Achromobacter, 288
Acinetobacter, 290
active packaging, 251–62
carbon dioxide scavengers/emitters, 254, 255
definition, 251
flavour/odour absorbers, 258, 259
food applications, 252
food safety, consumer and regulatory issues, 260,
261
adhesive lamination, plastics, 185, 186
Advisory Committee on the Microbiological Safety of
Food (ACMSF), 291
aerobes, 266, 290
Aeromonas hydrophilia, 266
American Society of Testing and Materials (ASTM),
97–9
anaerobic digestion (AD), 314, 315
anaerobic respiration, 292
antifogging properties, 276
argon, 264, 265
biodegradable plastics, 209
biodeterioration, agents of
bacteria, 33–6
enzymes, 32, 33
fungi, 36–8
non-enzymic biodeterioration, 38
bioplastics, 295–319
definitions, 209, 297
genetic modification (GM), 306, 316
life cycle model, 296
market drivers, 295, 296
market challenges, 316
bioplastics, materials, 298
aliphatic polyesters and derivatives, 306, 307
aromatic co-polyesters, 307
biocomposites, 308, 309
casein, 304
cellulose, fibre-based & derivatives, 302, 303
chitin & chitosan, 304
collagen, 304
gluten, 304
lignocelluloses, 303
natural fibre bio-composites, 303
polybutylene succinate (PBS), 307
polybutylene succinate adipate (PBSA), 307
polybutylene succinate terephthalate (PBST), 307
polybutyrate adipate terephthalate (PBAT), 307
polycaprolactone (PCL), 307
polyester amide (PEA), 307
polyethylene from bio-ethanol (Bio-PE), 306
polyethylene terephthalate (PET), modified, 307
poly (ethylene vinyl alcohol) (EVOH), 307, 308
polyglycolic acid (PGA), 306
polyhydroxyalkanoate (PHA), 308
polyhydroxybutyrate (PHB), 308
polyhydroxyhexanoate (PHH), 308
polyhydroxyvalerate (PHV), 308
polylactic acid or polylactide (PLA), 305, 306
polysaccharides, 300
polytetramethylene adipate terephthalate (PTMAT),
307
polyurethane (PU), 304
plant fibres, 300
polyvinyl alcohol (PVOH), 307, 308
proteins, animal-based & plant-based, 304
regenerated cellulose film (RCF), 302, 303
starch, starch blends, starch-based, 300, 301
starch complex (starch blends with other
bioplastics), 301, 302
starch nano-composites, 301
thermoplastic Starch (TPS), 301
blanching, 39
bleaching of cellulose fibre, 215, 216
blow and blow process, glass container making, 142
blown plastic film, 161, 162
Botrytis cinerea, 292
brands, 1, 5, 6, 22, 23, 26
bread, modified atmosphere packaging of, 264
British Standards Institute (BSI), 100
Campylobacter jejuni, 266
cans, see metal cans
carbon dioxide scavengers/emitters, 254, 255
effect on foods, 266, 267
carbon cycling & footprint, 26, 298, 299
classification, 299, 300
composting, 311–4

Food and Beverage Packaging Technology, Second Edition. Edited by Richard Coles and Mark Kirwan.
© 2011 by Blackwell Publishing Ltd. Published 2011 by Blackwell Publishing Ltd.
carbon cycling & footprint (Cont.)
home (or domestic/garden/backyard) composting, 313, 314
industrial (municipal) composting, 311–3
Carbon Trust, 26
carbon monoxide
effect on foods, 269
cast plastic film, 161–3
chemically separated cellulose fibre, 215, 216
climate change & greenhouse gas emissions, 6–9
cling film wrapping, 177
Clostridium botulinum, 35, 36, 44, 54, 266, 267, 290, 291, 292
cold seal, 195
cold chain, 96
Comité Européen de Normalisation (CEN)
see also distribution performance tests
communication, reference logistics, 88, 89
compression strength, 93
compression testing, 98, 99
cube utilisation, 88, 91
Cytophaga, 290
dairy products, modified atmosphere
packaging of, 293
data matrix bar code, 5
diamond-like-carbon (DLC) coating, 184, 273
distribution centres, 93
distribution needs & hazards, 13–16, 26, 27
distribution performance testing, 97
environmental impact of bioplastics, 298, 299
environmental policy, 8, 26
equilibrium modified atmosphere, 292
equilibrium relative humidity (ERH), 50
ergonomic standard, 88
Escherichia coli, 35, 36, 49, 266, 288, 292
ethylene, 255, 256, 268, 291, 292
EU Directives
Packaging & Packaging Waste, 2
Packaging and Landfill, 2, 296, 310, 311
Plastics, 157
Renewable Energy, 2
EU Regulations
Animal By-Products (ABPR), 313
evolution blow moulding, 167
evolution lamination, plastics, 186, 187
fat, see lipid
fish modified atmosphere packaging of, 290, 291
Flavobacterium, 290
flavour/odour adsorbers, 258, 259
food
biodeterioration, 31–58
contact approval (packaging materials), 273
corporate social responsibility (CSR), 2, 25, 26
corrugated fibreboard, 98–101, 237–9
crisps, modified atmosphere packaging of, 264
cube utilisation, 88, 91
cubing, 290
distribution costs, 11, 23, 24
distribution performance, 97
environmental management systems, 26
environmental performance of packaging, 24–6, 153–5, 205–9, 243–9
environmental policy, 8, 26
moisture changes in food, 71, 72
oxidation, 63–6
physical damage, 70
food spoilage
enzyme, 203
gas, see carbon dioxide and oxygen effect on foods
microbiological, 288–93
physical, 270
fruit
modified atmosphere packaging of, 291–3
respiration, 292
gas permeation
definition, 274
gas exchange, 263
gas transmission rate
definition, 274
measurement, 286–8
gas
barrier properties, 274, 275
flushing, 281
flushing, compensated vacuum, 281
headspace composition determination, 288
measurement of transmission rate, 286–8
properties, 264, 265
glass composition, 138, 139
amber (brown), 139
blue, 139
dark green, 139
pale green (half white), 130
white flint (clear glass), 138, 139
glass container closure selection, 147, 148
normal seals, 147, 148
pressure seals, 147, 148
vacuum seals, 147, 148
glass container manufacture, 141–6
cold end treatment, 144
container forming, 141–4
design parameters, 142–4
furnace (melting), 141, 142
hot end treatment, 142–4
inspection and quality, 145, 146
low-cost production tooling, 144, 145
surface treatments, 142–4
glass container usage
cleaning, 152
consumer acceptability, 141
due diligence in the use of, 152, 153
food market sectors, 138
labelling and decoration, 149
marketing benefit, 139–41
pack design and specification, 150–52
pack integrity, 141
pack safety, 141
glass
attributes of packaging in, 139,140
definition, 137
packaging, 137, 138, 137–56
strength in theory and practice, 149, 150
hard sizing of paper and board, 225
hazard analysis critical control point (HACCP), 90, 96
heat sealing, 192–5, 201, 202
importance in MAP, 276
integrity, 202, 285, 286
measurement, 285, 286
helium, 265
inert gases, see noble gases
injection blow moulding, 168
injection moulding, 169
injection stretch blow moulding, 168
intelligent packaging, 251
International Organization for Standardization (ISO), 98, 99, 104
International Safe Transit Association (ISTA), 98
labelling of rigid plastic containers, 188, 189
Lactobacilli, 266, 290
lamb (red meat), modified atmosphere packaging of, 264, 268, 288
levels of packaging, primary, secondary etc., 15
life cycle assessment (LCA), 8
life cycle model for bioplastics, 296
lipid, oxidation, 268
Listeria monocytogenes, 35, 36, 49, 266, 292
logistical packaging issues, 89–97
packaging issues in food processing, 89, 90
retail customer service, 94, 95
supply chain integration, 97
transport, 90–93
warehousing, 93, 94
waste management, 95, 96
logistical packaging, functions, 86–9
communication, 88, 89
food marketing systems, 85–106
protection, 76–87
productivity, 87, 88
utility, 87, 88
logistics packaging materials and systems, 99–104
corrugated fibreboard boxes, 99–101
reusable totes, 101, 102
shrink bundles/wrapping, 101
unitisation, 102–4
meat
modified atmosphere packaging of, 264, 267, 268
oxygen, its effect on pigments, 268, 269
mechanical properties of packaging, 276
mechanically separated cellulose fibre, 215
mesophilic microorganisms, 33
metal can manufacture
coatings, film laminates and inks, 120
easy-open can ends, 119, 120
plain food can ends, 118, 119
Index

metal can manufacture (Cont.)
three-piece welded cans, 114, 115
two-piece drawn and ironed (DWI), 116–8
two-piece single drawn and multiple drawn (DRD), 115, 116
metal can packaging issues
can reception at packer, 121, 122
filling and exhausting, 122–32
handling, 126, 127
heat processing, 125, 126
post processing, cooling, drying and labelling, 126
seaming, 123, 124
storage and distribution, 127
metal can shelf life issues
aluminium, 132
dissolution of tin, 130, 131
environmental stress cracking aluminium ends, 133, 134
external corrosion, 134, 135
function of tin, 129, 130
interactions between can and contents, 128
internal corrosion, 138
iron, 131, 132
lacquers, 132
stress corrosion cracking, 133
sulphur staining, 134
tin toxicity, 130
metal cans
container designs, 108–10
packaging overview, 107
performance requirements, 107
raw materials, aluminium, 111
raw materials, steel, 110, 111
recycling, 112, 113
metallising of plastic films (OPP, PET, PA), 164, 183, 184, 198, 273
metal packaging, 107–36
microaerophiles, definition, 266
migration
avoiding migration and taint, 79
factors affecting, 78, 79
from other packaging materials, 77
from plastics, 74
issues for plastics, 189, 190
monitoring and measuring, 80
Mitsubishi Gas Chemical Company, 253, 255
modified atmosphere packaging machinery
chamber, 277
compensated vacuum gas flushing, 281
form-fill-seal, 277–9
gas flushing, 281
negative forming, 278, 279
negative forming with plug, 278, 279
positive forming with plug, 279
snorkel, 277
modified atmosphere packaging, 263–94
carbon dioxide scavengers/emitters, 254, 255
carbon dioxide headspace determination, 288
definition, 263
ethylene scavengers, 255, 256
MAP gases, 264–6
MAP packaging materials, 270–73
market for foods, 263
measurement of carbon dioxide transmission rate, 287
measurement of oxygen transmission rate, 287
measurement of transmission/permeability rates, 287
oxygen headspace determination, 288
oxygen scavengers, 252–4
water vapour transmission rate, 286
modified atmosphere packaging, food applications
cooked, cured and processed meat products, 289, 290
dairy products, 293
fish and fish products, 290, 291
fruits and vegetables, 291, 292
raw poultry, 288, 289
raw red meat, 288
moisture absorbers, 257
moisture spoilage of food, 263
Moraxella, 290
narrow neck press process, glass container manufacture, 142
neon, 265
nitrogen
effect on foods, 267
effect on microbial growth, 287
gaseous composition of air, 263
properties, 265
noble gases
properties, 265, 305
use in modified atmosphere packaging of foods, 264, 265
nylon, see plastics in food packaging, polyamide
oil, 2
optical properties of packaging, 164, 266
oriented plastic film, 161–4
oxygen
effect on microbial growth, 266
effect on foods, 263, 268
gaseous composition of air, 263
headspace composition measurement, 288
properties, 265
transmission rate, measurement, 287
oxygen scavengers, 252–4
Ageless® 253
beer, 252, 254
food applications, 252–4
iron based scavengers, 252
market, 252
non-metallic scavengers, 253
ZerO₂™, 254
plastic packaging, 157–212, 295–319
packaging papers and paperboards
bag papers, 221
folding boxboard (FBB), 222
glassine, 220
greaseproof, 220
impregnated papers, 221
laminating papers, 221
paper labels, 221
sack kraft, 221
solid bleached board (SBB), 221
solid unbleached board (SUB), 222
tissues, 220
vegetable parchment, 220
wet strength paper, 220
white lined chipboard (WLC), 228
packaging specifications and standards, 26, 27
packaging
definition, 9, 11
design and development, 1–3, 11, 13–27
functions of, 9, 10
historical perspective, 3–5
machinery & production processes, 16–18
optimisation, 11, 12
product quality and shelf life, 59–84
recovery, 154, 206–8, 215, 216, 245, 246
recycling, 95, 96, 154, 206–8, 214–6, 237, 245–7
reuse, 95, 96, 154, 206, 207
strategy, 10
supplier selection, 26
total quality management (TQM), 26, 27
pallet, 102–4
construction, 103
plastic, 102
wood, 102
paper and paperboard-based systems, 243
paper and paperboard environmental profile, 243
paper and board types of packaging, 242, 243
cap liners and diaphragms, 242, 243
composite containers, 236
corrugated fibreboard packaging, 237–9
fibre drums, 236
folding cartons, 231–3
induction sealed disc, 242, 243
interlocking dividers, 242
labels, 240, 241
liquid packaging cartons, 233–5
moulded pulp cushioning 242
moulded pulp containers, 239
multiwall sacks, 230
paper bags and wrapping paper, 228, 229
pulpboard disc, 242
rigid cartons or boxes, 235
sachets/pouches/overwraps, 229
sealing tapes, 241, 242
shredded paper, 242
tea and coffee bags, 228
tubes, 235
tubs, 235
paper and paperboard
acrylic dispersion coating, 225
added processes, 225–8
fluorocarbon dispersion coating, 225
hard sizing, 225
lamination, 225, 226
plastic extrusion/laminating, 226
printing and varnishing, 227
varnishing/coating/laminating, 227, 228
wax sizing, 225
paper and paperboard, fibre sources and pulping, 215, 216
paper and paperboard manufacture
coating, 219
drying, 218
finishing, 219
pressing, 218
reel-up, 219
sheet forming, 217
stock preparation, 217
paper and paperboard packaging, 213–50
design 228
paper and paperboard, properties, 223–5
pasteurisation, see thermal processing
pathogens, 31, 35, 36, 60, 61, 68
permeability coefficient, 274, 275
permeability issues for plastics, 190, 191
permeation, see gas permeation
pest control, 93
plastic packaging manufacture, 161
packs based on plastic films laminates, 163–7
plastic film and sheet for packaging, 161–5
rigid plastic packaging, 167–70
plastics environmental issues, 205
plastics in food packaging
acrylonitrile butadiene styrene (ABS), 179
cellulose based materials, 181
ethylene vinyl acetate (EVA), 176
ethylene vinyl alcohol (EVOH), 179, 271
fluoropolymers, 180, 181
gas and water vapour barrier properties, 15
high nitrile polymers (HNIP), 180
ionomers, 175, 176, 271
polyamide (PA), 176, 177, 271
polycarbonate (PC), 175
polyethylene (PE), 101, 170, 171, 271
polyethylene naphthalene dicarboxylate (PEN), 174, 175
polyethylene terephthalate (PET or PETE), 173, 174, 272
polymethyl pentene (TPX), 180
polypropylene (PP), 171–3, 272
polystyrene (PS), 178, 179, 272
polyvinyl acetate (PVA), 182
plastics in food packaging (Cont.)
 polyvinyl chloride (PVC), 177, 272
 polyvinylidene chloride (PVdC), 178, 272
 styrene butadiene (SB), 179
plastics waste management, 206–8
plastics, sealing and closing, 192–5
plastic packaging, 157–212, 295–310
 pork, modified atmosphere packaging of, 264, 288
 poultry, modified atmosphere packaging of, 264, 288, 289
press and blow, glass container manufacture, 142
printing of plastic films
digital, 188
flexographic, 188
gravure, 187, 188
printing of rigid plastic containers
dry offset printing, 189
heat transfer printing, 189
product packaging needs, 13, 14
properties of paper and board, 223–5
 appearance, 224
 performance, 224, 225
 protection, reference logistics, 86, 87
Pseudomonas, 266, 288, 290, 293
psychrotrophic, 33
radio frequency identification (RFID), 89, 94
recovered (secondary) cellulose fibre, 215, 216
retail distribution centre (RDC), 85, 93, 94
retail market needs, 21
retail logistics, 23, 24
retort pouch, 198–205
reusable totes, 101, 102
Salmonella, 36, 49, 56, 266, 292
self-cooling cans, 259, 260
self-heating cans, 259, 260
shelf life, 20, 59, 59–84, 204, 205, 263, 264
 factors affecting, 62, 63
 shock testing, 97, 98
shrink bundles, 101
shrink sleeving (labels), 149, 159
shrink wrapping, 101, 104, 159, 166, 177
silicon oxide (SiOx) coating, 273
silk screen printing, 189
slip sheet (logistics), 103, 104
Staphylococcus, 35, 266
stock keeping units (SKU), 88, 94
stretch blow moulding, plastics, 168
stretch wrapping, 104, 177
sustainable packaging, 7
sustainable sourcing of packaging materials, 7, 25
tea packaging innovation, 10–12
temperature controlled packaging, 259, 260
thermal lamination, plastics, 186
thermal processing, 39–47
 aseptic, 44–6, 169, 180, 234
 canned foods, 40–43, 125, 126
 glass packed foods, 148, 149
 pasteurisation, 46, 47
retort pouches, 198–205
total packaging system cost, 12
total product concept, 11, 13
total product cost, 7
total systems approach to packaging optimisation, 13
thermoduric, 33
thermoforming, 166, 169, 277–9
thermophilic, 33
transit issues, 90–93
 see also distribution performance tests
transit testing, 90, 97–9
transmission rate, definition, 274, 275
 see also CO₂, O₂ and water vapour transport
air, 91, 92
rail, 91
road, 90–91
sea, 92
US Fibre Box Association, 100
US Occupational Safety and Health Administration (OSHA), 88
vacuum packaging, 290
value of packaging to society, 7, 8
vegetables
 modified atmosphere packaging of, 264, 291–3
 respiration, 291, 292
vibration testing, 97, 98
Vibrio parahaemolyticus, 266
virgin (primary) cellulose fibre, 215, 216
warehouse issues, 93, 94
waste management issues, 6–8, 95, 96, 153, 154, 205–9, 245, 246, 299, 310, 311
waste treatments, biological, 311–6
water activity (aw), 35
water management, 6–8
water vapour transmission rate (WVTR)
 definition, 274, 275
 effect of relative humidity (RH), 274, 275
 measurement of, 286, 287
 test standard ASTM E96, 286
 test standard ASTM F 1249, 286
zenon, 265