Contents

Preface XXI

List of Contributors XXIII

1 Postharvest Handling and Preparation of Foods for Processing 1
 Alistair S. Grandison
 1.1 Introduction 1
 1.2 Properties of Raw Food Materials and Their Susceptibility
to Deterioration and Damage 2
 1.2.1 Raw Material Properties 3
 1.2.1.1 Geometric Properties 3
 1.2.1.2 Colour 4
 1.2.1.3 Texture 5
 1.2.1.4 Flavour 5
 1.2.1.5 Functional Properties 5
 1.2.2 Raw Material Specifications 6
 1.2.3 Deterioration of Raw Materials 7
 1.2.4 Damage to Raw Materials 7
 1.2.5 Improving Processing Characteristics Through Selective Breeding
 and Genetic Engineering 8
 1.3 Storage and Transportation of Raw Materials 9
 1.3.1 Storage 9
 1.3.1.1 Temperature 11
 1.3.1.2 Humidity 12
 1.3.1.3 Composition of Atmosphere 12
 1.3.1.4 Other Considerations 13
 1.3.2 Transportation 13
 1.4 Raw Material Cleaning 14
 1.4.1 Dry Cleaning Methods 14
 1.4.2 Wet Cleaning Methods 18
 1.4.3 Peeling 20
 1.5 Sorting and Grading 21
 1.5.1 Criteria and Methods of Sorting 21
1.5.2 Grading 24
1.6 Blanching 26
1.6.1 Mechanisms and Purposes of Blanching 26
1.6.2 Processing Conditions 27
1.6.3 Blanching Equipment 28
1.7 Sulphiting of Fruits and Vegetables 29

References 30

2 Thermal Processing 33

Michael J. Lewis

2.1 Introduction 33
2.1.1 Reasons for Heating Foods 33
2.1.2 Safety and Quality Issues 34
2.1.3 Product Range 35
2.2 Reaction Kinetics 36
2.2.1 Microbial Inactivation 36
2.2.2 Heat Resistance at Constant Temperature 36
2.3 Temperature Dependence 39
2.3.1 Batch and Continuous Processing 41
2.3.2 Continuous Heat Exchangers 43
2.4 Heat Processing Methods 48
2.4.1 Thermisation 48
2.4.2 Pasteurisation 48
2.4.2.1 HTST Pasteurisation 49
2.4.2.2 Tunnel (Spray) Pasteurisers 53
2.4.3 Sterilisation 53
2.4.3.1 In-Container Processing 53
2.4.3.2 UHT Processing 61
2.4.3.3 Special Problems with Viscous and Particulate Products 67
2.5 Filling Procedures 68
2.6 Storage 68

References 69

3 Evaporation and Dehydration 71

James G. Brennan

3.1 Evaporation (Concentration, Condensing) 71
3.1.1 General Principles 71
3.1.2 Equipment Used in Vacuum Evaporation 73
3.1.2.1 Vacuum Pans 73
3.1.2.2 Short Tube Vacuum Evaporators 74
3.1.2.3 Long Tube Evaporators 75
3.1.2.4 Plate Evaporators 76
3.1.2.5 Agitated Thin Film Evaporators 77
3.1.2.6 Centrifugal Evaporators 77
3.1.2.7 Ancillary Equipment 78
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3</td>
<td>Multiple-Effect Evaporation (MEE)</td>
<td>78</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Vapour Recompression</td>
<td>79</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Applications for Evaporation</td>
<td>80</td>
</tr>
<tr>
<td>3.1.5.1</td>
<td>Concentrated Liquid Products</td>
<td>80</td>
</tr>
<tr>
<td>3.1.5.2</td>
<td>Evaporation as a Preparatory Step to Further Processing</td>
<td>82</td>
</tr>
<tr>
<td>3.1.5.3</td>
<td>The Use of Evaporation to Reduce Transport, Storage and Packaging Costs</td>
<td>83</td>
</tr>
<tr>
<td>3.2</td>
<td>Dehydration (Drying)</td>
<td>85</td>
</tr>
<tr>
<td>3.2.1</td>
<td>General Principles</td>
<td>85</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Drying Solid Foods in Heated Air</td>
<td>86</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Equipment Used in Hot Air Drying of Solid Food Pieces</td>
<td>88</td>
</tr>
<tr>
<td>3.2.3.1</td>
<td>Cabinet (Tray) Drier</td>
<td>88</td>
</tr>
<tr>
<td>3.2.3.2</td>
<td>Tunnel Drier</td>
<td>89</td>
</tr>
<tr>
<td>3.2.3.3</td>
<td>Conveyor (Belt) Drier</td>
<td>89</td>
</tr>
<tr>
<td>3.2.3.4</td>
<td>Bin Drier</td>
<td>90</td>
</tr>
<tr>
<td>3.2.3.5</td>
<td>Fluidised Bed Drier</td>
<td>90</td>
</tr>
<tr>
<td>3.2.3.6</td>
<td>Pneumatic (Flash) Drier</td>
<td>93</td>
</tr>
<tr>
<td>3.2.3.7</td>
<td>Rotary Drier</td>
<td>93</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Drying of Solid Foods by Direct Contact With a Heated Surface</td>
<td>94</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Equipment Used in Drying Solid Foods by Contact With a Heated Surface</td>
<td>95</td>
</tr>
<tr>
<td>3.2.5.1</td>
<td>Vacuum Cabinet (Tray or Shelf) Drier</td>
<td>95</td>
</tr>
<tr>
<td>3.2.5.2</td>
<td>Double Cone Vacuum Drier</td>
<td>95</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Freeze Drying (Sublimation Drying, Lyophilisation) of Solid Foods</td>
<td>96</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Equipment Used in Freeze Drying Solid Foods</td>
<td>97</td>
</tr>
<tr>
<td>3.2.7.1</td>
<td>Cabinet (Batch) Freeze Drier</td>
<td>97</td>
</tr>
<tr>
<td>3.2.7.2</td>
<td>Tunnel (SemiContinuous) Freeze Drier</td>
<td>98</td>
</tr>
<tr>
<td>3.2.7.3</td>
<td>Continuous Freeze Driers</td>
<td>99</td>
</tr>
<tr>
<td>3.2.7.4</td>
<td>Vacuum Spray Freeze Drier</td>
<td>99</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Drying by the Application of Radiant (Infrared) Heat</td>
<td>100</td>
</tr>
<tr>
<td>3.2.9</td>
<td>Drying by the Application of Dielectric Energy</td>
<td>100</td>
</tr>
<tr>
<td>3.2.10</td>
<td>Osmotic Dehydration</td>
<td>102</td>
</tr>
<tr>
<td>3.2.11</td>
<td>Sun and Solar Drying</td>
<td>104</td>
</tr>
<tr>
<td>3.2.12</td>
<td>Drying Food Liquids and Slurries in Heated Air</td>
<td>105</td>
</tr>
<tr>
<td>3.2.12.1</td>
<td>Spray Drying</td>
<td>105</td>
</tr>
<tr>
<td>3.2.13</td>
<td>Drying Liquids and Slurries by Direct Contact With a Heated Surface</td>
<td>110</td>
</tr>
<tr>
<td>3.2.13.1</td>
<td>Drum (Roller, Film) Drier</td>
<td>110</td>
</tr>
<tr>
<td>3.2.13.2</td>
<td>Vacuum Band (Belt) Drier</td>
<td>112</td>
</tr>
<tr>
<td>3.2.14</td>
<td>Other Methods Used for Drying Liquids and Slurries</td>
<td>113</td>
</tr>
<tr>
<td>3.2.15</td>
<td>Applications of Dehydration</td>
<td>114</td>
</tr>
<tr>
<td>3.2.15.1</td>
<td>Dehydrated Vegetable Products</td>
<td>114</td>
</tr>
<tr>
<td>3.2.15.2</td>
<td>Dehydrated Fruit Products</td>
<td>116</td>
</tr>
<tr>
<td>3.2.15.3</td>
<td>Dehydrated Dairy Products</td>
<td>117</td>
</tr>
</tbody>
</table>
3.2.15.4 Instant Coffee and Tea 118
3.2.15.5 Dehydrated Meat Products 118
3.2.15.6 Dehydrated Fish Products 119
3.2.16 Stability of Dehydrated Foods 119
References 121

4 Freezing 125
Jose Mauricio Pardo and Keshavan Niranjan
4.1 Introduction 125
4.2 Refrigeration Methods and Equipment 125
4.2.1 Plate Contact Systems 126
4.2.3 Immersion and Liquid Contact Refrigeration 127
4.2.4 Cryogenic freezing 127
4.3 Low Temperature Production 127
4.3.1 Mechanical Refrigeration Cycle 129
4.3.1.2 The Real Refrigeration Cycle
(Standard Vapour Compression Cycle) 131
4.3.2 Equipment for a Mechanical Refrigeration System 132
4.3.2.1 Evaporators 132
4.3.2.2 Condensers 133
4.3.2.3 Compressors 135
4.3.2.4 Expansion Valves 135
4.3.2.5 Refrigerants 136
4.3.3 Common Terms Used in Refrigeration System Design 137
4.3.3.1 Cooling Load 137
4.3.3.2 Coefficient of Performance (COP) 137
4.3.3.3 Refrigerant Flow Rate 138
4.3.3.4 Work Done by the Compressor 138
4.3.3.5 Heat Exchanged in the Condenser and Evaporator 138
4.4 Freezing Kinetics 138
4.4.1 Formation of the Microstructure During Solidification 140
4.4.2 Mathematical Models for Freezing Kinetics 141
4.4.2.1 Neumann's Model 141
4.4.2.2 Plank's Model 142
4.4.2.3 Cleland's Model 142
4.5 Effects of Refrigeration on Food Quality 143
References 144

5 Irradiation 147
Alistair S. Grandison
5.1 Introduction 147
5.2 Principles of Irradiation 147
5.2.1 Physical Effects 148
5.2.2 Chemical Effects 152
5.2.3 Biological Effects 153
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>Equipment</td>
<td>154</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Isotope Sources</td>
<td>154</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Machine Sources</td>
<td>157</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Control and Dosimetry</td>
<td>159</td>
</tr>
<tr>
<td>5.4</td>
<td>Safety Aspects</td>
<td>160</td>
</tr>
<tr>
<td>5.5</td>
<td>Effects on the Properties of Food</td>
<td>160</td>
</tr>
<tr>
<td>5.6</td>
<td>Detection Methods for Irradiated Foods</td>
<td>162</td>
</tr>
<tr>
<td>5.7</td>
<td>Applications and Potential Applications</td>
<td>163</td>
</tr>
<tr>
<td>5.7.1</td>
<td>General Effects and Mechanisms of Irradiation</td>
<td>164</td>
</tr>
<tr>
<td>5.7.1.1</td>
<td>Inactivation of Microorganisms</td>
<td>164</td>
</tr>
<tr>
<td>5.7.1.2</td>
<td>Inhibition of Sprouting</td>
<td>166</td>
</tr>
<tr>
<td>5.7.1.3</td>
<td>Delay of Ripening and Senescence</td>
<td>166</td>
</tr>
<tr>
<td>5.7.1.4</td>
<td>Insect Disinfestation</td>
<td>166</td>
</tr>
<tr>
<td>5.7.1.5</td>
<td>Elimination of Parasites</td>
<td>167</td>
</tr>
<tr>
<td>5.7.1.6</td>
<td>Miscellaneous Effects on Food Properties and Processing</td>
<td>167</td>
</tr>
<tr>
<td>5.7.1.7</td>
<td>Combination Treatments</td>
<td>167</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Applications to Particular Food Classes</td>
<td>167</td>
</tr>
<tr>
<td>5.7.2.1</td>
<td>Meat and Meat Products</td>
<td>167</td>
</tr>
<tr>
<td>5.7.2.2</td>
<td>Fish and Shellfish</td>
<td>169</td>
</tr>
<tr>
<td>5.7.2.3</td>
<td>Fruits and Vegetables</td>
<td>169</td>
</tr>
<tr>
<td>5.7.2.4</td>
<td>Bulbs and Tubers</td>
<td>170</td>
</tr>
<tr>
<td>5.7.2.5</td>
<td>Spices and Herbs</td>
<td>170</td>
</tr>
<tr>
<td>5.7.2.6</td>
<td>Cereals and Cereal Products</td>
<td>170</td>
</tr>
<tr>
<td>5.7.2.7</td>
<td>Other Miscellaneous Foods</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>171</td>
</tr>
</tbody>
</table>

6 **High Pressure Processing** 173

Margaret F. Patterson, Dave A. Ledward and Nigel Rogers

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>173</td>
</tr>
<tr>
<td>6.2</td>
<td>Effect of High Pressure on Microorganisms</td>
<td>176</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Bacterial Spores</td>
<td>176</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Vegetative Bacteria</td>
<td>177</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Yeasts and Moulds</td>
<td>177</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Viruses</td>
<td>178</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Strain Variation Within a Species</td>
<td>178</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Stage of Growth of Microorganisms</td>
<td>178</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Magnitude and Duration of the Pressure Treatment</td>
<td>179</td>
</tr>
<tr>
<td>6.2.8</td>
<td>Effect of Temperature on Pressure Resistance</td>
<td>179</td>
</tr>
<tr>
<td>6.2.9</td>
<td>Substrate</td>
<td>179</td>
</tr>
<tr>
<td>6.2.10</td>
<td>Combination Treatments Involving Pressure</td>
<td>180</td>
</tr>
<tr>
<td>6.2.11</td>
<td>Effect of High Pressure on the Microbiological Quality of Foods</td>
<td>180</td>
</tr>
<tr>
<td>6.3</td>
<td>Ingredient Functionality</td>
<td>181</td>
</tr>
<tr>
<td>6.4</td>
<td>Enzyme Activity</td>
<td>183</td>
</tr>
<tr>
<td>6.5</td>
<td>Foaming and Emulsification</td>
<td>185</td>
</tr>
</tbody>
</table>
9.3 Materials and Containers Used for Packaging Foods 300
9.3.1 Papers, Paperboards and Fibreboards 300
9.3.1.1 Papers 300
9.3.1.2 Paperboards 301
9.3.1.3 Moulded Pulp 302
9.3.1.4 Fibreboards 302
9.3.1.5 Composite Containers 303
9.3.2 Wooden Containers 303
9.3.3 Textiles 303
9.3.4 Flexible Films 304
9.3.4.1 Regenerated Cellulose 305
9.3.4.2 Cellulose Acetate 306
9.3.4.3 Polyethylene 306
9.3.4.4 Polyvinyl Chloride 306
9.3.4.5 Polyvinylidene Chloride 307
9.3.4.6 Polypropylene 307
9.3.4.7 Polyester 308
9.3.4.8 Polystyrene 308
9.3.4.9 Polyamides 308
9.3.4.10 Polycarbonate 309
9.3.4.11 Polytetrafluoroethylene 309
9.3.4.12 Ionomers 309
9.3.4.13 Ethylene-vinyl Acetate Copolymers 309
9.3.5 Metallised Films 310
9.3.6 Flexible Laminates 310
9.3.7 Heat-Sealing Equipment 311
9.3.8 Packaging in Flexible Films and Laminates 312
9.3.9 Rigid and Semirigid Plastic Containers 314
9.3.9.1 Thermoforming 314
9.3.9.2 Blow Moulding 315
9.3.9.3 Injection Moulding 315
9.3.9.4 Compression Moulding 315
9.3.10 Metal Materials and Containers 315
9.3.10.1 Aluminium Foil 316
9.3.10.2 Tinplate 316
9.3.10.3 Electrolytic Chromium-Coated Steel 319
9.3.10.4 Aluminium Alloy 319
9.3.10.5 Metal Containers 320
9.3.11 Glass and Glass Containers 322
9.4 Modified Atmosphere Packaging 325
9.5 Aseptic Packaging 329
9.6 Active Packaging 331
9.6.1 Background Information 331
9.6.2 Oxygen Scavengers 334
9.6.3 Carbon Dioxide Scavengers/Emitters 337
9.6.4 Ethylene Scavengers 337
9.6.5 Ethanol Emitters 339
9.6.6 Preservative Releasers 340
9.6.7 Moisture Absorbers 341
9.6.8 Flavour/Odour Adsorbers 342
9.6.9 Temperature Control Packaging 343
9.6.10 Food Safety, Consumer Acceptability and Regulatory Issues 344
9.6.11 Conclusions 345
References 346

10 Safety in Food Processing 351
Carol A. Wallace
10.1 Introduction 351
10.2 Safe Design 351
10.2.1 Food Safety Hazards 352
10.2.2 Intrinsic Factors 354
10.2.3 Food Processing Technologies 355
10.2.4 Food Packaging Issues 355
10.3 Prerequisite Good Manufacturing Practice Programmes 355
10.3.1 Prerequisite Programmes – The Essentials 357
10.3.2 Validation and Verification of Prerequisite Programmes 361
10.4 HACCP, the Hazard Analysis and Critical Control Point System 362
10.4.1 Developing a HACCP System 362
10.4.2 Implementing and Maintaining a HACCP System 370
10.4.3 Ongoing Control of Food Safety in Processing 370
References 371

11 Process Control In Food Processing 373
Keshavan Niranjan, Araya Ahromrit and Ahok S. Khare
11.1 Introduction 373
11.2 Measurement of Process Parameters 373
11.3 Control Systems 374
11.3.1 Manual Control 374
11.3.2 Automatic Control 376
11.3.2.1 On/Off (Two Position) Controller 376
11.3.2.2 Proportional Controller 377
11.3.2.3 Proportional Integral Controller 378
11.3.2.4 Proportional Integral Derivative Controller 379
11.4 Process Control in Modern Food Processing 380
11.4.1 Programmable Logic Controller 381
11.4.2 Supervisory Control and Data Acquisition 381
11.4.3 Manufacturing Execution Systems 382
11.5 Concluding Remarks 384
References 384
12 **Environmental Aspects of Food Processing** 385
Niharika Mishra, Ali Abd El-Aal Bakr and Keshavan Niranjan

12.1 Introduction 385
12.2 Waste Characteristics 386
12.2.1 Solid Wastes 387
12.2.2 Liquid Wastes 387
12.2.3 Gaseous Wastes 387
12.3 Wastewater Processing Technology 387
12.4 Resource Recovery From Food Processing Wastes 388
12.5 Environmental Impact of Packaging Wastes 389
12.5.1 Packaging Minimisation 389
12.5.2 Packaging Materials Recycling 390
12.6 Refrigerents 392
12.7 Energy Issues Related to Environment 394
12.8 Life Cycle Assessment 396
References 397

13 **Water and Waste Treatment** 399
R. Andrew Wilbey

13.1 Introduction 399
13.2 Fresh Water 399
13.2.1 Primary Treatment 400
13.2.2 Aeration 401
13.2.3 Coagulation, Flocculation and Clarification 401
13.2.4 Filtration 403
13.2.5 Disinfection 406
13.2.5.1 Chlorination 406
13.2.5.2 Ozone 408
13.2.6 Boiler Waters 409
13.2.7 Refrigerant Waters 410
13.3 Waste Water 410
13.3.1 Types of Waste from Food Processing Operations 411
13.3.2 Physical Treatment 412
13.3.3 Chemical Treatment 413
13.3.4 Biological Treatments 413
13.3.4.1 Aerobic Treatment – Attached Films 414
13.3.4.2 Aerobic Treatment – Suspended Biomass 417
13.3.4.3 Aerobic Treatment – Low Technology 419
13.3.4.4 Anaerobic Treatments 419
13.3.4.5 Biogas Utilisation 424
13.4 Sludge Disposal 425
13.5 Final Disposal of Waste Water 425
References 426
14 Separations in Food Processing 429

James G. Brennan, Alistair S. Grandison and Michael J. Lewis

14.1 Introduction 429
14.1.1 Separations from Solids 430
14.1.1.1 Solid-Solid Separations 430
14.1.1.2 Separation From a Solid Matrix 430
14.1.2 Separations From Liquids 430
14.1.2.1 Liquid-Solid Separations 431
14.1.2.2 Immiscible Liquids 431
14.1.2.3 General Liquid Separations 431
14.1.3 Separations From Gases and Vapours 432
14.2 Solid-Liquid Filtration 432
14.2.1 General Principles 432
14.2.2 Filter Media 434
14.2.3 Filter Aids 434
14.2.4 Filtration Equipment 435
14.2.4.1 Pressure Filters 435
14.2.4.2 Vacuum Filters 439
14.2.4.3 Centrifugal Filters (Filtering Centrifugals, Basket Centrifuges) 440
14.2.5 Applications of Filtration in Food Processing 442
14.2.5.1 Edible Oil Refining 442
14.2.5.2 Sugar Refining 442
14.2.5.3 Beer Production 443
14.2.5.4 Wine Making 443
14.3 Centrifugation 444
14.3.1 General Principles 444
14.3.1.1 Separation of Immiscible Liquids 444
14.3.1.2 Separation of Insoluble Solids from Liquids 446
14.3.2 Centrifugal Equipment 447
14.3.2.1 Liquid-Liquid Centrifugal Separators 447
14.3.2.2 Solid-Liquid Centrifugal Separators 448
14.3.3 Applications for Centrifugation in Food Processing 450
14.3.3.1 Milk Products 450
14.3.3.2 Edible Oil Refining 451
14.3.3.3 Beer Production 451
14.3.3.4 Wine Making 451
14.3.3.5 Fruit Juice Processing 451
14.4 Solid-Liquid Extraction (Leaching) 452
14.4.1 General Principles 452
14.4.2 Extraction Equipment 455
14.4.2.1 Single-Stage Extractors 455
14.4.2.2 Multistage Static Bed Extractors 456
14.4.2.3 Multistage Moving Bed Extractors 457
14.4.3 Applications for Solid-Liquid Extraction in Food Processing 459
14.4.3.1 Edible Oil Extraction 459
14.8.3 Applications of Ion Exchange in the Food Industry 500
14.8.3.1 Softening and Demineralisation 500
14.8.3.2 Decolourisation 502
14.8.3.3 Protein Purification 502
14.8.3.4 Other Separations 503
14.8.4 Conclusion 504
14.9 Electrodialysis 504
14.9.1 General Principles and Equipment 504
14.9.2 Applications for Electrodialysis 506
References 507

15 Mixing, Emulsification and Size Reduction 513
James G. Brennan
15.1 Mixing (Agitation, Blending) 513
15.1.1 Introduction 513
15.1.2 Mixing of Low and Moderate Viscosity Liquids 513
15.1.2.1 Paddle Mixer 515
15.1.2.2 Turbine Mixer 515
15.1.2.3 Propeller Mixer 516
15.1.3 Mixing of High Viscosity Liquids, Pastes and Plastic Solids 517
15.1.3.1 Paddle Mixers 519
15.1.3.2 Pan (Bowl, Can) Mixers 519
15.1.3.3 Kneaders (Dispersers, Masticators) 519
15.1.3.4 Continuous Mixers for Pastelike Materials 519
15.1.3.5 Static Inline Mixers 520
15.1.4 Mixing Dry, Particulate Solids 520
15.1.4.1 Horizontal Screw and Ribbon Mixers 521
15.1.4.2 Vertical Screw Mixers 522
15.1.4.3 Tumbling Mixers 522
15.1.4.4 Fluidised Bed Mixers 523
15.1.5 Mixing of Gases and Liquids 523
15.1.6 Applications for Mixing in Food Processing 524
15.1.6.1 Low Viscosity Liquids 524
15.1.6.2 Viscous Materials 524
15.1.6.3 Particulate Solids 524
15.1.6.4 Gases into Liquids 524
15.2 Emulsification 524
15.2.1 Introduction 524
15.2.2 Emulsifying Agents 526
15.2.3 Emulsifying Equipment 527
15.2.3.1 Mixers 527
15.2.3.2 Pressure Homogenisers 528
15.2.3.3 Hydroshear Homogenisers 530
15.2.3.4 Microfluidisers 530
15.2.3.5 Membrane Homogenisers 530
15.2.3.6 Ultrasonic Homogenisers 530
15.2.3.7 Colloid Mills 531
15.2.4 Examples of Emulsification in Food Processing 532
15.2.4.1 Milk 532
15.2.4.2 Ice Cream Mix 533
15.2.4.3 Cream Liqueurs 533
15.2.4.4 Coffee/Tea Whiteners 533
15.2.4.5 Salad Dressings 534
15.2.4.6 Meat Products 534
15.2.4.7 Cake Products 535
15.2.4.8 Butter 535
15.2.4.9 Margarine and Spreads 536
15.3 Size Reduction (Crushing, Comminution, Grinding, Milling) of Solids 537
15.3.1 Introduction 537
15.3.2 Size Reduction Equipment 540
15.3.2.1 Some Factors to Consider When Selecting Size Reduction Equipment 540
15.3.2.2 Roller Mills (Crushing Rolls) 541
15.3.2.3 Impact (Percussion) Mills 544
15.3.2.4 Attrition Mills 546
15.3.2.5 Tumbling Mills 548
15.3.3 Examples of Size Reduction of Solids in Food Processing 550
15.3.3.1 Cereals 550
15.3.3.2 Chocolate 552
15.3.3.3 Coffee Beans 554
15.3.3.4 Oil Seeds and Nuts 554
15.3.3.5 Sugar Cane 555

References 556

Subject Index 559