Subject Index

a
Absorption of radiant energy 100
Active packaging 331–346
– Background information 331–333
– Conclusions 345
– Examples of active packaging systems 332
– Food safety, consumer acceptability and regulatory issues 344, 345
– – Environmental regulations 344
– – Food contact approval 344
– – Labelling 344
– – Microbial ecology and safety 344
– – Freshness enhancers 331
Agitated thin film evaporator 72, 77
Agitation see Mixing
Agglomeration 110
Air dried tomato 115
Aluminium alloy 319, 320
– Lacquer 320
Aluminium foil 316
– Annealing 316
– Ductility 316
– Temper 316
– Rolling 316
Antifoaming agent 73
Aseptic packaging 68, 81, 297, 329–331
– Cans 329
– Cartons 329–331
– Dole process 329
– Glass containers 329
– Hydrogen peroxide 329–331
– Plastic cups
– Tetra Brik system 329, 330
– Thermoform filling system 331
Aseptic processing see Ultra High Temperature Processing (UHT)
Attrition mill 547, 555
Attritor 549
– Double-disc mill 548
– Single-disc mill 547, 548
Automatic tote box irradiator 155
b
‘Bag in box’ container 81, 82, 84
Baking bread 237–251
– General principles 237, 238
Baking bread, baking quality and rheology 249–251
– Crumb score 250
– Expanding bubble walls 249
– Loaf volume 250
– Rheological tests 249
– Strain hardening 249–251
Baking bread, gluten polymer structure, rheology and baking 244–248
– Gliadins 244
– Glutenins 244
– Rheological properties 245
– – Disulphide bonding 245
– – Entanglements 245–247
– – Hydrogen bonding 245
Baking bread, methods of bread production 238–241
– Bulk fermentation 239
– Comparison of bulk fermentation and Chorleywood bread process 241
– Chorleywood bread process 239–241
Baking bread, the baking process 242–244
– Baking 243, 244
– Fermentation (proof) 242, 243
– Mixing 242
Baking, extrusion and frying 237–290
Ball mill 549, 553
– Attritor 549
– Critical speed 549
– Pebble mill 549
– Vibration ball mill 549
Barometric leg 73, 78
Barrel 82
Basket centrifuge see Centrifugal filter
Batch freeze drier see Cabinet freeze drier
Beater bar mill 545
Belt drier see Conveyor drier
Belt freezer 126
Bin drier 90
Biscuits 102
Blanching 26–29, 58, 114
– Equipment 28, 29
– – Hot water blanchers 29
– – Microwave blanching 29
– – Steam blanchers 28, 29
– Mechanisms and purposes 26, 27
– – Cleaning 27
– – Decontamination 27
– – Enzyme destruction 26
– – Loss of turgor pressure 26
– – Nutrient loss 26
– – Removal of gases from plant tissues 27
– – Shrinking 27
– – Softening 27
– Processing conditions 27, 28
– – Time/temperature combinations 28
Blast freezer 126
Blending see Mixing
Brandy 468
Breakfast cereals 102
Buhrstone mill 547, 554
Buttermilk 81

Centrifugation 444–452
– Applications 450–452
– – Beer production 451
– – Edible oil refining 451
– – Fruit juice processing 452
– – Milk products 450, 451
– – Wine making 451
– Equipment 447–450
– Separation of immiscible liquids 444, 445
– – Gravity disc 445
– – Neutral zone 444
– – Ring dam 445
– Separation of insoluble solids from liquids 446
– – Equation for scaling up 446
Chilled orange juice 84
Chocolate 82, 553, 554
Cleaning of raw (food) materials 14–20
– Dry cleaning methods 14–18
– – Aspiration 16, 17
– – Electrostatic cleaning 17, 18
– – Magnetic cleaning 17
– – Screening 14–16
– – Main contaminants 14
– – Wet cleaning methods 18–20
– – Dewatering 19
– – Flotation washing 19
– – Froth flotation 19
– – Soaking 18
– – Short hot water rinse and brushing (HWRB) treatment 20
– – Spray washing 19
Climbing film evaporator 76
Climbing-falling film evaporator 76
Coffee beans, milling of 554
Coffee extract 77
Cold break process for tomato 85
Colloid mill 531, 532, 548
– High speed mill 532
– Rotor 531
– Stator 531
– Top-feed 'paste' mill 532
Comminution see Size reduction
Comminuting mill 545
Composite container 303
Concentrated fruit juice 83
Concentrated vegetable juice 83
Condenser 71, 73, 76, 95
Conduction in heat transfer 42, 94, 98
Continuous distillation column 466, 467
– Bubble-cap plate 466
– Packed column 467
Subject Index

- Sieve plate 466
- Valve plate 466
Continuous freeze dryer 99
Continuous heat exchangers see Heat exchangers, continuous
Continuous heat processing see Ultra High Temperature Processing (UHT)
Convection, in heat transfer 42, 86
Conveyor dryer 89
Crushing see Size reduction
Crushing rolls see Roller mill
Cryogenic freezing 127
Crystal structure 471–475
- Cubic 472
- Hexagonal 472
- Rhombic 472
- General principles 471–475
- Nucleation 474
- Heterogeneous nucleation 474
- Homogeneous nucleation 474
- Secondary nucleation 474
- Seeding 474
- Supersaturation 472–474
- Miers' theory 473
- Saturation coefficient 472
Crystallisation applications 476, 477
- Freeze concentration 477
- Margarine and pastry fats 477
- Production of salt 477
- Production of sugar 476
- Massecuite 476
- Salad dressings and mayonnaise 477, 534
- Winterisation 477
Crystallisation equipment 475, 476
- Magma
- Mother liquor
Cut back juice 73
Cyclone separator 73, 76, 93, 110

D Damage to raw (food) materials 7
- Mechanical injury 7
- Physical changes 7
Decanting centrifuge 450

Dehydrated dairy products 117, 118
- Buttermilk powder 118
- Instant milk powder 117
- Skimmed milk powder 117
- High heat powder 117
- Medium heat powder 117
- Low heat powder 117
- Whole milk powder 117
- Whey powder 118
Dehydrated fish products 119
Dehydrated fruit products 116, 117
Dehydrated meat products 118
Dehydrated potato products 115
- Diced potato 115
- Potato flakes 115
- Potato flour 115
Dehydrated vegetable products 114, 115
Dehydration 85–123
- Applications 114–119
- Critical point in drying curve 87
- Diffusion of moisture 88
- Drying curve 86
- Equilibration period 87
- Falling rate period 87, 110
- General principles 85–86
Density 88, 97

Detection methods for irradiated foods 162, 163

Deterioration of raw (food) materials 7
- Biological changes 7
- Chemical changes 7
- Endogenous enzymes 7
- Microbiological contamination 7
- Nutritional changes 7
- Physical changes 7

Dielectric heating 67, 68, 101
Dielectric loss factor 101
Disc bowl centrifuge 448
Disc mill 547, 548
Distillation 462–471
- Batch distillation 462
- Bubble point 462, 463
- Continuous distillation 462
- Dewpoint 462, 463
- Distillation column 463, 464
- Distillation plate 462, 463
- Downtake 464
- Equilibrium plate 464
- Equipment 466, 467
- Fractionating column 464
- General principles 462–466
- Plate efficiency 464
- Reboiler 464
- Reflux 464
Subject Index

- Steam distillation 464
- Subcooled liquid 462
- Superheated vapour 462
- Volatility 462

Distillation applications 467–471
- Concentration of aroma compounds 469
- Extraction of essential oils 471
- Manufacture of neutral spirits 469, 470
 - Aldehyde column 469, 470
 - Aldehyde concentrating column 469, 470
 - Fusil oils concentrating column 469, 470
 - Product concentrating column 469, 470
 - Whisky separating column 469, 470
- Manufacture of whisky 467–469
 - Beer column 468
 - Feints 468
 - Foreshots 468
 - Low wines still 468
 - Rectifier column 468
 - Wash still 468

Dole process 329
Double cone vacuum drier 95
Double-disc attrition mill 548

Double seaming 81
Downcomer 74, 83
Drum drier 78, 110–112, 115
 - Double drum drier 112
 - Single drum drier 112
 - Vacuum drum drier 112
Drum drying 82
Drum freezer 126
Dry bulb temperature 87
Dry-blanch-dry process for fruits 116
Dry cleaning of vegetables 114

Drying see Dehydration

Drying by the application of dielectric energy 100–102
Drying by the application of radiant heat 100

Drying curve 86
Drying food liquids and slurries in heated air 105–110
Drying liquids and slurries by direct contact with a heated surface 110–113
Drying of solid foods by direct contact with a heated surface 94, 95
 - Equipment 88
Drying solid foods in heated air 86–94

- Electric filter 437
- Filter pack 437
- Filter pile 437

Edge mill 543
Electrical conductivity 101
Electrodialysis 504–507
 - Applications 506, 507
 - Desalination of water 506
 - Desalting of cheese whey 506
 - Other potential applications 506, 507
 - Electromigration 504
 - Equipment 504, 506
 - Cell pair 504
 - Concentration polarisation 505
 - Electrode 505
 - Fouling 505
 - Ion-concentrating cell 505
 - Ion diluting cell 505
 - Membrane stack 504, 505
 - Spacers 504, 505
 - General principles 504–506
 - Heterogeneous membranes 504
 - Homogeneous membranes 504
 - Ion-selective membranes 504

Electrolytic chromium coated steel (ECCS) 319
 - Coating weight 319
 - Lacquer 319
 - Structure 319

Electromagnetic waves 101
Emulsification 524–537
 - Continuous phase 524
 - Discontinuous phase 524
 - Dispersed phase 524
 - Dispersing phase 524
 - External phase 524
 - Hydrophilic materials 524
 - Hydrophobic materials 524
 - Interfacial tension 525
 - Internal phase 524
 - Introduction 524–, 525
 - Microemulsions 525
 - Multiple emulsions 525

Emulsification applications 532–537
 - Butter 535
 - Batch churning 535
 - Continuous buttermaking 535, 536
 - Cake products 535
 - Coffee/tea whiteners 534
 - Cream liquors 533
 - Ice cream mix 533
 - Margarine and spreads 536, 537
Subject Index

- Sweetened condensed milk 81
- Boiling point rise 72
- Entrainment losses 73
- Equipment 73–78
- Foaming 73, 77
- Forced circulation 73
- Fouling 72, 74, 77
- General principles 71–73
- Heat exchanger (calandria) 73
- Expanding flow 73
- Plate 73
- Tubular 73
- Hydrostatic pressure 71
- Multiple-effect evaporation 76, 77, 78, 81, 82, 84
- Backward feeding 79
- Forward feeding 79
- Mixed feeding 79
- Overheating 72
- Single-effect evaporator 73, 77, 78, 79, 83
- Specific steam consumption 78, 79, 80
- Vapour recompression 79, 80
- Mechanical vapour recompression 80
- Thermal vapour recompression 79
- Viscosity of feed 72
- Evaporative cooling 99
- Examples of emulsification see Emulsification applications
- Examples of size reduction see Size reduction applications
- Extraction see Solid-liquid extraction
- Extracellular 82
- Continuous 82
- Static bed 82
- Extrusion 215–269
- Advantages of the extrusion process 253, 254
- Effects on properties of foods 259–269
- Extrusion cooking applications 254
- General principles 251, 252
- The extrusion process 252, 253
- Energy inputs 252
- Feeders for dry ingredients 253
- Feeders for liquid ingredients 253, 254
- Ingredients 252
- Extrusion equipment 254–259
- Comparison of single- and twin-screw extruders 258, 259
- Piston extruder 254
- Roller extruder 254
- Screw extruder 254
- High shear extruder 254
- Low shear extruder 254
- Single screw extruder 255, 266
- Compression ratio 256
- Cross-channel flow 256
- Drag flow 255, 256
- Preconditioning 255
- Premixing 255
- Pressure flow 256
- Twin-screw extruder 256–258
- Conveying disc 257
- Co-rotating screws 257
- Counter-rotating screws 257
- Intermeshing screws 256, 257
- Nonintermeshing screws 258
- Profiled barrel housing 256
- Extrusion, flavour formation and retention during extrusion 267–269
- Binding of volatiles 267
- Generation of volatiles 268
- Loss of volatiles 267, 268
- Nonenzymic browning reactions 267
- Carmelisation 267
- Maillard reaction 267
- Oxidative decomposition 267
- Postextrusion flavouring processes 267
- Extrusion, nutritional changes 264–267
- Protein 264–266
- Denaturation 265
- Disruption of disulphide bonds 265
- Hydrolysis 265
- Invitro availability of amino acids 265
- Invitro protein digestibility 266
- Loss of lysine 263
- Maillard reaction 265
- Vitamins 266, 267
- Folic acid 267
- Niacin 266, 267
- Ribflavin 266, 267
- Thiamin 266, 267
- Extrusion of starch-based products 259–264
- Cereal flours 259
- Effects of added sugars 264
- Effects of barrel temperature 259–262
- Effects of die size 260, 261
- Effects of feed moisture content 259–262
- Effects of screw geometry 259–262
- Effects of screw speed 259–262
- Functions of fat 263, 264
- Functions of protein 262, 263
Factors affecting the choice of a packaging material and/or container for a particular duty 292–299

– Chemical compatibility of the packaging material and the contents of the package 295, 296
 – Additives 295
 – Interaction
 – Leaching 295
 – Migration 295
 – Monomers 295
 – Simulants 295, 296
 – Greaseproofness 294

– In-package microflora 297
– Light 295
– Mechanical damage 292
 – Cushioning material 292
 – Shrink-wrapping 292
– Permeability characteristics 292
– Permeability constant 294
– Respiration 293
– Protection against insect and rodent infestation 297
 – Fumigants 298
 – Insecticides 298
– Protection against microbial contamination 297
– Taint 298
– Tamper evident/resistant packages 299
 – Grazing 299
– Temperature 294

Falling film evaporator 72, 76, 81, 82

Fibreboard 302
 – Corrugated fibreboard 302
 – Flute size 302
 – Solid fibreboard 302

Fick’s 2nd law of diffusion 88

Film drier see Drum drier

Filter aids 434, 435
 – Cellulose fibres 435
 – Charcoal 435
 – Diatomaceous material 435
 – Expanded perlite 435
 – Paper pulp 435
 – Precoating 435
 – Premixing 435

Filter medium 432, 434
 – Flexible media 434
 – Nonwoven 434
 – Woven 434
 – Rigid media 434
 – Fixed 434

– Loose 434

Filtering centrifugal see centrifugal filter

Filtration, solid-liquid 403–405, 432–434
 – Centrifugal filtration 432
 – Compressible cake 433
 – Compressibility coefficient 433
 – Constant pressure filtration 433
 – Constant rate filtration 433
 – General principles 432–434
 – Gravity filtration 432
 – Filter cake 432
 – Filter medium 432
 – Resistance 433
 – Filtrate 432
 – Incompressible cake 433
 – Pressure drop across the cake, equation 432
 – Pressure drop across the medium, equation 433
 – Pressure filtration 432
 – Specific cake resistance 433
 – Total pressure drop across cake and medium, equation 433
 – Vacuum filtration 432

Filtration applications 442, 443
 – Beer production 443
 – Edible oil refining 442
 – Winterisation 442
 – Sugar refining 442, 443
 – Wine making 443

Filtration equipment 432–443

Flash drier see Pneumatic drier

Flavour/odour adsorbers 324, 343
 – Aldehydes 343
 – Debittering 343
 – Flavour scalping 342
 – Volatile amines 343

Flexible laminates 310
 – Adhesive bonding 310
 – Coextrusion 310

Flexible packaging films 304–314
 – Calendaring 304
 – Cellulose acetate 306, 480
 – Ethylene-vinyl acetate copolymer 309, 310

– Extrusion 304
 – Ionomer 309
 – Irradiation 305
 – Nylon 308, 309
 – Orientation 304, 305
 – Polyamide 308
 – Polycarbonate 309
 – Polyester 308
Subject Index

- Polyethylene 306
- Polypropylene 307
- Polystyrene 308
- Polytetrafluoroethylene 309
- Polyvinyl chloride 306, 307
- Polyvinylidene chloride 307
- Regenerated cellulose 305, 306
- Solution casting 304

Fluid energy mill 546
Fluidised bed cooling crystalliser 475
Fluidised bed drier 82, 90
- Batch 91
- Continuous 91
- Entrainment velocity 90
- Incipient velocity 90
Fluidised bed evaporative crystalliser 476
Fluidised bed freezer 126
Foam mat drying 113
Foos mill 548
Form-fill-seal equipment 312–314
- For sachets 312, 313
- For pillow packs 313, 314
Freeze concentration 71, 477, 479
Freeze drying 82, 96–100
Freezing 125–145
- Introduction 125
Freezing kinetics 138–143
- Cooling and under cooling of liquid sample 138, 139
- Crystal growth 137, 138
- Formation of microstructure during solidification 140
 - Anisotropy 140
 - Directional cooling 140
 - Unidirectional freezing 140
- Further cooling of frozen material 137, 138
- Glass transition temperature 139, 140
- Nucleation 137, 138
- Time-temperature curve during typical freezing 138
Freezing kinetics – mathematical models 141
- Cleland's model 142, 143
- Neumann's model 141
- Plank's model 142
Frozen orange juice 84
Fruit juice 73, 75, 76, 77, 452, 460
Frying 268–283
- Fried products 270
 - Acrylamide 271
 - Fat absorbed during frying 270, 271
 - Low-fat products 271
- Frying process 270
- General principles 269–271
Frying equipment 272–274
- Batch frying equipment 272, 273
 - Basket lift system 272
 - Chamber 272
 - Cool zone 272
 - Heating 272
 - Pressure batch fryers 272
 - Turbojet infrared burners 272
- Continuous frying equipment 272, 273
 - Automated machines 273
 - Conveyor 272
 - Extraction system 272
 - Heating 272, 273
 - Vacuum frying system 273
 - Oil-reducing system 273, 274
Frying, factors affecting oil absorption 280, 281
- Batters and breading 281
 - Hydroxypropyl methylcellulose 281
 - Methylcellulose 281
- Gel strength 281
- Initial solids content 281
- Slice thickness 281
- Oil temperature 280, 281
- Oil type and quality 281, 281
- Porosity
Frying, heat and mass transfer 27
- Bubble end point 278
- Falling rate 278
- Initial heating 278
- Surface boiling 278
Frying, kinetics of oil uptake 280
Frying, microstructural changes 281–283
- Confocal microstructural changes 281–283
- Confocal laser scanning microscopy (CLSM) 282, 283
- Core tissue 282
- Light microscopy 282
- Magnetic resonance imaging (MRI) 282
- Oil distribution 282
- Oil penetration 282
- Outer layer 282
- Scanning electron microscopy (SEM) 2281, 282
- Surface roughness 283
Frying, modelling of deep-fat frying 279
- Analogy with freezing 279
- Core 279
- Crust 279
- Moving boundary 279
Frying oils 274, 275
- Animal fats 275
– Antioxidants 275
– Fat substitutes 275
– Olive oil 275
– Palm oil 274
– Palm olein 274
– Rapeseed oil (canola) 274
– Soyabean oil 274

g
Gas contact refrigerator 126
Gelatin 77
Genetic engineering 8, 9
Gin 469
Glass and glass containers 322–325
– Annealing of glass containers 323
– Capacities of glass containers 323
– Closures for glass containers 325
– Normal seal 325
– Pressure seal 325
– Vacuum seal 325
– Dimensions of glass containers 323, 324
– Forming of glass containers 322, 323
– Making of glass 322
– Mechanical strength of glass containers 324
– Multitrip glass containers 325
– Singletrip glass containers 325
– Temperature resistance of glass containers 325
Glucose 74, 75
Grading of raw foods 24–26
– Infrared rays, use of 26
– Lasers, use of 26
– Machine grading 24, 25
– Microwaves, use of 26
– Optical techniques 25
– Sonic techniques 25, 26
– Trained manual graders 24
– X-rays, use of 26
Granulated sugar 82
Gravy 71
Grinding see Size reduction

h
HACCP, Hazard Analysis and Critical Control Point system 66, 362–371
– Linear and modular HACCP systems, example layouts 363
– Principles 363
HACCP, implementing and maintaining a system 370
HACCP, ongoing control of food safety in processing 370, 371

HACCP system development 362–369
– Step 1. Assemble HACCP team 362–364
– Step 2. Describe product 364
– Step 3. Identify intended use 365
– Step 4. Construct flow diagram 365, 366
– Example of a process flow diagram 365
– Step 5. On site confirmation of flow diagram 366
– Step 6. List all potential hazards, conduct a hazard analysis and consider control measures 366, 367
– Control measure 366
– Examples of hazard analysis process 367
– Hazard 366
– Hazard analysis 366
– Step 7. Determine critical control points (CCPs) 367, 368
– CCP decision tree 367
– Step 8. Establish critical limits for each CCP 368
– Step 9. Establish a monitoring system for each CCP 368
– Step 10. Establish corrective actions 368
– Step 11. Establish verification procedures 368, 369
– HACCP audits 368
– Product testing 369
– Review of CCP monitoring records 368
– Review of deviations 369
– Step 12. Establish documentation and record keeping 369, 370
– CCP monitoring records 369
– Records of corrective actions 369
– Records of modifications to processes and HACCP plans 369
– Records of verification activities 369
Hammer mill 544, 545, 553
– Breaker plate 544
– Choke feeding 544
Heat exchangers, continuous 43–48
– Direct heating 46
– Flash cooling 46
– Infusion 46
– Injection 46
– Holding tube 46
– Homogenisation 45
– Plate heat exchanger 44
– Regeneration 44
– Residence time distribution 46
– Reynolds number 46, 47
– Plug flow 47
Subject Index

--- Streamline flow 46
--- Turbulent flow 46
--- Tubular heat exchanger 45
--- Double concentric tubes 45
--- Multiple concentric tubes 45
--- Shell and tube 45
--- Single tube with jacket 45
Heat of sublimation 97
Heat processing methods 48–68
Heat pump 84, 105
Heat sealing equipment 311
--- Band sealer 311
--- Electronic sealing 311
--- Hot bar sealer 311
--- Impulse sealer 311
--- Ultrasonic sealing 311
Heat transfer coefficient 87, 95
High pressure processing 173–199
--- Advantages 175
--- Current and potential applications 195, 196
--- Citrus juices 195
--- Guacamole 195, 196
--- Ham 195
--- Jam 196
--- Oysters 196
--- Rice products 196
--- Salmon 196
--- Yoghurt 196
--- Disadvantages 175
--- Effects on enzyme activity 183–185
--- Effects on colour, browning 184
--- Effects on flavour 184
--- Effects on texture 185
--- Lipoxygenases 183, 184
--- Pectin methylesterases 183, 185
--- Polyphenoloxidases 183, 184
--- Effects on foaming and emulsification 185–187
--- Casein 186
--- β-Lactoglobulin 185, 186
--- Ovalbumin 186, 187
--- Soy protein 186, 187
--- Effects on gelation 187–189
--- Effects on ingredient functionality 181, 182
--- Effects of pressure and temperature 182
--- Phase diagram for native/denatured protein systems 182
--- Protein structure and functionality 181, 182
--- Effects on microorganisms 176–181
--- Bacterial spores 176, 177
--- Combination treatments involving pressure 180
--- Effect of high pressure on the microbiological quality of foods 180, 181
--- Effect of temperature on pressure resistance 179
--- Magnitude and duration of pressure treatment 179
--- Stage of growth of microorganisms 178
--- Strain within species 178
--- Substrate 179, 180
--- Vegetative bacteria 177
--- Viruses 178
--- Yeasts and moulds 177
--- History 174
--- Introduction 173–176
--- Isostatic process 174
--- Le Chatelier’s principle 174
--- Organoleptic considerations 189, 190
High pressure processing equipment 190–195
--- ‘Batch’ system 191–193
--- ‘Continuous’ system 190, 191
--- Control systems 195
--- High pressure pumps 194
--- Pressure vessel considerations 193, 194
--- Standard pressure vessel 193
--- Wire wound pressure vessel 193, 194
High voltage arc discharge 230
Homogenisation 45, 528–532
Horizontal plate filter 436
Hot break process for tomato 85
Hydraulic reactions in dried foods 121
Hydroshear homogeniser 530
i
Ice cream 82
Immersion freezing 127
Impact mill 544, 553
Infrared heating 100
Instant coffee 82, 100, 118, 459, 460
Instant tea 118, 460
Integrated fluidised bed drier 110
Intelligent packaging 334
Ion exchange 495–504
--- Adsorption 495, 497, 498
--- Anion exchangers 495
--- Cation exchangers 495
--- Counterions 496
--- Desorption 496, 497, 498
--- Electrostatic force 496
Subject Index

- Equipment 497–500
 - Adsorbent 497
 - Buffer 499
 - Capacity 497
 - Dextran 497
 - Elution 498
 - Fixed bed operations 499, 500
 - Fouling 497
 - Medium 497
 - Mixed bed systems 500
 - Packed bed 497
 - Polystyrene 497
 - Resin 497
 - Silica 497
 - Stirred tank 499, 500
- General principles 495–497
- Ion exchange applications 500
 - Deacidification 501
 - Fruit juice 501
 - Vegetable juice 501
 - Dealkalisation 501
 - Soft drinks 501
 - Water 501
 - Decolourisation 502
 - Sugar solution 502
 - Wine 502
 - Detoxification 501
 - Protein purification 502
 - Fermentation broths 503
 - Waste streams 503
 - Whey 502
- Radioactive decontamination 501
- Softening and demineralisation 500, 501
 - Sucrose solution 500
 - Sugar solution 501
 - Water 500
 - Whey 501
 - Wine 500

In-container processing see Sterilisation in-container

Irradiated foods, methods of detection 162, 163
 - Antibody assays 163
 - Changes in populations of microorganisms 163
 - Comet assay 162
 - Electrical impedance 162
 - Electron spin resonance (ESR) 162
 - Luminescence techniques 162
 - Near infrared reflectance 162
 - Viscosity changes (in starch) 162

Irradiation 147–172
 - Biological effects 153, 154
 - Direct effects 153
 - DNA damage 153, 154
 - Lethal dose 153
 - Indirect effects 153
 - Chemical effects 152
 - Dissociation 152
 - Isomerism 152
 - Primary effects 152
 - Radiolysis 152
 - Reactions with neighbouring species 152
 - Secondary effects 152
 - Control and dosimetry 159, 160
 - Absorbed dose 159
 - Average dose 159
 - Chemical dosimetry 159
 - Dose rate 159
 - Dose uniformity ratio 159
 - Dosimeter 159
 - Fricke system 159
 - Legal limit 159
 - Primary standard 159
 - Threshold dose 159
 - Validation of dose 159
- Introduction 147
- Physical effects 148–152
 - Compton effect 148, 149, 152
 - Depth of penetration 150, 151
 - Effective dose 151
 - Energy limits 152
 - Excitation 148, 151
 - Ionisation 148, 150
 - Radioactivity 151
- Safety aspects 160
 - Cell to contain radioactive source 160
 - Disposal of radioactive material 160
 - Interlocks 160
 - Safe operation 160
- Transport of radioactive material 160

Irradiation, applications and potential applications
 - Bulbs and tubers 170
 - Cereals and cereal products 170
 - Combination treatments 167, 171
 - Delay of ripening and senescence 166
 - Eggs 171
 - Elimination of parasites 167
 - Fish and shell fish 169
 - Fruits and vegetables 169
 - Inactivation of microorganisms 164, 165
 - Radappertisation 165
-- Radicidation \(165\)
-- Radurisation \(165\)
-- Inhibition of sprouting \(166\)
-- Insect disinfectations \(166\)
-- Limits on overall average dose \(163\)
-- Meat and meat products \(167, 168\)
-- Milk and dairy products \(170, 171\)
-- Development of ‘wet dog’ or ‘goaty’ off flavours \(167\)
-- Nuts \(171\)
-- Radura symbol \(163\)
-- Ready meals \(171\)
-- Spices and herbs \(170\)
-- Water \(406\)

Irradiation, effects on properties of foods \(160, 161\)
-- Carbohydrate \(161\)
-- Lipids \(161\)
-- Autoxidation \(161\)
-- Mineral content \(160\)
-- Protein \(161\)
-- Vitamins \(161\)

Irradiation equipment \(154–159\)
-- Isotope sources \(154–156\)
-- Automatic tote box irradiator \(155\)
-- Co\(60\) tubes \(154\)
-- Halflife \(154\)
-- Potato irradiator \(156\)
-- Product movement past the source \(156\)
-- Machine sources \(157, 158\)
-- Dynamitron \(157\)
-- Electron beam machine \(157, 158\)
-- Linear accelerator \(157, 158\)
-- Scanning magnet \(157\)
-- X-ray machine (convertor) \(158\)

Irradiation principles \(147–154\)
-- Absorbed dose \(148\)
-- Electron volts (eV) \(148\)
-- Gamma rays \(147, 148\)
-- Gray (Gy) \(148\)
-- High energy electron beams \(147, 148\)
-- Machine sources \(148\)
-- Radioisotopes \(148\)
-- Co \(60\) \(148\)
-- Cs \(137\) \(148\)
-- X-rays \(147, 148\)

Isopropyl alcohol; \(83\)

\(j\)

Jam \(74\)

Jet mill \textit{see} Fluid energy mill

\(l\)

Lactose \(81\)
Latent heat \(87, 95\)
Leaching \textit{see} Solid-liquid extraction
Liquid diffusivity \(88\)
Long tube evaporator \(72, 75, 76, 83\)
-- Climbing-falling film \(76\)
-- Climbing film \(76\)
-- Falling film \(76\)
Longwave bar heater \(100\)
Low temperature production \(127–138\)
-- Nontraditional methods \(128\)
Lyophilisation \textit{see} Freeze drying

\(m\)

Maize, milling of \(552\)
Malt extract \(74, 75\)
Margarine \(537\)
Materials and containers used for food packaging \(300–325\)

Mechanical refrigeration cycle \(129–132\)
-- Carnot cycle \(129\)
-- Compression \(129\)
-- Condensation \(130\)
-- Evaporation \(130\)
-- Expansion \(130\)
-- Pressure-enthalpy diagram for the Carnot cycle \(130\)
-- Real refrigeration cycle (Standard vapour compression cycle) \(131\)
-- Dry compression \(131, 132\)
-- Expansion engine \(132\)
-- Expansion valve \(132\)
-- Wet compression \(131\)
-- Temperature-entropy diagram for the Carnot cycle \(131\)

Mechanical refrigeration equipment \(132–137\)
-- Compressor \(135\)
-- Mechanical compression \(135\)
-- Pressure difference (or ejectors) \(135\)
-- Thermal compression \(135\)
-- Condenser \(133–135\)
-- Air cooled \(133, 134\)
-- Evaporative \(133–135\)
-- Water cooled \(133, 134\)
-- Evaporator \(132, 133\)
-- Direct contact evaporator \(132\)
-- Indirect contact evaporator \(132, 133\)
-- Expansion valve \(135\)
-- Automatic \(135\)
-- Manual \(135\)

Meat extract \(75\)
– Diffusion mechanism in mixing solids 521
– Fluidised bed mixers 523
– Horizontal screw and ribbon mixers 521, 522
– Segregation 520, 521
– Tumbling mixers 522
– Unmixing 520, 521
– Vertical screw mixers 522

Mixing of gases and liquids 523
– Impeller agitators 513, 523
 – Pitched blades 516, 523
 – Vaned discs 516, 523
– Z-blade mixer 521, 523

Mixing of high viscosity liquids, pastes and plastic solids 517, 519, 520
– Bowl mixer see Pan mixer
– Can mixer see Pan mixer
– Continuous mixers for pastelike materials 519
– Disperser see Kneader
– Kneader 519
 – Z-blade mixing elements 519, 521
– Masticator see Kneader
– Pan mixer 519, 520

Mixing of low and moderate viscosity liquids 513–517
– Baffle 514, 515
– High shear mixer 518
– Impeller mixers 513–517
– Longitudinal velocity component 514
– Paddle mixer 515
 – Anchor agitator 515
 – Counter-rotating agitator 515
 – Flat paddle 515
 – Gate agitator 515
– Propeller mixer 516, 517
– Radial velocity component 514
– Turbine mixer 515, 516
 – Curved blade 516
 – Pitched blade 516
 – Straight blade 516
 – Vaned disc 516
– Rotational velocity component 514
– Vortex 514

Modified atmosphere packaging 325–328
– Bakery products 327, 328
– Carbon dioxide, role of 326
– Carbon monoxide 326
– Cheese 327, 328
– Fish 327, 328
– Fruit 327, 328
– Meat products 327, 328
– Nitrogen, role of 326
– Noble gases 326
– Oxygen, role of 326
– Packaging materials for MAP 327
– Pasta 327, 328
– Sulphur dioxide 36
– Vegetables 327, 328

Moisture absorbers 341, 342
– Activated clays 341
– Calcium oxide 341, 342
– Carboxymethyl cellulose
– Drip absorbent pads, sheets, blankets 341, 342
– Minerals 341
– Polyacrylate salts 342
– Silica gel 341
– Starch polymers 342

Monolayer moisture content 120

Monomolecular moisture content see Monolayer moisture content

Moulded pulp container 302

Multistage moving bed extractor 457, 458
– Bonnotto extractor 457, 458

Multistage static bed extractor 456, 457

n
Nanofiltration 405, 406, 478, 489, 490
– Applications 489, 490
 – Milk 489
 – Oligosaccharides 490
 – Water
 – Whey 489

Nonenzymic browning 121

Nozzle discharge centrifuge 449

o
Ohmic heating 67
Orange juice 83, 84
Oscillating magnetic fields 230
Osmotic dehydration 102–104, 213
 – Hypertonic solution 103
 – Osmotic pressure 102, 479, 489

Oxidation 121

Oxygen scavengers 333–336
– Adhesive labels 335
– Catalyst 334
– Crown caps 336
– Iron-based powders 334, 335
– Laminated trays 335
– Nonmetallic scavengers 335
 – Ascorbate salts 335
 – Ascorbic acid 335
 – Catechol 335
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>573</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>Packaging 291–350</td>
</tr>
<tr>
<td></td>
<td>– Definition 291</td>
</tr>
<tr>
<td></td>
<td>– Environmental implications 291, 389–392</td>
</tr>
<tr>
<td></td>
<td>Packaging in flexible films and laminates 312–314</td>
</tr>
<tr>
<td></td>
<td>– Introduction 291, 292</td>
</tr>
<tr>
<td></td>
<td>Paperboard 301, 302</td>
</tr>
<tr>
<td></td>
<td>– Carton 302</td>
</tr>
<tr>
<td></td>
<td>– Chipboard 302</td>
</tr>
<tr>
<td></td>
<td>– Duplex board 302</td>
</tr>
<tr>
<td></td>
<td>– Set-up box 302</td>
</tr>
<tr>
<td></td>
<td>Papers, packaging 300, 301</td>
</tr>
<tr>
<td></td>
<td>– Beating 300</td>
</tr>
<tr>
<td></td>
<td>– Chemical pulp 300</td>
</tr>
<tr>
<td></td>
<td>– Cylinder machine 300</td>
</tr>
<tr>
<td></td>
<td>– Fourdrinier machine 300</td>
</tr>
<tr>
<td></td>
<td>– Glassine paper 301</td>
</tr>
<tr>
<td></td>
<td>– Greaseproof paper 301</td>
</tr>
<tr>
<td></td>
<td>– Groundwood pulp 300</td>
</tr>
<tr>
<td></td>
<td>– Kraft paper 300</td>
</tr>
<tr>
<td></td>
<td>– Multiwall paper sacks 301</td>
</tr>
<tr>
<td></td>
<td>– Polymer coated paper 301</td>
</tr>
<tr>
<td></td>
<td>– Pulping 300</td>
</tr>
<tr>
<td></td>
<td>– Refining 300</td>
</tr>
<tr>
<td></td>
<td>– Sulphite paper 300</td>
</tr>
<tr>
<td></td>
<td>– Tissue paper 301</td>
</tr>
<tr>
<td></td>
<td>– Vegetable parchment 301</td>
</tr>
<tr>
<td></td>
<td>– Wax coated paper 301</td>
</tr>
<tr>
<td></td>
<td>– Wet-strength paper 301</td>
</tr>
<tr>
<td></td>
<td>Pasta 102</td>
</tr>
<tr>
<td></td>
<td>Pasteurisation 48–53, 486</td>
</tr>
<tr>
<td></td>
<td>– Aims 48</td>
</tr>
<tr>
<td></td>
<td>– Batch process 49</td>
</tr>
<tr>
<td></td>
<td>– Cleaning 53</td>
</tr>
<tr>
<td></td>
<td>– Cooling section 51</td>
</tr>
<tr>
<td></td>
<td>– Disinfection 53</td>
</tr>
<tr>
<td></td>
<td>– Double-walled plate 52</td>
</tr>
<tr>
<td></td>
<td>– Flow controller 51</td>
</tr>
<tr>
<td></td>
<td>– Flow diversion valve 51</td>
</tr>
<tr>
<td></td>
<td>– Fouling 53</td>
</tr>
<tr>
<td></td>
<td>– Heating section 51</td>
</tr>
<tr>
<td></td>
<td>– Holding tube 51</td>
</tr>
<tr>
<td></td>
<td>– HTST Pasteurisation 49–53</td>
</tr>
<tr>
<td></td>
<td>– Phosphatase test 49</td>
</tr>
<tr>
<td></td>
<td>– Pinhole 52</td>
</tr>
<tr>
<td></td>
<td>– Post pasteurisation contamination 51, 52</td>
</tr>
<tr>
<td></td>
<td>– Pump 51</td>
</tr>
<tr>
<td></td>
<td>– – Centrifugal 51</td>
</tr>
<tr>
<td></td>
<td>– – Positive displacement 51</td>
</tr>
<tr>
<td></td>
<td>– Regeneration section 51</td>
</tr>
<tr>
<td></td>
<td>– Residence time 51</td>
</tr>
<tr>
<td></td>
<td>– Typical milk pasteurisation system 50</td>
</tr>
<tr>
<td></td>
<td>Pasteurisation using carbon dioxide 231</td>
</tr>
<tr>
<td></td>
<td>Pebble mill 549</td>
</tr>
<tr>
<td></td>
<td>Peeling methods (fruits and vegetables) 114</td>
</tr>
<tr>
<td></td>
<td>– Chemical peeling 20, 114</td>
</tr>
<tr>
<td></td>
<td>– – Brine 21</td>
</tr>
<tr>
<td></td>
<td>– – Lye peeling 20</td>
</tr>
<tr>
<td></td>
<td>– Flame peeling 21</td>
</tr>
<tr>
<td></td>
<td>– Mechanical methods 21, 114</td>
</tr>
<tr>
<td></td>
<td>– – Abrasion peeling 21</td>
</tr>
<tr>
<td></td>
<td>– – Mechanical knives (citrus fruits) 21</td>
</tr>
<tr>
<td></td>
<td>– Steam peeling 20, 114</td>
</tr>
<tr>
<td></td>
<td>Percussion mill see Impact mill</td>
</tr>
<tr>
<td></td>
<td>Pillow pack 312</td>
</tr>
<tr>
<td></td>
<td>Pin-disc mill see Pin mill</td>
</tr>
<tr>
<td></td>
<td>Pin mill 545, 553, 554</td>
</tr>
<tr>
<td></td>
<td>– Choke feed 546</td>
</tr>
<tr>
<td></td>
<td>Plate and frame filter press 82, 435, 436</td>
</tr>
<tr>
<td></td>
<td>– Filter plate 436</td>
</tr>
<tr>
<td></td>
<td>– Wash plate 436</td>
</tr>
<tr>
<td></td>
<td>Plasma processing 230, 231</td>
</tr>
<tr>
<td></td>
<td>Plate evaporator 76, 81, 83, 84</td>
</tr>
<tr>
<td></td>
<td>Plate freezer 126</td>
</tr>
<tr>
<td></td>
<td>Pneumatic drier 93</td>
</tr>
<tr>
<td></td>
<td>– Horizontal 93</td>
</tr>
<tr>
<td></td>
<td>– Vertical 93</td>
</tr>
<tr>
<td></td>
<td>Porosity 88</td>
</tr>
<tr>
<td></td>
<td>Postharvest handling and preparation of foods for processing 1–31</td>
</tr>
<tr>
<td></td>
<td>Potato chip production 276, 277</td>
</tr>
<tr>
<td></td>
<td>– Cooling 277</td>
</tr>
<tr>
<td></td>
<td>– Finished fried chips 277</td>
</tr>
<tr>
<td></td>
<td>– Freezing</td>
</tr>
<tr>
<td></td>
<td>– Parfrying 276</td>
</tr>
<tr>
<td></td>
<td>– Removal of excess fat 277</td>
</tr>
<tr>
<td></td>
<td>Potato crisp production 277</td>
</tr>
<tr>
<td></td>
<td>– Continuous fryer 277</td>
</tr>
<tr>
<td></td>
<td>– Cooling 277</td>
</tr>
<tr>
<td></td>
<td>– Crisp products made from potato dough 277</td>
</tr>
<tr>
<td></td>
<td>– – Sheeting line 277</td>
</tr>
<tr>
<td></td>
<td>– Salting/flavouring 277</td>
</tr>
<tr>
<td></td>
<td>– Traditional crisps 277</td>
</tr>
<tr>
<td></td>
<td>Potato crisps/chips 102</td>
</tr>
</tbody>
</table>
Potato irradiator 156
Pot still 466
Power ultrasound 214–229
– Applications in the food industry 218–222
–– Crystallisation 220, 221
–– Degassing 22
–– Drying 222
–– Filtration 221
–– Ultrasound and meat processing 220
–– Ultrasonic emulsification 220
–– Ultrasonically enhanced oxidation 218
–– Ultrasonic extraction 220
–– Ultrasonic stimulation of living cells 218, 220
–– Definition 214, 215
–– Effect on enzymes 227
–– Effect on food quality 227, 228
–– Nutritional composition 228
–– Texture 228
–– Effect on heat transfer 222
– Future 228, 229
– Generation 215
–– Coupler 215
–– Generator 215
–– Transducer 215
– System types 216–218
–– Airborne power ultrasound technology 217, 218
–– Parallel vibrating plates 217
–– Radial vibrating systems 217
–– Ultrasonic baths 216
–– Ultrasonic probes 214, 215
Power ultrasound and other emerging technologies 201–235
– Conclusions 231, 232
– Introduction 201–203
–– Nonthermal preservation methods 201, 202
Power ultrasound, inactivation of microorganisms 222–227
– Combination treatments 225
–– Combined thermosonification and pressure 226
–– Combined ultrasound and chemical treatments 226, 227
–– Manothermosonification 225, 226
–– Thermosonification 225, 226
– Effect of treatment medium 224, 225
– Factors affecting cavitation 223, 224
– Factors affecting microbiological sensitivity to ultrasound 224
– Mechanism of ultrasound action 222, 223
–– Cavitation 222, 223
–– Localised high temperature 222, 223
–– Radical formation 222, 223
Preservative releasers 340, 341
– Antimicrobial film 340
– Antioxidant film 340
– Butylated hydroxyanisole 314
– Butylated hydroxytoluene 341
– Methyl salicylate 340
– Microban 340
– Organic acids 340
– Silver zeolite 340
– β-Tocopherol 341
Pressure filters 435–439
Pressure homogeniser 528–530
– Breaker ring 528
– Homogeniser valve 528
– Positive displacement pump 529, 530
– Single-service valve 529
– Two-stage homogenisation 529
Process control in food processing 373–384
– Advanced control 380
–– Fuzzy logic 380
–– Neural networks 380
– Automatic control 376–380
–– Controller 376
–– Final control element 376
–– Sensor 376
– Control systems 374–380
– Introduction 373
– Manual control 374, 375
– Measurement of process parameters 373, 374
–– Inline sensors 374
–– Offline sensors 374
–– Online sensors 374
–– Nonpenetrating sensors 374
–– Penetrating sensors 374
–– Sampling sensors 374
– Multivariable control 380
– On/off (two position) controller 376, 377
–– Action of on/off controller with dead bands 377
–– Dead band 376
– Proportional controller 377, 378
–– Controller gain 377
–– Controller sensitivity 377
–– Controller tuning parameter 377
– Proportional integral controller 378, 379
–– Integral of error 379
–– Reset time 378
–– Tuning parameter 378
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional integral derivative controller 379, 380</td>
</tr>
<tr>
<td>Derivative time 379</td>
</tr>
<tr>
<td>Offset elimination 379</td>
</tr>
<tr>
<td>Oscillation minimisation 379</td>
</tr>
<tr>
<td>Rapid response to error 379</td>
</tr>
<tr>
<td>Tuning parameter 379</td>
</tr>
<tr>
<td>Singlevariable control 380</td>
</tr>
<tr>
<td>Process control in the modern food processing industry 380–383</td>
</tr>
<tr>
<td>Bulk commodity processing 380</td>
</tr>
<tr>
<td>Enterprise resource planning systems 382</td>
</tr>
<tr>
<td>Manufactured products 380</td>
</tr>
<tr>
<td>Manufacturing execution systems (MES) 382, 383</td>
</tr>
<tr>
<td>Products that retain their original structure 380</td>
</tr>
<tr>
<td>Programmable logic controller 381</td>
</tr>
<tr>
<td>Ladder logic 381</td>
</tr>
<tr>
<td>Supervisory control and data acquisition 381, 382</td>
</tr>
<tr>
<td>Client layer 382</td>
</tr>
<tr>
<td>Data server layer 382</td>
</tr>
<tr>
<td>Typical control system for dairy plant 382, 383</td>
</tr>
<tr>
<td>Batch and recipe section 383</td>
</tr>
<tr>
<td>Input and output modules 383</td>
</tr>
<tr>
<td>Operator control 382</td>
</tr>
<tr>
<td>Production data module 383</td>
</tr>
<tr>
<td>Service and maintenance module 383</td>
</tr>
<tr>
<td>Properties of raw food materials 2–9</td>
</tr>
<tr>
<td>Colour 4</td>
</tr>
<tr>
<td>Flavour 5</td>
</tr>
<tr>
<td>Functional properties 5, 6</td>
</tr>
<tr>
<td>Harvesting 2, 3</td>
</tr>
<tr>
<td>Heat unit system 2</td>
</tr>
<tr>
<td>Geometric properties 3, 4</td>
</tr>
<tr>
<td>Geometric defects 4</td>
</tr>
<tr>
<td>Specific surface 4</td>
</tr>
<tr>
<td>Selection of cultivars 2</td>
</tr>
<tr>
<td>Suitability for processing 3</td>
</tr>
<tr>
<td>Texture 5</td>
</tr>
<tr>
<td>Tenderometer 5</td>
</tr>
<tr>
<td>Pulsed electric field, effects on food enzymes 206–08</td>
</tr>
<tr>
<td>Alkaline phosphatase 207</td>
</tr>
<tr>
<td>a-Amylase 207</td>
</tr>
<tr>
<td>Endopolygalacturonase 207</td>
</tr>
<tr>
<td>Glucose oxidase 207</td>
</tr>
<tr>
<td>Lipase 207</td>
</tr>
<tr>
<td>Lipoxgenase 207</td>
</tr>
<tr>
<td>Pectinmethyl esterase 207</td>
</tr>
<tr>
<td>Peroxidase 207</td>
</tr>
<tr>
<td>Plasmin 206</td>
</tr>
<tr>
<td>Polyphenoloxidase 207</td>
</tr>
<tr>
<td>Protease 206, 207</td>
</tr>
<tr>
<td>Pulsed electric field, critical factors in the inactivation of microorganisms 205, 206</td>
</tr>
<tr>
<td>Microbial factors 206</td>
</tr>
<tr>
<td>Process factors 205, 206</td>
</tr>
<tr>
<td>Product factors 206</td>
</tr>
<tr>
<td>Pulsed electric field, effects on microorganisms 204, 205</td>
</tr>
<tr>
<td>Electrical breakdown 204</td>
</tr>
<tr>
<td>Electroporation 205</td>
</tr>
<tr>
<td>Pulsed electric field processing 203–214</td>
</tr>
<tr>
<td>Definition of pulsed electric fields 203</td>
</tr>
<tr>
<td>History 203, 204</td>
</tr>
<tr>
<td>Pulsed electric field processing, basic engineering aspects 208–211</td>
</tr>
<tr>
<td>Chamber designs 210, 211</td>
</tr>
<tr>
<td>Batch chambers 210</td>
</tr>
<tr>
<td>Capital cost 211</td>
</tr>
<tr>
<td>Coaxial chambers 210</td>
</tr>
<tr>
<td>Co-field chambers 210</td>
</tr>
<tr>
<td>Continuous chambers 210</td>
</tr>
<tr>
<td>Scale-up of equipment 211</td>
</tr>
<tr>
<td>Pulse shapes 208–210</td>
</tr>
<tr>
<td>Bipolar pulses 209</td>
</tr>
<tr>
<td>Exponential waveforms 208, 209</td>
</tr>
<tr>
<td>Instant charge reversal pulses 209, 210</td>
</tr>
<tr>
<td>Oscillatory pulses 209</td>
</tr>
<tr>
<td>Square waves 208, 209</td>
</tr>
<tr>
<td>Pulsed electric field processing, potential applications 211–213</td>
</tr>
<tr>
<td>Baking applications 213</td>
</tr>
<tr>
<td>Extraction/cell permeabilisation 213</td>
</tr>
<tr>
<td>Osmotic dehydration 213</td>
</tr>
<tr>
<td>Juice, fruit and vegetable 211</td>
</tr>
<tr>
<td>Liquid whole egg 212</td>
</tr>
<tr>
<td>Milk 212</td>
</tr>
<tr>
<td>Pea soup 212</td>
</tr>
<tr>
<td>Pulsed electric field processing, the future 213, 214</td>
</tr>
<tr>
<td>Pulsed light 229, 230</td>
</tr>
<tr>
<td>Pump 75</td>
</tr>
<tr>
<td>Centrifugal 75</td>
</tr>
<tr>
<td>Positive displacement 75</td>
</tr>
<tr>
<td>Vacuum 71, 78, 95, 96, 97</td>
</tr>
<tr>
<td>Radiant drying 100</td>
</tr>
<tr>
<td>Radiation in heat transfer 96, 98, 99</td>
</tr>
<tr>
<td>Radio frequency energy 100</td>
</tr>
<tr>
<td>Basic or throughfield applicator 101</td>
</tr>
</tbody>
</table>
– Strayfield applicator 101
– Radura symbol for irradiated foods 163
– Raw (food) material specification 6
– Refrigerants 136, 137, 392–394
 – Ammonia 136
 – Carbon dioxide 136
 – Chlorofluorocarbon 136
 – Desirable characteristics 136
 – Hydrofluorocarbons 136
– Ozone layer 136
– Primary refrigerants 136
– Secondary refrigerants 136
– Refrigerated condenser 96, 97, 98
– Refrigeration, effects on food quality 143, 144
 – Cryoprotectants 144
 – Pretreatments 144
 – Rapid freezing 144
– Refrigeration methods and equipment 125–127
 – Cryogenic freezing 127
 – Cryomechanical process 127
 – Nitrogen as cryogen 127
 – Two-stage process 127
 – Gas contact refrigerators 126, 127
 – Blast freezer 126
 – Fluidised bed freezer 126
 – Refrigeration tunnel 126
 – Immersion and liquid contact refrigeration 127
 – Alcohol 127
 – Brines 127
 – Chilled water 127
 – Ethylene glycol 127
 – Immersion freezing 127
 – Spray contact freezing 127
 – Plate contact systems 126
 – Belt freezer 126
 – Drum freezer 126
 – Plate freezer 126
 – Vacuum cooling 126
– Refrigeration system design, common terms used 137, 138
 – Coefficient of performance 137
 – Cooling load 137
 – Heat exchanged in the condenser and evaporator 138
 – Refrigerant flow rate 138
 – Work done by the compressor
– Retort 81
– Reverse osmosis 404, 405, 478, 479, 487, 488
– Reverse osmosis applications 488, 489
– Milk processing 488
– Other foods 489
– Dealcoholisation 489
– Fruit juices 489
– Vegetable juices 498
– Waste recovery 489
– Water treatment 489
– Reynolds number 46, 47
– Rice, milling of 552
– Acrylonitrile-butadiene-styrene (ABS) 314
– Blow moulding 315
– Compression moulding 315
– Injection moulding 315
– Polycrylonitrile 314
– Thermoforming 314, 315
– Ring drier 93
– Rod mill 550
– Roller drier see Drum drier
– Roller mill 541, 542–544, 553, 555
– Angle of nip 543
– Coefficient of friction 544
– Edge mill 543
– Nip 542
– Rotary drier 83, 93
– Louvred drier 94
– Rotary drum filter 82, 439, 440
– Rotary vacuum disc filter 440
– Rum 468

S
– Sachet 312
– Safety in food processing 351–372
 – Food packaging issues 355, 358
 – Food processing technologies 355
 – Effects of food processing on food safety hazards 356
 – Food safety hazards 352, 353
 – Biological agent 352
 – Chemical agent 352
 – Definition 352
 – Examples of food safety hazards 353
 – Physical agent 352
 – Intrinsic factors 354
 – Chemical preservatives 354
 – Control of key microbiological hazards through intrinsic factors 354
 – pH range 354
 – Water activity 354
 – Introduction 351
– Prerequisite good manufacturing practice programmes 355, 357, 359–361
Control of operation 359, 360
Establishment: design and facilities 357, 359
Establishment: maintenance and sanitation 360
Establishment: personal hygiene 360, 361
Prerequisite programme topics for manufacturing facilities 359
Product information and consumer awareness 361
Training 361
Transportation 361
Validation and verification of prerequisite programmes 361
Safe design 351, 352
Safe food processing achievement model 352
Salting of fish 119
Sauce 74
Scraped surface heat exchanger 63, 64, 67
Seeding 81
in crystallisation 83, 474
Self-opening centrifuge 449
Semicontinuous freeze drier see Tunnel freeze drier
Separations in food processing 429–511
General liquid separations 431
Immiscible liquids 431
Introduction 429–432
Liquid-solid separations 431
Separation from a solid matrix 430
Separations from gases and vapours 432
Solid-solid separations 430
Selective breeding 8
Shell and leaf filter 437
Shell and tube filter 82
Shocking in crystallisation 83
Short tube evaporator 74, 83
Shortwave lamps for radiant heating 100
Shrinkage in dehydration 85, 88, 89, 97
Single-disc attrition mill 547, 548, 533
Single-stage extractor 455, 451
Size reduction (of solids) 537–555
Abrasiveness 541
Break point 538, 539
Brittle material 538, 539
Compression force 537
Ductile material 538, 539, 541
Elastic deformation 538
Elastic limit 538, 539
Energy use in size reduction 539, 540
Bond's law 540
Kick's law 540
Rittinger's law 540
Equipment 541–550
Fibrous material 541, 546
Friable material 541, 544, 546
Hard material 539, 541
Impact force 537, 544, 546
Inelastic deformation 539
Introduction 537–540
Modulus of elasticity 541
Reduction ratio 537
Screening 537
Shear force 537, 544, 546
Sieving 537
Soft material 539
Tough material 541
Weak material 539
Yield point 539
Size reduction applications 550–555
Chocolate 553, 554
Cocoa butter 553
Cocoa nib 553
Coffee beans 554
Carbon dioxide release 554
Normalising 554
Milling of maize 552
Milling of rice 552
Milling of sorghum, millet 553
Milling of wheat 550
Bran 550
Break section 550
Durum wheat 552
Endosperm 550
Germ 550
Percentage extraction rate 550
Reduction section 550
Semolina 550
Wheat feed 552
Wholemeal flour 552
Mustard seeds 555
Oil seeds and nuts 555
Spices 555
Sugar cane 555
SOME factors to consider when selecting size reduction equipment 541, 542
Mechanical properties of the feed 541
Moisture content of the feed 541
Conditioning for milling 541
Wet milling 541
Temperature sensitivity of the feed 541, 542
Skimmed or skim milk 82
Smart packaging see Intelligent packaging
Smoking of fish 119
Solar drying 104, 105
– Solar collector 105
Solid bowl centrifuge 448
Solid bowl clarifier see Solid bowl centrifuge
Solid-liquid extraction 452–461
– Applications 459, 460
– Edible oil extraction 459
– Extraction of sugar from sugar beet 459
– Fruit and vegetable juice extraction 460
– Manufacture of instant coffee 459, 460
– Manufacture of instant tea 460
– Concentration gradient 454
– Concurrent system 455
– Countercurrent system 454, 455
– Equipment 455–458
– General principles 452–455
– Interfacial area 454
– Mass transfer coefficient 454
– Overflow 453
– Real stage 452, 453
– Solute 452
– Solvent 452
– Stage efficiency 452, 453
– Theoretical stage see Equilibrium stage
– Underflow 453
Solid-liquid filtration see Filtration, solid-liquid
Sorption isotherm 119
– Hysteresis 119
Sorting and grading of raw foods 21–26
Sorting of raw foods 21–24
– Criteria and methods of sorting 21–24
– Colour sorting 22, 24
– Sorting by density 22
– Sorting by shape 22
– Sorting by size 22
– Sorting by weight 21, 22
Soup 74
Specific heat 88
Specific steam consumption 78, 79, 80, 82
Spinning cone distillation column 467
Spouted bed drier 91, 92
Spray contact freezing 127
Spray drier 78, 105
– Centrifugal atomiser 107, 108
– Cyclone separator 110
– Drying chamber 108, 109
– Electrostatic precipitator 110
– Fabric filter 110
– Heating 104
– Pressure nozzle 107
– Recycling of fines 110
– Rotary valve 108
– Two-fluid nozzle 107, 108
– Wet scrubber 110
Spray drying 82, 105–110
Spray pasteuriser see Tunnel pasteuriser
Stability of dehydrated foods 119–121
Static inline mixers 520
Steam ejector 71, 73, 78, 98
Sterilisation in-container (Canning) 53–61
– Acid food 53
– Bacillus stearothermophilus 54
– B. sporothermodurans 54
– Blanching 58
– Blown containers 59
– Cans 58
– Chlorination of cooling water 57
– Clostridium botulinum 53
– Commercial sterilisation 54
– Critical control point 56
– Double seaming (Rolling) 59
– Drying of cans 57
– Exhausting 59
– Hot filling 59
– Mechanical vacuum 59
– Steam flow closing 59
– Thermal exhausting 59
– Filling 58, 59
– Temperature 57
– Flexible pouches 58
– Fo value 54, 56
– Glass containers 58
– Headspace 57
– High acid food 53
– Hydrostatic steriliser 61
– Incubation of processed containers 59
– Low acid food 53
– Medium acid food 53
– Minimum botulinum cook 54
– Plastic bottles 58
– Plastic trays 58
– Preliminary operations 58, 59
– Pressure cooling 59
– Quality assurance 60
– Retort 59
– Batch 60
– Continuous 61
– Slowest heating point 54
– Supply of raw materials 58
– Thermocouple 54
– Venting 59
Subject Index

- z-value 54, 55
- Storage of raw (food) materials 9–13
 - Composition of the atmosphere 12, 13
 - Controlled atmosphere storage 12, 13
 - Humidity 12
 - Equilibrium relative humidity 12
 - Water activity 12
 - Other considerations 13
 - Light 13
 - Odour and taint 12
 - Spoilage mechanisms 9–11
 - Biochemical activity 10
 - Living organisms 9, 10
 - Physical processes 10
 - Temperature 11, 12
 - Field heat 11, 12
 - Precooling 11, 12
 - Q10 value 11
 - Refrigerated storage 11
- Storage and transport of raw materials 9–13
- Sublimation 85, 96
- Sublimation drying see Freeze drying
- Sugar beet 82, 459
- Sugar boiling 83
- Sugar solution 71, 74, 75, 77, 82, 442, 443, 459
- Sulphitation 82
- Sulphiting of fruits and vegetables 29, 30, 114
 - Agents 29
 - As bleaching and reducing agents 29
 - Control of enzymic and nonenzymic browning 29, 30
 - Control of microbial growth 29
 - Side effects 29, 30
- Sun dried tomato 115
- Sun drying 104, 105
 - Greenhouse effect 104
- Supercritical carbon dioxide as a solvent 460, 461
 - Applications
 - Decaffeination of coffee beans 461
 - Hop extract 461
 - Removal of cholesterol from dairy fats 461
 - Critical pressure 460
 - Critical temperature 460
 - Deodorisation 461
 - Simple extraction 461
 - Total extraction 461
- Sweetened condensed milk 81
- TASTE evaporator 84
- Tea extract 77
- Temperature control packaging 343, 344
 - Exothermic reaction 344
 - Insulating materials 343
 - Self-cooling can 343
 - Self-heating can 343
- Textiles, for packaging 303
 - Cotton 303
 - Jute 303
- Tequila 469
- Thermal conductivity 88, 97
- Thermal processing 33–70
 - Batch and continuous processing 41–43
 - Batch pasteurisation 41
 - Co-current flow 43
 - Continuous pasteurisation and sterilisation 42, 43
 - Counter-current flow 43
 - Direct heating 42
 - Fouling 43
 - Heat transfer by conduction 42
 - Heat transfer by convection 42
 - Heating time, equation 41
 - Indirect heating 42
 - Overall heat transfer coefficient 42, 43
 - Introduction 33–36
 - Quality and safety issues 34, 35
 - Allergies 35
 - Antibiotics 35
 - Environmental contaminants 35
 - Food poisoning 34
 - Food spoilage 34
 - Growth hormones 35
 - Herbicides 35
 - Natural toxins 35
 - Pesticides 35
 - Post process contamination 35
 - Product range 35, 36
 - Products given mild heat treatment then kept refrigerated 35
 - Products heat treated continuously in a heat exchanger 35
 - Products heat treated in container 35
 - Products which are sterilised and stored at ambient temperature 35
 - Reaction kinetics 36–39
 - Commercial sterility 38
 - Decimal reduction time (Dr) 38
 - Heat resistance at constant temperature 36–39
 - Microbial inactivation 36
– Reasons for heating food 33, 34
– Avoid browning of fruit by polyphenol oxidases 33
– Inactivate enzymes 33, 34
– Inactivate microorganisms 33, 34
– Minimise flavour changes from lipase and proteolytic activity 33
– Temperature dependence 39–41
– Concept of equivalence 40
– Heat resistance 39
– Lethality 39
– Standard reference temperature 40
– z value, definition 39
– z and D values for enzyme inactivation 40
– z and D values for microbial inactivation 40
– z and D values for some chemical reactions 40

Thermisation 48, 486
Thixotropic liquids 72
Tinplate 81, 316–319
– Coating weights 317
– Differentially coated plate 317
– Double reduced plate 316
– Lacquer (Enamel) 318, 319
– Manufacture 316, 317
– Single (or cold) reduced plate 316
– Structure 317
Tray drier see Cabinet drier
Toffee 71
Tomato powder 115
Tomato pulp/juice 74, 84
Toroidal bed drier 92, 93
Transportation of (food) materials 13
Tube container 82
Tubular bowl centrifuge 447
Tumbling mill 549
Tunnel drier 89
– Concurrent 89
– Countercurrent 89
– Crossflow 89
Tunnel freeze drier 98
Tunnel pasteuriser 53

u
Ultrafiltration 478, 479, 483
Ultrafiltration applications 490–493
– Animal products 492, 493
– Blood 492, 493
– Eggs 493
– Gelatin 493
– Milk products 490, 491
– Skimmed milk 490, 491
– Whey 490, 491
– Whole milk 490, 491
– Oil seed and vegetable proteins 492

Ultra High Temperature Process/Treatment (UHT) 61–81, 84, 197
– Aseptic filling/packaging 68
– B* value 63–654
– Botulinum cook 62
– C* value 63–65
– Chemical change/damage 6465
– Cleaning and sterilisation of equipment 66
– Dielectric heating 67, 68
– Fo value 62
– Hazard analysis critical control points (HACCP) 66
– Heat exchangers 63
– Plate 63
– Scraped surface 63, 64, 67
– Tubular 63
– Homogenisation 66
– Jupiter heating system 67
– Ohmic heating 67
– Package integrity 68
– Post process contamination 62, 63
– Process characteristics: safety and quality aspects 63
– Raw material quality and other processing conditions 66, 66
– Removal of volatiles 65
– Residence time distribution 62
– Safety and spoilage considerations 62, 63
– Selective holding tube system 67
– Steam infusion 63, 65
– Steam injection 63, 65
– Storage of UHT products 68, 69
– Temperature/time profiles 63, 64
– Viscous and particulate products 76, 68
– Water quality 66

Ultrasonic homogeniser 220, 531

v
Vacuum band drier 112, 113
Vacuum belt drier 112, 113
Vacuum cabinet drier 95
Vacuum drying 94
Vacuum evaporation 72, 81
Vacuum filters 439–440
Vacuum packaging 325
Vacuum pan 73, 83, 84
Vacuum puff drying 113
Vacuum shelf drier see Vacuum cabinet drier
Vacuum spray freeze drier 99
Vacuum tray drier see Vacuum cabinet drier
Vegetable juice 77
Vibrofluidiser 91
Volatile stripping 73, 82, 84
Volumetric heating 101

Waste water treatment 387, 388, 410–424
– Aerobic biological treatment –
 attached films 414–417
– Alternating double filtration (ADF) 415
– Biofilm 414, 415
– High rate aerobic filters 416, 417
– Trickling or percolating filter 414–416
– Aerobic biological treatment –
 low technology 419
– Lagoons 419
– Reed beds 419
– Aerobic biological treatment –
 suspended biomass 417, 418
– Activated sludge fermentation plant 418
– Activated sludge processes 417
– Oxidation ditch 418
– Anaerobic biological treatments 419–424
– Downflow reactor 420, 422, 423
– Fluid bed reactor 420, 422, 423
– Stirred tank reactor 420, 421
– Upflow filter reactor 420, 422
– Upflow sludge anaerobic blanket (USAB) 420
– Biochemical oxygen demand, over 5 days (BOD₅) 411
– Biogas utilisation 424
– Biological treatments 413–425
– Aerobic 413
– Anaerobic 413
– Chemical oxygen demand (COD) 411
– Chemical treatment 413
– Aluminium sulphate 413
– Ferric chloride 413
– Ferric sulphate 413
– Effluent loads from food processing 410
– Final disposal of waste water 425, 426
 – Discharge licences 426
 – Into water course 425
 – River classification 426
– Physical treatment 412
– Flotation 412
– Sedimentation 412
– Sludge disposal 425
– Dehydration by belt press 425
– Direct to land 425
– Types of waste from food processing operations 411
 Water activity 12, 85, 119, 354
 Water and waste treatment 399–428
 – Introduction 399
 Water treatment 399–410
 – Aeration 401
 – Diffusion/bubble aerators 401
 – Waterfall aerators 401
 – Boiler waters 409
 – Softening 409
 – Steam for direct injection into foods 409
 – Clarification 402
 – Coagulation 401, 402
 – Aluminium sulphate 402
 – Ferric chloride 402
 – Ferric sulphate 402
 – Disinfection 406
 – Chemical methods 406
 – Chick-Watson theory 406
 – Chlorine 406–408
 – Heat 406
 – Irradiation 406
 – Microfiltration 406
 – Ozone 406, 408, 409
 – Physical methods 406
 – Ultraviolet treatment 406
 – Filtration 403–405
 – Biofilm 403
 – Cartridge filter 404
 – High rate-filter 403, 404
 – Nanofiltration 404, 405
 – Pressure filter 404
 – Reverse osmosis 404, 405
 – Sand filter 403
 – Flocculation 402, 403
 – Fresh water 399, 400
 – Primary treatment 400, 401
 – Intermediate filter 400
 – Sedimentation 400
 – Suspended matter 400
 – Water intakes 400
 – Refrigerant waters 410
 Water vapour pressure 96
 Wet bulb temperature 87
 Wet cleaning of vegetables 114
 Wet milling 541, 552
 Wheat, milling of 550–552
 Whey 81

Subject Index
Subject Index

Whole milk 82
Winterisation 442, 477
Wooden container 303