spatial variations in these 6 factors, they were subjected to
GIS operation where each of the factors extracted as explanatory vari-
ables for GWLR was interpolated. The results of the factor score map-
ping are presented in Fig. 3. This gives a clear visual pattern and de-
finition of the 6 explanatory variables. For example, factor 1
(neighbourhood attributes) seem to partition BMR into 3 distinct sub-
regions: core axis (high negative factor scores) depicted with blue shade
in the centre signifying cluster of points in the neighbourhoods with
high urban density, low sprawl capability, high street intersection
density and high homogenous commercial land use; peripheral area
(high positive factor scores) depicted with red shade at the edges of the
city representing cluster of points in neighbourhoods with low urban
density, higher sprawl capability, low street intersection density and
homogenous land use (i.e. high residential); transition zone (low factor
scores) depicted with gradient of lighter blue to ligher red shade which
formed a cluster between the core axis and the peripheral area having a
combination of both sub-region characteristics including high land use
mix.

5.2. Validating the Model's appropriateness

The validation and fitness test of the GWLR were performed in two
ways firstly by conducting a global logistic regression (GLR) so as to
compare the result with that of the GWLR. The major parameters of
interest are the R2, the degree of freedom (DOF) and the deviance,
secondly by conducting geographical variability tests of local coeffi-
cients to ascertain whether the GWLR is appropriate for the data. To
test the latter's, majority of different of criterion for the predictor
variables must return a negative value. When the criterion for all pre-
dictors returns positive value it simply suggests no spatial variability in
terms of the model selection criteria.

Comparing both models with deviance values (Table 4), show that
the value is reduced from approximately 485.995 (for GLR model) to
476.020 (for GWLR model). The difference is about 9.975 implying that
local models fitness is higher when explaining spatial dataset. GWLR
model improved the explaining power of GLR model with about 7.72
per cent (Table 4). This is a high percentage explained value not ac-
counted for by the GLR model. Table 5 shows that of the 6 factors only 2
have a positive difference of criterion. This suggests that there is spatial
variability among the neighbourhoods and GWLR is the appropriate
model for the dataset.

5.3. GWLR model estimation results

The GWLR model utilised two generalised mode choice types. They
include private and public, walking as a mode was removed from this
model since it cannot be directly classified under any of this generalised
modes. This will have no effect on the model because walking is a
unique mode of its own and not of interest here. As the focus of this
study is investigating the factors that may explain the mode choice at
the public and private level, since the major objective of built
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environment and travel behaviour studies is to understand how to re-
duce over-dependence on personal car travel by encouraging mass
transit at various levels so as to promote green, healthy and sustainable
travel behaviour. However, before these can be achieved, there is need
to improve understanding on the factors that may promote undesired
travel behaviour such as over dependence on car for regular urban
travel. Built environment cannot force people to adopt certain beha-
viour, though it may encourage it, but perhaps people may respond to
changes in different manners depending on what is available/means.
For example, those who choose to ride on a bus may do so for 2 major
reasons: first, because they actually are comfortable/prefer bus or
second, because they cannot afford other preference such as private car
due to poor socioeconomic status. There is need to understand people
with these kind of behaviour by so doing a more sustaining option can
be proposed such as carpooling for car lovers, etc. Modelling built en-
vironment-travel behaviour relationship should be multidimensional
since human behaviour is complex.

The observation or responses related to walking mode were likewise
removed from the GWLR analysis, this reduced the number of data
points from 1,736 to 1,028. The R2 values are shown in Fig. 4 as a
spatial smoothing of GWLR model showing the neighbourhoods or
areas where the model's prediction and strength of relationship are
improved. Importantly, that there is a regional difference in the
strength of relationship in the study region. Overall, the R2 value (0.72)
shows a strong significant relationship between travel mode choice and
the various factors. At the neighbourhood level, the strength of re-
lationship ranges from 0.62 to 0.72 (this also depicted by the isoline in
Fig. 4). This indicates that the model explains between 62 and 72 per
cent with a spatial variation of 10 per cent. Indicating that fluctuation
in the strength of relationship among neighbourhoods is somewhat
lower than expected. The strength of relationship or percentage ex-
plained is higher in the north-west part of the region in Ovbiogie,
Oluku, Iguosa, Igue-Iheya, etc and gradually reduces towards the south-
west part of the region in Egbean, Egor, Urumwon, Evbotubu, etc.
While the north-east part returned the lowest percentage explained
with corresponding values of 0.63 to 0.62. Thus, this pattern suggests
local variation in the relationship. However, the best fits are found
clustering in the northern part of the region.

Table 2
Eigenvalues for component scores.

Component Initial Eigenvalues Extraction Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 4.784a 20.798 20.798 4.784 20.798 20.798
2 3.497a 15.203 36.001 3.497 15.203 36.001
3 2.417a 10.510 46.511 2.417 10.510 46.511
4 1.319a 5.737 52.248 1.319 5.737 52.248
5 1.159a 5.041 57.289 1.159 5.041 57.289
6 1.026a 4.463 61.752 1.026 4.463 61.752
7 0.968 4.209 65.961
8 0.917 3.988 69.949
9 0.834 3.627 73.575
10 0.786 3.416 76.991
11 0.761 3.308 80.299
12 0.679 2.950 83.249
13 0.607 2.639 85.888
14 0.578 2.515 88.403
15 0.523 2.272 90.675
16 0.503 2.187 92.861
17 0.454 1.974 94.835
18 0.387 1.683 96.518
19 0.212 0.922 97.441
20 0.182 0.790 98.231
21 0.166 0.720 98.950
22 0.137 0.594 99.544
23 0.105 0.456 100.000

a Retained factor components with eigenvalues above 1.

Table 3
Pattern matrix from factor analysis.

Variables
Component

1 2 3 4 5 6

Demographic
Gender 0.840
Age 0.648
Marital status 0.737
Household size 0.832
No. of children 0.882
Origin 0.798
Household orientation −0.511
No. of jobs in the household 0.496
Period lived in the

neighbourhood
0.500

Socioeconomic
Household monthly income 0.728
Education (highest level) 0.518
Job industry
No. of cars in the household 0.853
No. of driver's license in the

household
0.861

Accessibility
Residential distance to CBD

(km)
0.822

No. of bus route in the
neighbourhood

0.842

Neighbourhood characteristics
No. of approved parking

spaces in the
neighbourhood

0.871

Is there Sidewalk in your
neighbourhood

−0.405

Urban density index 0.947
Sprawl index 0.948
SI Density (Urban design) −0.712
Land use mix index (Urban

design)
−0.690

Note: Component loadings less than 0.4 are not shown as such were classified
low loadings.
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Accordingly, the higher the local pseudo-t-statistic value, the higher
the level of significance for that factor regardless of the corresponding
sign for such neighbourhood. Significant variables in this spatial em-
pirical model are factors 2 (demographic variables), 3 (socioeconomic

variables) and 5 (gender status). The local coefficients and local t-values
of these three significant factors were interpolated so as to present the
results on a continuous raster surface. The interpolation was conducted
using 1,028 data points and the neighbourhood polygon data as area

Fig. 3. Explanatory variables for GWLR model.
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unit (i.e. the result was aggregated/interpreted at the neighbourhood-
level). This generated four pairs of raster surfaces including the inter-
cept of the local constant term for the neighbourhoods.

Fundamentally, the resultant raster surface for the predictors shows
that there is spatial variation in the association between travel mode
choice and the factors of demographic and socioeconomic attributes.
Other factors like built environment consisting of factors 1 and 4; origin
status and duration of stay in the neighbourhood were unexpectedly not
significant in the spatial model. The local coefficients for the significant
factors are displayed in Fig. 5. A positive and negative relationship was
shown in the result of GWLR. On the one hand, the positive values of
statistical significance imply a direct relationship between the pre-
dicting factors and travel mode choice. On the other hand, negative
values imply an indirect relationship. Put differently, as the value of the
predictor variable increases the chance of choosing a particular mode of
travel increases and vice versa.

Fig. 5 presents the local coefficients and their corresponding t-values
which indicate the significance of the variable at a neighbourhood of
interest. The colour ramp for the factor coefficients is graduated from
dark to light gold. Neighbourhoods with light shade depict where that
particular variable exhibit a strong influence on mode choice while

Table 4
Models fitness comparison.

Fitness parameter GLR GWLR Difference

Deviance 485.994640 476.019853 9.974787
R2 0.647673 0.724904 0.077231
DOF 1021.000 1012.879 8.121

Table 5
Geographical variability tests of local coefficients.

Variable Diff of deviance Diff of DOF Diff of criterion

Intercept 0.352 0.772 1.230
Factor 1 1.118 0.937 0.800
Factor 2 2.396 0.767 −0.824
Factor 3 1.905 0.811 −0.245
Factor 4 1.423 0.224 −0.965
Factor 5 0.401 0.771 1.179
Factor 6 1.623 0.778 −0.030

Fig. 4. Local R2 smoothing for GWLR.
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Fig. 5. Local coefficients and local t–values (significance) for GWLR model.
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dark shade represents neighbourhoods where that specific factor ex-
hibits a weak influence on mode choice.

Demographic variables (Factor 2) seem to exert a strong positive
influence on travel mode choices made in the neighbourhoods of the
region. This implies that variations in demographic attributes may in-
crease the probability of choosing private mode. The influence is
stronger in the southwestern part of the region in such neighbourhoods
as Obe, Amagba, Ogba, Ekae, Oko, Evbuabogun, Ogua, Idogbo,
Evbuoriaria and this influence gradually increases from the south-
western edge of the city towards the city centre and the southeastern
periphery. The influence of demographic attributes is very low in the
north-west zone of the region and this extends slightly towards the
northeastern edge of the city.

Interestingly, Fig. 5 (b1 and c1) revealed a spatial dichotomy be-
tween the demographic factor and socioeconomic factor. A critical ex-
amination of both local coefficient raster smoothing shows a cluster of
neighbourhoods where demographic attributes manifest high influence,
the socioeconomic variables manifest low influence vice versa. Un-
equivocally, GWLR coefficient smoothing shows that socioeconomic
attributes of commuters in BMR (Factor 3) exhibit a strong influence on
mode choice decision making in the north-east zone of the region
(meaning that changes in socioeconomic attributes may increase the
probability of selecting private mode of travel). Some of the neigh-
bourhoods under this influence are Isiohor, Egor, Uwelu, Ovbiogie,
Evbomore, Idunwowina, Iguosa, Ugbowo, Okhoro, Urubi, Uselu, Igue-
Iheya, Ekosodin, Iwogban, Eyaen, Idokpa, etc. Majority of the neigh-
bourhoods in this cluster have higher access to a car. For instance, Ig-
uosa has roughly 70 per cent of it household depending on private car
travel (see Fig. 2).

The coefficient for Factor 5 which is gender status returned negative
value implying that the association between gender and travel mode
choice is inverse i.e. variation in gender may decrease the probability of
choosing private mode over public mode. The negative relationship is
stronger in the south-west to south-east covering the neighbourhoods
where demographic attributes (Factor 2) has a strong positive influence
(Fig. 5 b1). This inverse relationship may be the reason why factor
analysis extracted gender from demographic variable and retained such
as an independent factor score.

6. Discussion

Local mode choice model (GWLR) shows that there is spatial var-
iation in the association between mode choice (private and public
modes) and the factor scores of demographic and socioeconomic vari-
ables across neighbourhoods. The findings show that built environment
variables are not important predictors of mode choice in the region. In
the GWLR model, only demographic and socioeconomic variables were
found to be significant. By implication, the individual attributes of
commuters in BMR are the major factors initiating changes in the travel
mode choice decision of workers in the region (Aditjandra, 2013). This
finding contradicts the finding of Kim and Wang (2015) which imply
that neighbourhood travel behaviour is significantly influenced by
neighbourhood characteristics.

It is evident from Fig. 5 that the demographic characteristics (Factor
2) of the households in the region, though heterogeneous, largely drive
the choices of travel, i.e. determines whether such household would
prefer a private travel mode over public mode. By implication the de-
mographic factor's positive coefficient shows that changes in age,
marital status, household size, household orientation and number of
jobs may lead to change in mode choice. Simply put, older large size
household practicing modern lifestyle with more number of jobs tend to
prefer private car mode. The influence which was allowed to vary over
space by the local model is higher in the neighbourhoods located to-
wards the south-east and south-west part of the region. Some of these
neighbourhoods are Obe, Ogua, Amagba, Ekae, Evbuabogun, Ogba,
Oko, Evbuoriaria, Oka, Idogbo, Oghede/Obanyotor, Ubagbon, Ikhuen-

Niro, etc. These are neighbourhoods where household size is higher
than the regional average. Most likely larger households in the south-
east and south-west part of the region tends to depend on private travel
mode and families with modern lifestyle orientation may likely be
predisposed to rely on private travel mode. The neighbourhood cluster
on the north-west section of the region returned low coefficient values
for demographic attributes, implying that the influence of demographic
characteristics on mode choice is weaker in such neighbourhoods.

Socioeconomic characteristic variables show a weaker influence on
travel mode choice in neighbourhoods where demographic factors
show a stronger influence and stronger influence where demographic
characteristic variables returned weaker influence. This pattern of re-
lationship simply defines a spatial dichotomy that needs to be given
detail attention in further study. However, the positive sign in the
coefficient for factor 3 is an indication that such socioeconomic vari-
ables like highest education, household monthly income, number of
cars in the household and number of driver's license in the household
strongly affect the choice of travel mode in the north-west and north-
east zones of the region. This means that in these zones affluent
households that are well educated and have many cars with more
members of the family having driver's license may prefer private mode
of travel. This result is not unexpected as affluent families tend to de-
pend on private cars since they can afford it and in most cases more
members of the family may likely have a car to themselves. These
neighbourhoods include Isiohor, Egor, Uwelu, Evbomore, Idunwowina,
Iguosa, Ovbiogie, Ugbowo, Okhoro, Urubi, Uselu, Evbogida, Igue-Iheya,
etc. These significant socioeconomic variables as evident from Table 3,
increases the likelihood of choosing the private mode. From a spatial
point of view, this is an expected result since these neighbourhoods
clustered around high employment and education zone (Asikhia &
Nkeki, 2013) and may be influenced largely by the presence of the
University of Benin and the teaching hospital.

Gender which was extracted separately from other demographic
variables in factor analysis (factor 5) also returned a significant coef-
ficient with a negative sign in the local model. The neighbourhoods
where the influence is higher are about the same as that of factor 2. The
negative sign indicates that gender reduces the likelihood of choosing a
private car. This indicates that the female folk in the region may prefer
public transport mode over private car.

6.1. Planning and policy relevance

The implication of this research findings specifically, from a plan-
ning and public policy perspectives, is that there is spatial variations in
the relationship between explanatory factors and peoples behaviour.
Using these variations especially as it concerns the factors that may
encourage people to choose a private car over public transport or
otherwise would provide more realistic and detailed information for
urban planning and policy formulation. For example, the local coeffi-
cient of GWLR predicted that as the socioeconomic status of the com-
muters living in the north-east cluster of neighbourhoods improves, the
likelihood of driving a private car increases. This knowledge is a vital
policy decision-making tool that would provide a platform for several
policy options such as whether to engage a more drastic land use
planning, reconfiguration and adjustment or to engage policies that
would merely influence behaviour by encouraging private car owners
to participate in car sharing/pooling. Policies like this would assist in
achieving the fundamental objective of built environment and travel
behaviour interaction studies which is hinged on the desire to reduce
too much dependence on private car and in turn may lead to peak-hour
vehicular traffic reduction, cut down exhaust emission and parking
space demand.

In neighbourhoods where demographic attributes demonstrate
stronger influence (i.e. south-east and south-west zones of the region)
the policy option may be to provide modern effective mass transport
system that is timely, comfortable, affordable, etc. This is because these
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zones are composed of older and larger size households with many jobs.
These family compositions are major prerequisite for personal or
household car(s) demand. Though it may be tough to make them drive
less since they derive travel comfort in private car mode. The best
practice is to deploy more comfortable mass transit system with latest
technology bearing in mind the modern lifestyle orientation of these
neighbourhoods commuters.

7. Conclusion

In conclusion, a spatial modelling approach was implemented here
for the study of travel behaviour focusing on the interaction of built
environment and at the same time, accounting for the influence of
demographic and socioeconomic characteristics. The GWLR model
proved to be most suitable for exploring this relationship since it ac-
counted for local variation which is often lost when using global models
such as GLR. The application of GWLR model proved to be valuable in
analysing this kind of relationship in the study area because it was able
to firstly, extend the modelling framework of GWR Gaussian model to
accommodate binary categorical responses. Data on travel behaviour is
often categorical in nature and this characterizes significant amount of
researches emanating from applied geographical aspect of transporta-
tion and land use even though the spatial characteristics of the data
used is not often accounted for. Secondly, geographical weighting of the
survey data from BMR offered an in-depth explanatory tool that aided
not only the exploration of global relationship but also accounted for
the spatiality of the dataset and spatial heterogeneity in the relationship
between travel behaviour and the covariates.

Using GLR model, it is expected that the relationship between travel
behaviour and the explanatory variables are average out and a single
value assigned to represent the parameter estimates for the entire
neighbourhoods of the region therefore suggesting a uniform behaviour
and relationships across the region. Implementing GWLR, parameter
estimates for each variable is assigned to each neighbourhood and
presented in a map. For example, the series of maps that were generated
demonstrated the usefulness of the model's result in exploring the socio-
spatial factors that may influence people's travel decision in BMR. The
maps show that individual characteristics does affect travel mode
choices, particularly the effect varies from neighbourhood to neigh-
bourhoods. For example, GWLR model for the region was able to pre-
dict neighbourhoods that may depend on private car using the multi-
dimensional set of predictors. This empirical evidence is substantive for
major and specific urban transport policies since the result ascertained
that travel mode choices varies over space and that socioeconomic and
demographic attributes of people (which also varies across neighbour-
hood) significantly impact on this behaviour.

The explanatory variables for a local model of travel behaviour were
first analysed using factor analysis which aggregated the variables into
factor scores of built environment, demographic and socioeconomic
factors. The model's estimation results suggest that built environment
factors do not significantly count as a predictor of mode choice in BMR.
Instead, this choice was shown to be locally associated with demo-
graphic and socioeconomic factors. Most importantly, the results in-
dicated a spatial mismatch between demographic and socioeconomic
characteristics, creating a dichotomy by demarcating the neighbour-
hoods into two levels of influence (demographic and socioeconomic).
The implication of this is that effective location information is made
available for planning allocation regarding transport investments, is-
sues of excessive exhaust emission, energy use and congestion.

Conflicting with popular believe that built environment attributes
are the key predictor that defines people travel behaviour, this study
revealed that in a traditional African city people's individual or
household characteristics are the key explaining factors of travel be-
haviour (which, in this study, is based on private and public modes).
Several studies that came up with the former result were conducted in
more advanced regions (such as North America and Europe). This

perhaps points to the fact that regional variation in development may
predetermine the outcome of such studies as this. The western region
and other advanced regions of the world may have succeeded in re-
ducing or perhaps significantly tackled the numerous issues inherent in
the socioeconomic and demographic characteristics of their citizens but
in Africa the case is largely different. The bane of most African cities is
tied to corruption which has become a norm and has initiated endemic
poverty. Consequent upon this, the people of this region have higher
needs to first improve their socioeonomic and demographic status be-
fore concerning themselves with issues of built environment. So, it is
not suprising that these individual characteristics would significantly
influence their decision making processes. At this point, this study as-
sert that the travel behaviour of people in less developed countries
seems to be more influenced by their demographic and socioeconomic
attributes while the travel behaviour of their counterpart in more de-
veloped countries seems to be strongly influenced by the built en-
vironment. This presents a note for further studies so as to approve or
dispprove of this assertion.
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