
Chapter 4

OVERBOOKING

Overbooking is somewhat distinct from the core pricing and capacity-
control problems of revenue management. RM is mainly concerned with
how best to price or allocate capacity—how to achieve the best mix
of demand, in essence. In contrast, overbooking is concerned with in-
creasing capacity utilization in a reservation-based system when there
are significant cancellations.1 Its focus is increasing the total volume of
sales in the presence of cancellations rather than optimizing customer
mix. The problems of optimizing demand mix and volume are quite
related, however, and both are considered integral parts of RM.

Indeed, from a historical standpoint, overbooking is the oldest—and,
in financial terms, among the most successful—of RM practices. In the
airline industry it is estimated that approximately 50% of reservations
result in cancellations or no-shows2 and about 15% of all seats would go
unsold without some form of overbooking. [477] This is to be compared
to fare-class allocation, which by most estimates leads to incremental
revenues to the order of 5%. Despite its economic importance, many
researchers consider overbooking a somewhat mature area, and it has

1We note, however, that reservations are not used in all quantity-based RM industries. In
certain advertising markets, for example, one advertiser is allowed to preempt another if it’is
willing to pay more for the same ad slot. This effectively produces an auction in which the
current highest bidder has claim to the capacity.
2A cancellation is defined as a reservation that is terminated by a customer strictly prior
to the time of service. A no-show, in contrast, occurs when a customer does not cancel his
reservation but rather just fails to show up at the time of service. The distinction is important
because the firm has some opportunity to compensate for a cancellation by accepting more
reservations after the fact, while no such opportunities exist when a customer no-shows.
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received less attention in the recent research literature than fare-class
allocation or pricing.

As a business practice, the biggest challenges in overbooking are man-
aging the negative effects of denying service on customer relations and
dealing with the resulting legal and regulatory issues. On a planning
level, overbooking involves controlling the level of reservations to bal-
ance the potential risks of denied service against the rewards of increased
sales. Theoretically, this involves controlling parameters of a probabil-
ity distribution, which introduces somewhat unique methodology that is
not encountered in other areas of RM.

4.1 Business Context and Overview
A reservation is essentially a forward contract between a customer

and the firm. Reservations give customers the right to use a service in
the future at a fixed price and often also the option to opt out (perhaps
with a penalty) before the time of service.

Customers value reservations whenever the costs of unavailability at
the desired time of consumption are higher than the costs of unavailabil-
ity prior to the time of consumption. For instance, because customers
travel to attend business meetings, visit family members, or take vaca-
tions, they must coordinate their travel with hotel arrangements, busi-
ness appointments, scheduling of vacation days, and so on. Since it is
generally more costly to change or renege on these contingent arrange-
ments at the time of service than it is to change or renege on them in
advance, customers value reservations for travel services.

Yet committing to purchasing in advance has its own risks. Uncertain
future events (such as clients rescheduling meetings, illness, or more at-
tractive vacation opportunities) may make it impossible or undesirable
to use the service. Therefore, customers also value the option to cancel
reservations. Indeed, a reservation with a cancellation option gives cus-
tomers the best of both worlds—the benefit of locking-in availability in
advance and the flexibility to renege should their plans or preferences
change.

While advance reservations with a cancellation option are highly val-
ued by customers, they require a firm to take a two-sided risk—to honor
the reservation when customers show up (or provide suitable compen-
sation if it cannot honor the reservation), and in cases where customers
cancel or do not show up, to bear the opportunity cost of wasted capac-
ity. Firms try to manage this risk through a combination of cancellation
penalties and overbooking.

Cancellation and no-show penalties effectively allow customers and
the firm to share the risks of cancellations. In practice, penalties for
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cancellations and no-shows range from zero to full price and are most
often implemented as a sale condition of the product. In fact, the po-
tential for abuse without such penalties is substantial; customers may
make multiple reservations to preserve various options and then cancel
all of them except the one they want, not an uncommon practice in cer-
tain wholesale international air travel markets. Some minimal penalty
is necessary to curb such abuses. (Though firms in a surprising num-
ber of industries—the restaurant industry for one—do not penalize for
cancellations.) On the other hand, if the penalties are too large, the
cancellation option has little value or effectively becomes a nonoption
for customers.

To further reduce the costs of cancellations, a firm may also adopt a
strategy of accepting more reservations than it has capacity to serve, tak-
ing the chance that the number of surviving reservations will be within
capacity. This is the essence of planned overbooking.

A firm that chooses a strategy of planned overbooking is immediately
faced with several important problems. One is confronting the legal and
regulatory implications of failing to honor the reservation contract. Even
if the firm is on safe legal ground, it must have operational policies and
procedures in place to deal with the situation in which service must be
denied. Once these basic structural and policy elements are determined,
it must develop methodology to control the level of overbooking on an
operational basis. We look at each of these issues in turn.

4.1.1 A History of Legal Issues in Airline
Overbooking

Legally, overbooking involves the risk of failing to deliver on a contract
to provide service. While there are somewhat different legal requirements
in each industry in this regard, it is instructive to look at the evolution
of airline overbooking regulations in the United States as an example of
the legal issues involved.

Prior to 1961, intentional overbooking was practiced somewhat clan-
destinely by U.S. airlines and was not acknowledged publicly. Despite
this fact, Rothstein [449] reports that as director of Operations Research
at American Airlines he, “found much publicly available evidence that
all the major airlines were deliberately overbooking.” In 1961, the Civil
Aeronautics Board (CAB) reported a no-show rate of 1 out of every
10 passengers booked among the 12 leading carriers at that time. The
CAB acknowledged that this situation created real economic problems
for the airlines. As a result, the CAB implemented a no-show penalty
of 50% of the ticket price. At the same time, they explicitly required
airlines to pay a penalty of 50% of the ticket price to passengers who
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were denied boarding. However, the CAB still did not officially sanc-
tion overbooking practices. The no-show penalty was abandoned in 1963
largely because airline management felt that the penalties created ill will
among passengers and might be discouraging air travel in general.

The CAB conducted another study of overbooking during 1965-66.
They found that the denied-boarding rate at that time was approxi-
mately 7.69 per 10,000 passengers boarded [119]. Their conclusion was
issued in a 1967 docket [119]:

There is a substantial reservation turnover before flight time from cancel-
lations and no-shows. The airlines are engaging in deliberate or controlled
overbooking to compensate for it. Through carefully controlled overbooking,
the airlines can reduce the number of empty seats and at the same time serve
the public interest by accommodating more passengers.

The present reservation systems of the carriers greatly benefit the traveling
public. The Board is not prepared, therefore, to require changes in these
systems.

Thus, as of 1965, overbooking was an officially sanctioned practice, pro-
vided it was “carefully controlled,” a criterion that was never precisely
defined by the CAB.

In parallel, the CAB also increased the denied-boarding penalty to
100% of the coupon. Airlines controlled the percentage of denied board-
ings, and the CAB carefully monitored the denied-boarding performance
of each airline. The involuntary denied-boarding rate is still carefully
monitored in the United States by the Department of Transportation
(DOT) and currently hovers around 0.5 to 1.5 involuntary and 15 to 20
voluntary denied boardings per 10,000 passengers (see Table 4.1).

Despite this progress in formalizing the practice of planned overbook-
ing, the traveling public was still largely unaware of its existence. This
was to change in 1972 when Ralph Nader, the well-known U.S. consumer
advocate, was denied boarding on an Allegheny Airlines flight. Rather
than accept the standard compensation, he sued Allegheny, won, and
was awarded $25,000 in punitive damages. The judge’s ruling was based
on the fact that Allegheny did not advise passengers of its practice of
deliberate overbooking. The case was appealed all the way to the U.S.
Supreme Court, but the ruling was upheld. As Rothstein [448] noted at
the time:

... public policy may very well force the airlines into the position that a reser-
vation involves a definite, legal claim on a seat. And if this happens, most of
the operations research carried out on this problem will have to be discarded
and eventually redone.
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Rothstein proposed that airlines charge for reservations as a possible
solution:

In other words, the reservation itself, as opposed to the physical seat on the
plane, is to be considered of value . . . the reservation itself is a commodity to
be purchased for an amount of money and possibly to be relinquished for a
different amount of money.

In the wake of Mr. Nader’s suit—and after much debate—the CAB
revised its rules concerning overbooking as follows:

Denied-boarding compensation was doubled again to 200% of the
coupon.

Airlines were required to seek volunteers first before denying boarding
to any passenger involuntarily.

The traveling public was to be notified of the deliberate overbooking
practices of the airlines.

A statement warning passengers that their flight may be overbooked
and informing them of their rights was to be printed on every ticket.

As a result of this ruling, the DOT requires an overbooking notification
statement on all U.S. airline tickets (see Figure 4.1).

These basic regulations are still in existence today in the U.S. Since
deregulation in 1974, airlines have increasingly relied on vouchers and
payments to attract volunteers to give up their seats on oversold flights.
As a result, involuntary denied boardings are much less frequent today
than they were in the days when overbooking was a clandestine practice.
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4.1.2 Managing Denied-Service Occurrences
Managing the compensation and selection of customers in the event

of oversales can have a significant impact on denied-service costs and
customer perceptions of overbooking. We next briefly look at the main
issues involved in managing oversales.

4.1.2.1 Compensation for Denied Service
While legally mandated compensation often specifies payment of mon-

etary damage, this is often viewed as inadequate in the eyes of customers.
A car rental customer who is planning to take a tour of the California
coast would most likely find the prospect of getting a full refund plus
50% of the contracted rental rate as poor compensation for a ruined va-
cation. It is often more effective to offer customers a substitute service
(such as an upgrade) plus ancillary services that may make the short-run
disruption in their schedule more palatable.

To illustrate, the same car-rental customer may be much more satis-
fied with an offer to provide a ride to a competing rental company, a free
upgrade to a luxury car, plus a voucher for future rentals. Compensation
that is targeted to substitute for the denied service and perhaps enhance
it somewhat is frequently less expensive for a firm and more effective in
the eyes of the customer than pure monetary compensation.

4.1.2.2 Selection Criteria
Selecting which customers are to be denied service also can have a

significant impact on both the firm’s direct costs and customer goodwill.
Prom a legal standpoint, such selection must not be discriminatory. For
example, for airlines, current DOT regulations state that [523]

Every carrier shall establish priority rules and criteria for determining which
passengers holding confirmed reserved space shall be denied boarding on an
oversold flight in the event that an insufficient number of volunteers come
forward.

Such rules and criteria shall not make, give, or cause any advantage to any par-
ticular person or subject any particular person to any unjust or unreasonable
prejudice or disadvantage in any respect whatsoever.

The default option for allocating service to customers is usually to do
it on a first-come, first-serve (FCFS) basis. While a FCFS allocation is
perceived as fair and encourages customers to arrive on time, there are
many business situations where this allocation is quite undesirable.

A good example is hotel overbooking. Using a FCFS allocation for
a hotel means that the customers who are denied service are those who
arrive very late in the evening. This creates two difficulties. First, it
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is usually much more disruptive to relocate a customer who arrives late
at night. These customers are often tired and irritable and simply want
to go to bed as soon as possible. A customer who arrives in the late
afternoon, in contrast, may be willing to sightsee around the town for
several hours or go out for a meal while alternative accommodations are
secured and their baggage is transported. Second, late-arriving hotel
customers are typically business travelers who pay the highest rates,
travel often, and therefore represent the most profitable segment for
most hotels. In terms of the lifetime value, these customers are the most
costly to lose.

Hotels therefore do not always allocate rooms on a FCFS basis.
Rather, they monitor arrival rates and occupancy throughout the day
to anticipate a potential oversold condition. If at some point managers
expect an oversale, they may find alternative arrangements for early-
arriving customers to avoid denying service to customers due to check
in very late.

In other service situations, it is sometimes possible to select among
a pool of customers when allocating service. For example, in airline
boarding, customers usually gather to the gate before departure. This
gives gate agents a chance to see which passengers have arrived for the
flight and to selectively target specific passengers for denied-boarding
offers. Indeed, we are aware of one Australian airline that trains its gate
agents to solicit young, student travelers (“backpackers”) as volunteers.
The airline found that customers in this segment are eager to receive
a nice hotel room and a good meal in exchange for taking a flight the
following day.

4.1.2.3 Oversale Auctions
An alternative method of managing oversales is to conduct an auc-

tion to attract volunteers to give up their reservations in exchange for
monetary or other compensation. While this practice is now widespread
in airlines and familiar to most travelers, the idea was not well received
initially.

In 1968, economist Julian Simon proposed what he called “an almost
practical solution to airline overbooking, ” in which airlines would con-
duct a sealed-bid “reverse auction” to find passengers willing to accept
monetary compensation for being bumped. Simon predicted (rightly so,
as initial responses to his letters to airline executives later indicated)
that the airlines would object to the scheme

because such an auction does not seem decorous; it smacks of the pushcart
rather than the one-price store; it is “embarrassing” and “crass,” i.e., frankly
commercial, like ‘being in trade’ in Victorian England ([472]).
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Simon cites this tongue-in-cheek reaction from airline executive Blaine
Cooke:

I greatly fear that your Overbooking Auction Plan suffers from a flawed
premise and a fatal defect. The flawed premise is that you assume that air-
line management and regulation is a rational exercise. It is not. It is more
accurately described as an exercise in applied insanity. The effect is your plan
offers a market-sensitive and sensible solution to a real problem but a solution
not conceived by an airline. Accordingly, the idea must be disallowed since it
is well established in airline marketing that only ideas which originate within
the airline industry are permissible.

Simon wrote many letters to executives, regulators, policy makers,
and customer groups arguing for his “oversale-auction” idea. Despite
these efforts, he failed to get even one airline to experiment with it
on even a single flight. Even prominent fellow economists questioned
the practicality of the idea. Simon [474] quotes a letter from Milton
Friedman:

If the plan is as good as you and I think it is, I am utterly baffled by the
unwillingness of one or more of the airlines to experiment with it. I conclude
that we must be overlooking something. I realize that you have tested this
quite exhaustively, and I have no reason to question your results; yet I find
it even harder to believe that opportunities for large increments of profit are
being rejected for wholly irrational reasons.

The scheme continued to flounder until 1977 when Alfred Kahn, an
economist, was appointed to head the CAB. Simon wrote to Kahn about
his proposal and Kahn liked and largely adopted it under the heading of
a “volunteer” denied-boarding plan, as mentioned above. At the same
time, Kahn increased penalties for involuntary denied boardings.

Simon [474] quotes an American Airlines internal newsletter from
April 27, 1979:

The happiest result of the volunteer plan is that airlines now have a fair and
efficient way to avoid denying seats to people who for business or personal
reasons have a pressing need to make their flights as planned. VP, Passenger
Services, Robert H. Phillips points out that the voluntary program has twin
virtues: “It enables us to reduce costs while maintaining customer goodwill
and thereby protecting future revenue”.

Given the success of this volunteer denied-boarding plan, it appears that
airline management has indeed inched closer to the notion of a “rational
exercise.”

4.1.3 Lessons Beyond the Airline Industry
There are several broader lessons to be learned from this history of

airline overbooking. One is that it takes time for customers to get
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used to and accept overbooking practices, and providers in turn have
to learn how to develop strategies and operational practices that make
overbooking as painless as possible for customers. In the airline indus-
try, this process took decades to develop. A second lesson is that some
seemingly fanciful techniques—in particular the oversale auction—can
in fact prove to be surprisingly popular and effective in practice, which
serves as a caution for those who are quick to criticize such innovations.
Finally, while there is no denying that overbooking is a well-developed
and refined practice in the airline and hotel industries, it nevertheless re-
mains a primary source of dissatisfaction for customers. Overbooking is
frequently cited in customer complaints, both to individual firms and to
government regulators. So even at its best, overbooking is a somewhat
awkward compromise between economic efficiency and service quality.

4.2 Static Overbooking Models
We next look at the methodology for making overbooking decisions.

The simplest and most widely used methodology is based on static over-
booking models. In static models, the dynamics of customer cancellations
and new reservation requests over time are ignored. Rather, the models
simply determine the maximum number of reservations to hold at the
current time given estimates of cancellation rates from the current time
until the day of service. This maximum number of reservations, or over-
booking limit, is then recomputed periodically prior to service to reflect
changing state and cancellation probabilities over time. While more so-
phisticated dynamic overbooking models have been developed and are
discussed in Section 4.3, the simplicity, flexibility, and robustness of the
simpler static models have made them more popular in practice.

Two types of events impact the overbooking decision—cancellations
and no-shows—with the difference simply related to the timing of the
events. (Again, a cancellation is a reservation that is withdrawn by a
customer strictly prior to the time of service; a no-show is someone who
does not cancel and does not show up at the time of service.) While
both result in a situation where a reservation does not “survive” to the
time of service, with a cancellation, the firm has an opportunity to possi-
bly replace the cancelled reservation; in contrast, there is little recourse
available to compensate for a no-show. Under a static model, the dis-
tinction between the two is unnecessary, since a static model assumes a
static overbooking limit is set without recourse to adjust it. Thus, all
that matters is the probability that a reservation survives to the time
of service (the show demand, as it is called). In dynamic overbooking
models, however, the distinction between no-shows and cancellations is
important.
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In airline and hotel practice, static models are used to compute over-
booking limits—also called virtual capacities or overbooking authoriza-
tion levels in the airline industry—which are, in turn, used as inputs to
capacity-allocation models. These static overbooking models are typi-
cally re-solved periodically to account for changes in the cancellation and
no-show probabilities over time, resulting in overbooking limits that vary
(typically decline) over time. The current overbooking limit gives the
maximum number of reservations one will accept at any time.

The situation is illustrated in Figure 4.2. The top, wide line is the
overbooking limit over time. Solving a static model gives one point on
this curve. Overbooking limits are set high initially because the proba-
bility of a reservation cancelling prior to the time of service or no-showing
is usually higher the longer the time till service. As the time of service
(T) approaches, the overbooking limits fall. At the same time, reserva-
tions are being accumulated in the system over time. The dark line in
Figure 4.2 shows that with overbooking in place, the reservations in the
system can exceed the capacity C, and we don’t stop accepting reserva-
tions until the overbooking limit is reached. At that point reservations
are rejected. The resulting show demand (demand that shows up finally)
at time T is ideally close to the capacity C. The lower line shows the
same trajectory of reservations without overbooking. In this case, the
reservations in the system are truncated at the capacity C early on in
the booking process. As a result, once reservations start to cancel and
no-show, the show demand is significantly less than capacity.

4.2.1 The Binomial Model
The simplest static model is based on a binomial model of cancellations

in which no-shows are lumped together with cancellations (that is, a no-
show is treated simply as a cancellation that occurs at the day of service).
The following assumptions are made:

Customers cancel independently of one another.

Each customer has the same probability of cancelling.

The cancellation probability is Markovian; it depends only on the
time remaining to service and is independent of the age of the reser-
vation.

Let denote the time remaining until service, C denote the physi-
cal capacity, denote the number of reservations on hand, and the
probability that a reservation currently on hand shows up at the time of
service is the probability that customers cancel prior to the time
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of service). Note that is really a function of the time remaining, since
in general the more time remaining the more likely it is that customers
cancel before the time of service. However, to keep the notation simple
we suppress the dependence of on Also, in practice estimates of
may be based on the ratio of show demand to reservations on hand (the
net bookings) rather than on individual customer cancellation rates; this
approach is discussed further in Section 4.3.2.

Under the assumptions stated above, the number of customers who
show up at the time of service given there are reservations on hand,
denoted (the show demand), is binomially distributed with p.m.f.:

and with c.d.f.:

with mean and variance It is
convenient to work with the complement of the distribution denoted
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by which is defined by

Several airline industry studies have validated this binomial model of
cancellations. For example, in one of the earliest investigations of over-
booking, Thompson [508] considers data from 59 flights from Auckland
to Sydney operated by Tasman Empire Airways. He eliminated groups
of six or more since they exhibited much lower cancellation rates and al-
though rare (11 total booking on the 59 flights), can significantly distort
the cancellation rate on the flights involved. Parties of six or fewer con-
stituted 99.6% of all bookings; 81% of the remaining were singles; 15%
were paired and 4% were parties of three to six. (See Table 4.4.) While
the results showed that group-cancellation behavior does invalidate the
binomial model for certain cabins on certain flights, overall he concluded
that the binomial model adequately fits the data. (Group-cancellation
effects are discussed further in Section 4.2.4.)

4.2.1.1 Overbooking Based on Service-Level Criteria
One measure of service is the probability of oversale at the time of

service, which we call the Type 1 service level. We assume the firm uses
an overbooking-limit policy to control the number of reservations that
are accepted. The overbooking limit is denoted In other words, we
assume the firm continues to accept reservations as long as the number
of reservations on hand is less than x and stops accepting reservations
once 3

The Type 1 service level is denoted and is given by

That is, if we assume that the number of reservations on hand reaches
our overbooking limit then will be the probability that we have
to deny service to one or more customers. Hence, setting an overbooking
limit of guarantees that the probability of oversale will not exceed

An arguably more natural measure of service is the long-run fraction
of customers who are denied service, which we call the Type 2 service

3Whether such a threshold policy is in any sense optimal for the dynamic decision-making
problem is addressed in Section 4.3. Here we simply assume such an overbooking policy is
used.
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level denoted by This fraction is given by4

Setting an overbooking limit of ensures that, at most, a fraction
of customer will be denied service. Through some algebraic simplifica-
tion, one can show that

which is a more convenient formula for computations.
Table 4.2 shows the Type 1 and Type 2 service levels for an example

with C = 150, and varying overbooking limit In practice,
we first specify a service level and then numerically search for the largest
booking level satisfying the specified service level. The resulting
is the overbooking limit. The quantity (the excess over capacity)
is referred to as the overbooking pad.

Example 4.1 Suppose we want no more than 0.1% of customers to be denied service
and our capacity is C = 150 and From Table 4.2, we should accept at most
168 reservations since this is the largest value for which less than
.001, (though 169 has a service level only slightly over the standard and might be a
candidate as well). Reservations would then be accepted as long as the number of
bookings on hand is less than 168. The overbooking pad would be 168 – 150 = 18.

Note that if we do not receive at least requests for reservations,
the service levels will in fact be higher than and In other
words, these measures predict the service level for instances in which
demand exceeds but the service level will be higher if demand is
strictly less than So effectively, we are considering a worst-case
service level (demand exceeding the overbooking limit) rather than an
average-case service level.

4As a technical aside, note that one may be tempted to define the Type 2 service level as

the average fraction denied service, rather than by (4.3). This is wrong, however, because it
does not account for the varying number of customers served. For example, if C = 100, then
it would count a day in which and a day in which equally as two days
with denied service fractions of zero, when in reality the second day represents 100 times as
many customers. The renewal-reward theorem leading to (4.3) provides the correct measure
of the long-run fraction of customers who are denied service.
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The average service level is, however, easy to calculate for a given dis-
tribution of demand. To illustrate, consider the Type 2 service level. Let
the random variable D denote the demand (unrestricted by capacity).
Then by the renewal-reward theorem, the average Type 2 service for an
overbooking level denoted is given by

One then searches for the largest value of that provides an average
service level that is within a given limit.
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The problem with using average service levels is that customers who
make reservations only on congested days will experience service levels
closer to than to This is a form of the inspection paradox
of probability theory, in which customers who book only on busy days
experience worse-than-average service. Thus, a service standard based
on is often justified since it guarantees that all customers, regard-
less of their patterns of usage, will experience at least the target service
standard.

4.2.1.2 Overbooking Based on Economic Criteria
An alternative to setting overbooking limits based on service levels is

to use an economic criterion. This approach requires an estimate of the
revenue loss from not accepting additional reservations and an estimate
of the cost of denied service. We first develop the details of the economic
model and then discuss some of the issues involved in estimating the
revenue loss and cost inputs.

Model and Basic Results Suppose customers show up on the day of
service (the show demand), and let denote the denied-service cost.
We shall assume is an increasing convex function of For example,
a common assumption in practice is that each denied-service costs the
firm a constant marginal amount in which case

An arguably more realistic assumption is to assume strictly increasing
marginal costs, reflecting the need to offer higher levels of compensation
(or incur higher goodwill costs) as each additional customer is denied
service.

Let denote the marginal revenue generated by accepting an addi-
tional reservation. One could also allow this marginal revenue to vary,
but it is a common simplification in practice to consider it fixed. (We
discuss this issue further below.) Then the total expected profit from
having reservations on hand is given by

where, as before, the random variable denotes the number of cus-
tomers who show up on the day of service out of reservations. One can
show for the binomial model that if is convex, then V(·) is concave, 5

in which case, since is concave, it follows that it is optimal to accept
the reservation as long as the marginal profit

5This follows from stochastic convexity arguments; see Appendix B for a discussion.
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is positive and to continue accepting reservations until this marginal
profit turns negative. Thus, the optimal booking limit is the largest
value of satisfying

For the binomial model with constant marginal costs and parameter
this condition reduces to

This expression can be argued intuitively by noting that when we accept
the reservation, we incur a marginal denied-boarding penalty of if
and only if (1) the current reservations on hand consume all the capacity

and (2) the customer shows up. The left-hand side
of (4.6) is simply the marginal penalty multiplied by the probability of
this event or equivalently the expected marginal cost. Then is the
largest value of for which the expected marginal cost is less than the
marginal revenue.

We can express (4.6) as

Note that this is equivalent to setting a fixed Type 1 service level for
a capacity of C – 1. For large capacities C, so
using economic criteria with constant marginal costs corresponds ap-
proximately to specifying a particular Type 1 service level. This fact
provides one justification for using Type 1 service levels.

To illustrate (4.7), consider the following example:

Example 4.2 Suppose C = 150, the overbooking cost is and
the marginal revenue is Then From Table 4.2 and (4.7), we
see that the optimal overbooking limit is then since this is the largest value
of for which The overbooking pad is then 172 – 150 = 22.

Cost and Revenue Parameters While overbooking based on eco-
nomic criteria is conceptually appealing, it requires good estimates of
the marginal revenues and costs. The marginal revenue is usually the
easier of the two to determine. If there is only one class, the marginal
revenue is simply the common price but with multiple classes determin-
ing the marginal revenue is more complex. A heuristic approach is to
use the weighted-average revenue. However, as shown in Chapter 2, the
marginal revenue produced by an additional unit of capacity is not, in
general, equal to the weighted-average revenue. Moreover, the marginal
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revenue is typically decreasing in the available capacity, so the linear
marginal revenue assumption is violated. Both these factors complicate
the estimation of marginal revenue in practice.

Estimating the denied-boarding cost involves other complications.
Some elements of this cost are clear: in particular, any refund of the
purchase price or monetary compensation or both is easy to quantify in
most cases. But if auctions are used to determine compensation, then
this compensation must be estimated. Vouchers for free service in the
future require a more careful accounting of the actual cost of providing
the service, as this is often less than the face value of the voucher.

Most difficult of all to quantify is the goodwill loss of upsetting a
customer. In principle, this can be taken to be equal to the discounted
potential revenue stream of future purchases from the customer (the so-
called lifetime value of the customer). This is rather difficult quantify,
but it is usually worth an attempt to make this calculation to at least
get the correct order of magnitude of goodwill losses.

One useful idea to get around these estimation problems is to com-
pute imputed costs based on subjective service-level criteria rather than
specifying a denied-service cost a priori. To obtain an imputed cost
from a given overbooking limit set according to Type 2 service levels,
one simply rearranges (4.7) to obtain

The following example illustrates the use of this formula:

Example 4.3 We saw above that if the service standard is 0.1% we
should accept at most reservations. Since if the
marginal revenue is this implies an imputed cost of denied service of

The figure looks rather large relative to the $100 revenue, so one might question if a
0.1% Type 2 service level is economically justified.

Often, these imputed cost numbers provide useful feedback, since they
translate service levels, which are tangible and somewhat easier to spec-
ify, into economic penalties, which most people find harder to quantify.
The economic costs, in turn, serve as a useful “sanity check” on the
reasonableness of a given service level by giving the magnitude of the
implied costs.
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4.2.2 Static-Model Approximations
While the binomial model is quite simple, it is often desirable to have

simpler, closed-form expressions for the overbooking limits. We next
look briefly at such approximations.

4.2.2.1 Deterministic Approximation
The deterministic approximation simply sets the overbooking limit so

that the average show demand is exactly equal to the capacity; namely,

As simplistic as this approximation is, we have seen several RM imple-
mentations that use it. The approximation is not completely unjustified,
however, as illustrated by the following example:

Example 4.4 Consider our continuing example where C = 150 and The
deterministic approximation yields an overbooking limit of From
Table 4.2, one can see that both service measures and begin to change
rapidly in the range of to which is approximately centered around
the deterministic level 176. So lacking detailed service standards or cost information,
a value around the deterministic level is not an unreasonable heuristic to use.

4.2.2.2 Normal Approximation
In practical implementations, it is common to use a continuous ap-

proximation to the binomial model to simplify computations. One pop-
ular choice is the normal approximation, in which the distribution
is replaced by the normal distribution with mean and variance
chosen to match the binomial, viz.,

The Type 1 service level is then approximated by

where

and is the c.d.f. of the standard normal distribution.
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The Type 2 service level is then approximated by6

Table 4.2 shows the estimates produced by the normal approximation
for our example with C = 150 and As can be seen, they are
reasonably close to the values of the binomial model.

The economic overbooking limit (4.7) for the constant marginal-cost
function (4.4) is approximated by choosing to satisfy

4.2.2.3 Gram-Charlier Series Approximation
The Gram-Charlier series improves on the normal approximation of

the binomial distribution by allowing for skewness of the distribution.
The standardized density function for this distribution is

where

is the squared coefficient of skewness. If this reduces to the
standard normal distribution. For the binomial model, the coefficient of
skewness is given by

Letting denote the standardized booking level as before,
the fraction of overbooked passengers is approximated by

where, as above, and are the standard normal density and
distribution, respectively.

6This follows from the fact that if Z is a normal random variable with mean
then

where

and variance
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Table 4.3 shows some numerical comparisons of the normal and Gram-
Charlier approximations of the binomial model. In general, the normal
approximation tends to overestimate the fraction of denied boardings.
The Gram-Charlier approximation also overestimates, but less so.

4.2.3 Customer Class Mix
One important practical issue that arises in overbooking is that differ-

ent classes may have quite different cancellation rates. For example, in
the airline case, full-coach customers often have no cancellation penalty,
while discount-class customers typically incur a significant fee for can-
celling a reservation. As a result, the two classes exhibit very different
rates of cancellation. Thus, the cancellation rate observed in a collection
of reservations may be highly dependent on the mix of classes.

Exact methods to handle this class-mix problem involve keeping track
of the inventory of each class as a separate state variable and then mak-
ing overbooking decisions based on this complete vector of state vari-
ables. Such an approach is described in detail for a multiclass model in
Section 4.5 below.

The difficulty with such exact approaches, however, is that they result
in significantly more complicated overbooking models and methodology.
As a result, most often in practice, one of several heuristic approaches
is used to account for customer class mix.

The most common practice is to use a cancellation probability that
is empirically estimated for each resource separately. In this way, one



150 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

can capture at least the historical mix of customer segments booked on
each resource. Another approach is to estimate the cancellation proba-
bility for each class and then use estimates of the class mix on each re-
source to construct a weighted average cancellation probability for each
resource. Compared with straight estimation of the resource-level can-
cellation rate, this method has the advantage of reducing the variance
in the estimates and allows for a more rapid adjustment of cancellation
rates as the class mix changes over time.

4.2.4 Group Cancellations
The presence of groups also has an important effect on cancellation

models in practice. If a group decides to cancel, then all reservations are
cancelled simultaneously. The resulting positive correlation in cancel-
lations increases the variance of the show demand. When dealing with
large numbers of reservations, it is often possible to ignore the effect of
groups, but with small numbers of reservations, group effects can result
in significant deviations from the binomial model.

To gain some sense of the presence of groups in RM bookings, Ta-
ble 4.4 provides an empirical distribution of group sizes over approxi-
mately half a million airline reservations. About half of the reservations
are individual reservations, while the other half are from groups of two
or more.

One simple technique used in practice to adjust for group size is to
simply inflate the variance of the show demand by a factor that accounts



Overbooking 151

for group size. For example‚ if we are using the normal approximation
to the binomial model as described in Section 4.2.2.2‚ then the estimate
of the mean show demand‚ is unchanged but the variance estimate‚

is modified as follows:

where is a factor to account for group cancellations—for example‚ the
average group size.7

A more refined technique for adjusting for groups is based on moment-
generating functions. Recall that the moment-generating function of a
random variable Z is We can then find the moments of
Z using the fact that

Let denote the overbooking limit and denote the number of groups
of size We will assume that

where is the historical fraction of reservations that are from groups
of size As an approximation‚ we allow to be nonintegral. Let
denote the probability that a group of size survives to the time of
service (called the utilization ratio in the airline industry). Then the
moment-generating function for the number of survivals from
total reservations‚ is

from which one can find the first three central moments of show demand‚

7Setting equal to the average group size is obtained by assuming that all reservations are
in groups of exactly size in which case with reservations on hand‚ there are groups
of size so the variance of the show demand is
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These three moments can then be used in the Gram-Charlier series
approximation (4.10); alternatively‚ the first two moments can be used
in the normal approximation (4.8).

4.3 Dynamic Overbooking Models
The static models do not explicitly account for the dynamics of ar-

rivals‚ cancellations‚ and decision making over time. Here we look at
models of overbooking that account for such intertemporal effects. We
first look at an exact dynamic overbooking model and then discuss heuris-
tic approaches.

4.3.1 Exact Approaches
The model presented here is a simplification of one due to

Chatwin [109]. The state variables are time‚ and the
number of reservations on hand‚ Let the value function be denoted

The terminal costs are

where C is the fixed capacity and is a convex cost function penalizing
denied service. The revenue received from accepting a new reservation
in period is denoted If a reservation is cancelled in period

the firm pays a refund of (Note that in this model the
refund depends only on the time the reservation is cancelled and not
on the time-period in which the reservation was made; this (somewhat
unrealistic) assumption is necessary to simplify the state space.)

Let denote the number of surviving reservations at the end of
period so that given reservations are on hand at the end of period

is the random number surviving to the start of period We
assume that has a binomial distribution with survival probability

Let denote the random number of new reservation requests in
period (the demand in period is assumed independent across
time and independent of

The order of events in a period is as follows: (1) there are reser-
vations on hand, and new reservation requests arrive; (2) booking
decisions are made for the new reservation requests, raising the booking
level to where then (3) cancellations are observed at
the end of the period. The dynamic programming recursion is then
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We then have the following result:

PROPOSITION 4.1 If the denied-service cost is convex, then an
overbooking-limit policy is optimal. That is, in each period there exists
a critical value such that it is optimal to continue accepting new
reservations until the total number of reservations on hand reaches

This result provides some theoretical support for the use of booking limit
policies. The following proposition in turn provides sufficient conditions
for optimal booking limits to be monotone in time:

PROPOSITION 4.2 Suppose the denied-service cost is convex and the
survival probabilities the revenues and the refunds satisfy

Then the optimal overbooking limit (or greatest optimal booking
limits if more than one optimal limit exists) decline with time. That is,

This declining-booking-limit situation corresponds to the overbooking
curve shown in Figure 4.2. Note that this condition is satisfied whenever
the revenues are decreasing over time and refunds paid
in period do not exceed the price in period 8

Another important monotonicity result concerns how overbooking
limits are affected by the magnitude of future demand. In particular,
let be a parameter of the distribution of arrivals so that
Then we have the following

PROPOSITION 4.3 Suppose the denied-service cost is convex and
is stochastically increasing in Then the optimal booking lim-

its (or greatest optimal booking limits if more than one optimal
limit exists) are nonincreasing in

8To gain some intuition for this condition‚ note it can be written as

Roughly‚ this can be interpreted as follows. Suppose we are willing to accept a booking in
period in state Then must exceed the opportunity cost of an additional
reservation in state in period Now consider state in period If we accept an
additional booking‚ we collect revenue If this reservation cancels at the end of period
we pay a refund this occurs with probability and the state (after the cancellation)
returns to If the reservation survives to period it creates an opportunity cost analogous
to accepting a request in period which by the argument above is at most (since
we accept a request in state in period this occurs with probability So if the
revenue exceeds the “average cost” of these outcomes‚ then we should be willing accept
an arrival in period in state as well. Hence‚ the booking limit in period is at least as
large as that in period
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This result says that as demand to come increases (stochastically)‚
it is better to be less aggressive in overbooking at any given point in
time. The intuition is that if we have more opportunities to book seats
in the future‚ we do not need to take as great an overbooking risk in
the current period. The result also highlights the fact that the optimal
overbooking limits in general do depend on future demand‚ which is
something that the static overbooking models ignore. In particular‚ note
that the calculation of costs in the static overbooking model effectively
assumes there are no opportunities to replace cancelled reservations with
new reservations.9 Since the degenerate case of no future demand is
always stochastically smaller than any nontrivial distribution of future
demand‚ Proposition 4.3 implies that static overbooking models will
produce overbooking limits that are higher than optimal.

4.3.2 Heuristic Approaches Based on Net
Bookings

While dynamic overbooking models provide some nice insights‚ they
are not used very often in practice. This is due partly to their added
complexity and partly because to their similarity to the more general
combined capacity control and overbooking models that we look at in
Section 4.4 below.

In RM practice‚ the dynamics of cancellations and new reservations
and arrivals are more commonly accounted for by using relative changes
in bookings on hand (so-called net bookings) rather than customer-level
cancellation probabilities as a basis for estimating cancellation rates in
a static overbooking model. The idea of net bookings can be best illus-
trated by going back to Figure 4.2‚ which shows a sample of the level of
booking on hand over time. The change in bookings on hand from one
time-period to the next depends on both the number of cancellations and
the number of new reservations that are accepted. Looking at changes
in the bookings on hand gives us a measure of the net bookings. Quite
often in practice‚ net-bookings data is in fact the only data available for
use in estimating overbooking parameters.

Since net bookings reflect both cancellations and new reservations‚
they can be used to provide an alternative estimate of the cancellation

9More precisely‚ the assumption in the static model is that the show demand when the
booking limit is reached is a binomial random variable representing the number of
surviving reservations out of  total reservations. Hence‚ show demand consists only of those
reservations that survive from the current time until the time of service. If new reservations
are accepted to replace cancelled reservations‚ then the show demand will be larger than

which is what the dynamic model accounts for.
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rate‚ which one can interpret as an approximation to an exact dynamic
model. More precisely‚ one can estimate the survival “rate” as the
average ratio of show demand to the number of bookings on hand in time

(or to the number of peak bookings on hand if is before the peak;
see Figure 4.2.). This net-bookings approach to estimating cancellation
rates is again quite prevalent in RM practice and seems to lead to better
approximations of real world service levels and costs.

4.4 Combined Capacity-Control and Overbooking
Models

Thus far‚ we have analyzed the overbooking problem in isolation with-
out considering the interaction of overbooking decisions with capacity
controls. We next look at both exact and approximate methods to
model cancellations and no-shows together with the class allocations
of quantity-based RM.

Incorporating no-shows or cancellations in either the static or dy-
namic single-resource model is not too difficult theoretically‚ provided
one makes the following (not entirely satisfying‚ but analytically useful)
set of assumptions:

ASSUMPTION 4.1
(i) The cancellation and no-show probabilities are the same for all cus-
tomers.
(ii) Cancellations and no-shows are mutually independent across cus-
tomers.
(iii) Cancellations and no-shows in any period are independent of the
time the reservations on hand were accepted.
(iv) The refunds and denied-service costs are the same for all customers.

The assumptions imply that the number of no-shows and the costs in-
curred are only a function of the total number of reservations on hand.
As a result‚ we need only to retain a single state variable‚ and the re-
sulting dynamic programs are only slightly more complex than those
presented in Chapter 2.

The most restrictive of these assumptions in practice are (i) and (iv):
cancellation options and penalties are often linked directly to a class‚ so
cancellation and no-show rates and costs can vary significantly from one
class to the next. Ideally‚ these differences should be accounted for when
making allocation decisions. However‚ this significantly complicates the
problem‚ as we show below. As already mentioned‚ Assumption 4.1(ii)
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is often unrealistic because reservations from people in groups typically
cancel at the same time. Assumption 4.1(iii) is less of a problem in
practice and has some empirical support [508].

In most implementations‚ the overbooking problem is separated from
the capacity-allocation problem. Often‚ an approximate static overbook-
ing model can be solved that is able to relax (at least heuristically) some
or all parts of Assumption 4.1. However‚ given Assumption 4.1‚ the over-
booking and capacity-allocation problems can be combined exactly‚ as
we show next.

4.4.1 Exact Methods for No-Shows Under
Assumption 4.1

We first consider only no-shows and assume that there are no cancel-
lations prior to the time of service. Let denote the probability that a
customer with a reservation shows up for service is the no-show
probability). Assumption 4.1(i) says this probability is assumed to be
the same for all customers‚ and Assumption 4.1 (iii) that it is independent
of when the reservation was made.

Let if customer shows up for service and otherwise.
Given there are reservations on hand just prior to the time of service‚
the number of customers who show up at time zero (the show demand)‚
denoted is then

and by Assumption 4.1(iii) is a binomial random variable‚
with

By Assumption 4.1(iv), the total cost of denied service is only a func-
tion of the show demand Let denote the overbooking cost given
We will require that be increasing and convex with Con-
vexity in cost is quite natural since the marginal cost of denying service
to customers tends to increase with the number denied. For example,
we could have a simple linear cost per denied customer in which case

where, as before, C is the capacity.
Given this no-show model, the expected cost of service given

that there are reservations on hand at the time of service, is given by

Stochastic convexity arguments (see Appendix B) show that is
concave in if is convex. The above expression then replaces the
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boundary conditions of the dynamic program for the static and dynamic
models.

4.4.1.1 Static Model
Consider the static model of Section 2.2‚ where the classes are ordered

by prices and we assumed classes arrive in the order
of lowest to highest revenue. Classes and stages are indexed by The
state variable is now defined to be the number of reservations on hand

rather than the remaining capacity as in Section 2.2.
The Bellman equation (2.3) for the static model is then modified to

account for no-shows as follows

with boundary conditions (4.12) and for all where
is now interpreted as the expected net benefit (expected revenue minus
the expected terminal cost) of operating the system from stage onward
given that there are reservations on hand.10

Given the concavity of  the same argument as in Proposition 2.1
from Chapter 2 shows that the value function in (4.13) is concave
in for all and Since there is no hard capacity constraint in this
case‚ it is more meaningful to express the optimal policy in terms of
booking limits. The optimal nested booking limits are given by

where now has the interpretation as
the marginal cost of holding another reservation in stage and is
increasing in It is then optimal to accept class if and only if the
number of reservations on hand is strictly less than

4.4.1.2 Dynamic Model
Similarly‚ the optimality equations (2.17) for the dynamic model of

Section 2.5 are modified to account for no-shows as follows:

10Note that in this case is a decreasing function of since the more reservations we
have on hand now‚ the fewer the future opportunities to collect revenue or the higher the
expected future terminal costs.
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where‚ recall‚ is the random revenue in period equal to with
probability The boundary conditions are

and for all It is optimal to accept an arrival of class if and
only if

where again is interpreted as the
marginal cost of accepting another reservation.

Note that under this model‚ one can always justify accepting a suf-
ficiently high revenue provided the marginal cost is finite.
This makes perfect economic sense since we should in principle be will-
ing to accept an almost certain denied-service cost if some customer is
willing to pay enough to compensate us for this cost. For example‚ if
the overbooking cost is linear of the form then the
marginal cost is never more than so any request with revenue greater
than will always be accepted.

This property of not having an explicit limit on the number of reserva-
tions (rather‚ just an economic limit) has been called infinite overbooking
by some in the airline industry‚ since it is in sharp contrast to the usual
practice of setting a hard overbooking limit. Also‚ it highlights the po-
tential suboptimality of using fixed overbooking limits.

4.4.2 Class-Dependent No-Show Refunds
If one relaxes one or more parts of Assumption 4.1‚ then the problem

becomes considerably more difficult. The difficulty stems from the fact
that if no-show rates or costs depend on customer class or the time of
purchase or both‚ then one must retain a state variable for each class
or each time-period or both. The resulting increase in dimensionality of
the dynamic program makes it essentially intractable. However‚ it turns
out that class-dependent refunds can be readily incorporated through
an appropriate change of variable.

Suppose customers of class who no-show in period zero are given a
refund that is strictly less than the revenue we receive from them‚

However‚ all other assumptions in Assumption 4.1 hold. A
naive formulation of this class-dependent refund feature would require
keeping track of each class separately so that refunds can be properly
awarded at the time of service. However‚ whether a given customer no-
shows is completely independent of all other decisions and events in the
system. Thus‚ one can in fact charge for the expected refund at the time
the reservation is accepted rather than at the time of service‚ with no
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resulting difference in total expected revenues and costs. (This is merely
a bookkeeping change.)

More precisely‚ if we accept a reservation from a customer of class
it will yield a reduced revenue of

independent of everything else in the system. Therefore‚ we simply
use in place of in either (4.13) or (4.14) to modify the problem
formulation. Note‚ however‚ that depending on the refund‚ the ordering
of may be different from the ordering of For example‚ customers
in the high revenue class who receive a full refund if they no-show may
yield a lower net revenue than customers of a lower class who get
no refund if they no-show. Since the nested protection levels are now
based on the net revenue rather than the gross revenue the optimal
policy may reject the high gross-revenue customer in favor of the high
net-revenue one.

4.4.3 Exact Methods for Cancellations Under
Assumption 4.1

Cancellations complicate the dynamic program a little more than no-
shows‚ but they are still quite manageable under Assumption 4.1. Again‚
we look at the static and dynamic models in turn.

4.4.3.1 Static Model
Let denote the probability that a reservation in the system at the

start of stage survives to stage (recall that in the single-resource
static model of Section 2.2 stages go from N to 0). So is the
probability that a reservation cancels in stage By Assumption 4.1 (i)‚
(ii)‚ and (iii)‚ these probabilities are the same and independent for all
customers as well as the age of their reservations. Let denote the
number of reservations that survive stage given that there are reser-
vations on hand in stage are the number of cancellations
in stage

The Bellman equation (2.3) for the static model is then modified to
account for cancellations as follows

with boundary conditions (4.12)‚ where
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is the expected value function after cancellations in stage Again‚
stochastic convexity arguments show that if is concave in
then is concave in and hence a modification of the argument
in Proposition 2.1 shows that the value function defined by (4.16)
is concave in

Nested booking limits are optimal with the optimal booking limits
given by

where we accept class if and only if the number of reservations on hand
is strictly less than

4.4.3.2 Dynamic Model
Let denote the probability that a reservation in the system at the

start of period survives to period so by Assumption 4.1 (i)‚ (ii)‚
and (iii) the number of surviving reservations is again binomial.
The optimality equations for the dynamic model with cancellations be-
come

where

is the expected value function after cancellations in period The bound-
ary conditions are given by (4.15).

As a result‚ it is optimal to accept an arrival of class if and only if

4.4.4 Class-Dependent Cancellation Refunds
Again‚ relaxing the fact that cancellation rates or costs depend on

the class or the time of purchase (or both) requires expanding the state
space and is not practical if one has more than two classes. However‚
as with no-shows‚ a change of accounting can be used to allow for class-
dependent refunds. We illustrate the idea for the dynamic model only‚
but a similar idea applies for the static model.

Suppose a customer of class who cancels in period is given a refund
which is strictly less than the revenue we receive‚ All other

assumptions in Assumption 4.1 hold. As in the no-show case‚ one can
charge for the expected refund at the time the reservation is accepted
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rather than at the time of service‚ with no resulting difference in total
expected revenues and costs.

This is accomplished as follows. Let denote the expected refund
given to a class reservation from period through to the time of service.
We can solve for recursively using

with boundary condition

We then form the reduced revenue

and simply use in place of in (4.17) to modify the problem formu-
lation. Note‚ as in the case of no-show refunds‚ that the ordering of
may be different from the ordering of

Again‚ the key practical insight here is that the reduced-revenue
should be used in evaluating the economic benefit of accepting a class

customer—not the gross-revenue This is because even if a class
gives a higher current revenue‚ much of that revenue may be forfeited
on average‚ so the net benefit of accepting it can be quite different from
the gross revenue.

4.5 Substitutable Capacity
We next look at an overbooking problem with multiple classes and

multiple resources (types of capacity). Here‚ we assume classes corre-
spond to different products a customer can purchase‚ while resources
are physically different‚ albeit related‚ types of capacity. The multiple
capacity types may be used to satisfy the demand of a given class—or
multiple classes may use a single capacity type. A prominent example is
overbooking jointly in multiple cabins of an aircraft (coach and business
class)‚ where the first-class cabin serves as a substitute capacity if the
coach cabin is oversold. Another example is overbooking on back-to-
back scheduled flights between a pair of cities‚ where customers booked
on an early flight can be served (perhaps at a cost) on a later flight.
Hotels with multiple room types and car rental fleets with multiple car
types are further examples. The case of a single resource with multiple
classes can be applied to a traditional single-resource problem to control
overbooking when cancellation rates differ across classes (for example‚ to
determine separate overbooking limits for each class based on the joint
vector of reservations on hand for each class). All these problems share
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the feature that capacity of a different resource (such as a later flight‚
an alternative room type‚ or a vehicle type) can serve as a substitute in
the case of oversales.

In the presence of such substitution effects‚ the overbooking decisions
for the resources are related. For example‚ we might tolerate a higher
level of overbooking in the coach cabin of an aircraft if we know that
the number of bookings in the first-class cabin is low‚ and conversely we
would be more conservative about overbooking the coach cabin if the
first-class cabin was fully booked. Therefore‚ the key question in such
situations is how to jointly determine optimal overbooking levels.

4.5.1 Model and Formulation
One approach to joint overbooking across resources is to approximate

this problem as a two-period optimization problem. In the first pe-
riod (the reservation period)‚ we assume reservations are accepted given
only probabilistic knowledge of cancellations. In the second period (the
service period)‚ cancellations are realized‚ and surviving customers are
assigned to the various resources to maximize the net benefit of as-
signments (for example‚ minimize downgrading penalties). This gives
us essentially a multiclass version of the traditional static overbooking
model.

Let denoted the number of classes and denote the number of
resources. In the reservation period‚ assume that for each class we
currently have  reservations on hand. (This is the current “state.”) The
decision variables are the maximum number of reservations we are willing
to hold after the reservation period is over‚ denoted by
These decision variables have to satisfy for all since
the maximum number of reservations after the reservation period must
be at least as large as the number at the start of the reservation period.
(There are no cancellations during the reservation period.)

In the service period‚ cancellations and no-shows are realized‚ and
all remaining customers are either assigned to one of resources‚ in-
dexed by or they are denied service. This assignment of customers
to resources is modeled as a deterministic network-flow problem. The
following notation is used:

The net benefit of assigning a customer of class to resource
during service period (objective function coefficients).

The capacity of resource

The number of customers of class that show up at the service
period (number of survivals).
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The number of customers among the who showed up assigned
to resource during the service period (decision variables).

One can add a virtual resource, type to account for denied
service. This resource has finite but very high capacity, and assigning a
customer to it means that the customer is denied service. The assign-
ment variables corresponding to the virtual resource are and the
objective function coefficients take into account the loss-of-goodwill
cost incurred by denying service to customers of reservation class as
well as any other direct compensation costs.

Let z denote the of show demand and C denote the
of resource capacities (including the denied-service, virtual-

resource capacity, The maximum value obtained during the service
period is denoted by V(z, C). The allocation problem can be represented
as

(TP) is a transportation problem in which the supplies are customers
requesting service and demands are the available capacities. Let the
dual variables associated with constraints (4.18) and (4.19) in (TP) be

respectively.
To formulate the reservation-period problem‚ let be the show de-

mand for customers from class This show demand is‚ of course‚ a
function of the number of accepted reservations‚ so We
let denote the probability that a class reservation shows up in the
service period. Several models can be used for this show demand‚ most
naturally the binomial model discussed in Section 4.2.1. But it is use-
ful theoretically and computationally to approximate the binomial with
a Poisson distribution‚ in which case‚ booking limits can be treated as
continuous variables.

Let and
Let the price and refund (on cancellation) vectors for the classes be de-
noted by p and s‚ where we assume Finally‚ let G(x) be the
expected value of future revenues and costs (net revenue) as a function
of the final overbooking level‚ x.



164 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

The reservation period problem is‚ then‚

where

and the expectation above is with respect to the random vector of sur-
vivals Z(x).

4.5.2 Joint Optimal Overbooking Levels
The following proposition shows how the overbooking levels for the

classes are related if show demand is modeled as a Poisson random vari-
able:

PROPOSITION 4.4 If for each is a Poisson distrib-
uted random variable with mean then the function G(x) defined by
(4.21) is component-wise concave in each and submod-
ular in x. That is‚ letting denote the unit vector‚ for all the
first differences

are decreasing in

The component-wise concavity of the expected net revenue function
implies that there are critical booking levels for each class beyondwhich
the expected value does not increase‚ provided booking levels of other
classes are kept constant. The submodularity property implies that the
optimal booking limit for class is nonincreasing in the booking limit
for any other class These are natural and intuitive properties.
They simply reflect the fact that low reservation levels in one class mean
that capacity will be less constrained in the service period‚ and this in
turn reduces the potential costs of overbooking in other classes because
more (or at least less costly) substitution options will be available.

In Appendix 4.A we give a stochastic gradient method for computing
the optimal joint overbooking limits. It solves (4.20) in the case of the
Poisson cancellation model using a simulation-based‚ stochastic gradient
algorithm. The following example illustrates how this method compares
with the independent binomial model:

Example 4.5 There are four consecutive flights between the same city pair. For
simplicity‚ assume that all four flights serve one class each and each flight has the
same capacity of 100. Flights are ordered in time (the earliest flight is flight 1).
Overbooking leads to substitution forward in time‚ so customers denied boarding on
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an oversold flight can take later flights with some loss of goodwill. Denying service
completely to a customer results in a higher cost compared with the cost of goodwill
due to delays. Delaying a customer by one flight costs $300; delaying by two flights
costs $400; delaying by three flights is $500. The cost of denying service to a customer
on any flight is $1‚000. The unit revenue for reservations is $500‚ which is fully
refundable on cancellation. There are 10 reservation periods in the planning horizon‚
and the survival probabilities are 0.81‚ 0.82‚ . . . ‚ 0.90 from the first period to the last.
Flights 1 and 4 receive 30% of reservation demand‚ while flights 2 and 3 receive only
20% each.

Figure 4.3 shows the overbooking limits and final average show demand for the
multiclass‚ stochastic gradient method (SOPT) and binomial model (BIN) for this
example. Note that the SOPT procedure is much more aggressive in overbooking
flight 1 than flight 4 even though they have the same demand. This is natural‚ since
overselling flight 1 is less costly because passengers can be put onto later flights;
oversold passengers on flight 4 must be denied service. Indeed‚ SOPT in a sense
deliberately “plans” oversales on flight 1‚ since delayed customers on these flights
generate more revenue than penalties. This results in nearly 5% of passengers being
delayed for one or more flights‚ while with the BIN procedure only 0.5% of passengers
are delayed. Nevertheless‚ the multiclass model produces a 1.4% increase in revenues
(net of penalty costs) over the independent binomial model‚ as the increased revenues
more than compensate for the increase in delay penalties.

While the parameters of this example are not the most realistic‚ the
example illustrates how coordinated overbooking policies for related re-
sources may differ from those computed using independent models.
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4.6 Network Overbooking
We next consider how to set overbooking levels on a network. The

capacities of network resources are key inputs to capacity-control prob-
lems. Using overbooking‚ these capacities may be inflated—defining
virtual capacities for each resource that exceed the physical capacity.
This increase in capacity‚ in turn‚ affects the accept or reject decisions
of the capacity-control method. On the other hand‚ capacity-control
decisions clearly influence the opportunity cost of capacity‚ which is a
key input to economic overbooking models. Hence‚ the total revenue for
a network (net of penalties) is affected both by overbooking and seat
inventory-control practices. Despite the strong interdependence of these
decisions‚ the two problems are typically separated in practice.

In this section‚ we look at one model for coordinating network-capacity
controls and overbooking decisions. The method combines the deter-
ministic linear programming model of Section 3.3.1 with a single-period
overbooking model‚ though it can be adapted to other network approx-
imations as well (such as PNLP and RLP).

As in Chapter 3‚ consider a network with products and resources.
We divide the time horizon into two periods: a reservation period‚ and
a service period. The reservation period spans (0‚ T] and is the period
the reservations can be made for any of the products. The reservation
period is followed by the service period‚ during which the customers with
reservations show up or become no-shows. During the service period‚ the
firm may deny service to customers who show up in case of insufficient
capacity‚ in which case it pays a penalty.

The demand or reservation requests arrive according to a stochas-
tic process during (0‚T] . As before‚ let denote the
vector of prices and the vector of resource capaci-
ties. There is a denied-service cost on each resource given by the vector

The denied-service cost may differ from one resource
to another‚ but it does not vary with time or product type. The matrix

is the usual network incidence matrix with if resource
is used by product and otherwise. Recall denotes the

row and the column of matrix A. For simplicity‚ we ignore
refund for cancellations or no-shows‚ but this can be included easily in
this model.

One way to formulate this overbooking problem is as a two-stage‚ sta-
tic model that combines the DLP model and the cost-based overbooking
models. The same formulation applies to a variety of network bid-price
methods‚ though we focus on the DLP method for simplicity.
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The decision variables are x‚ the vector of overbooking levels (virtual
capacities)‚ and y‚ the vector of primal allocations. (Note here we are
changing our running definition of y to conform with Chapter 3; that is‚
y is now a vector of capacity allocations not a vector of reservations on
hand.) The formulation is as follows:

The problem parameters are E[D], the vector of expected demand to
come for the classes. The objective function is the total revenue-to-
come, net of denied-service costs.

Note that the show demand for resource  in this formulation is ap-
proximated by the random variable The actual show demand,
however, will be less, since the show demand for is only if
the overbooking limit is reached. (Recall the discussion after Sec-
tion 4.2.1.1.) Otherwise, the number of reservation on resource will be
less than and so the show demand will be less than However,
this approximation greatly simplifies the model and is a good approxi-
mation in the important case where demand is high.

We let denote the overbooking-cost func-
tion and denote the revenue function in (4.22). The
overbooking-cost function H is a nondecreasing and convex function
of the overbooking limit x if the random variable associated with the
number of survivors for leg is assumed to follow the binomial or
Poisson model with survival probability Thus, the objective function
of problem (4.22) is jointly concave in y and x under these two models
of cancellation. One can use a general-purpose nonlinear programming
method to solve (4.22), but Appendix 4.B provides an algorithm spe-
cialized to this problem’s structure. The following numerical example
from [292] shows the performance of this method:

Example 4.6 The example here is based on the same network of Williamson [566]
as shown in Figure 3.3 of Chapter 3. The itinerary revenue values and base-case mean
demand values are show in Table 3.5 of Chapter 3 as well. The cancellation rate is
assumed to be 15%‚ and the denied service penalty is assumed to be $1‚000 on all legs.
Different load factors‚ proportions of local versus through traffic‚ and arrival order
were simulated to create 4 variations of the problem from the base case. A version
of the network overbooking model using binomial‚ rather than Poisson‚ assumptions
of cancellations (denoted BIN) was computed to find joint overbooking levels and
corresponding DLP solutions. The resulting overbooking limits and dual prices were
then tested by simulation.
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This BIN policy is compared with several versions of ad-hoc overbooking rules.
Four of these are cost-based overbooking models‚ denoted OBC-1 to OBC-4. They
differ only in terms of the revenue values used to compute the overbooking limits. Fi-
nally‚ a deterministic overbooking limit (DET) based on the approximation described
in Section 4.2.2.1 was also tested. Thus overall five methods are compared with BIN.
Once overbooking levels were determined‚ a DLP model was solved‚ and the resulting
bid prices were used to allocate capacity.

Since no exact methods are known for this problem‚ the deviation from the best of
the six methods was used as the performance metric. That is‚ the maximum expected
revenue (net of penalties) from all the policies is computed and for each individual
policy‚ and the percentage deviation from this maximum is recorded.

Figure 4.4 from [292] shows the average percentage deviation of the six methods.
Note that BIN is not always the best method (its average percentage deviation is
slightly positive)‚ but it is better than all the other methods.

Similar behavior is observed in other examples in [292]‚ where BIN
is not uniformly better than the ad-hoc overbooking mechanisms but is
never very far from the best policy and moreover is significantly more
robust than any of the ad-hoc methods. These and other tests of the
method show the importance of network overbooking; the deviations
between the best and worst policy can be quite large—several percentage
points of difference in net revenues.

4.7 Notes and Sources
Much of the material in Section 4.1.1 comes from the carefully docu-

mented work of Rothstein [447–449] on the development of overbooking
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in the airline industry. For papers on overbooking from a policy per-
spective‚ see Falkson [180] and Ruppenthal [450]. Overview articles on
overbooking include Bodily and Pfeifer [80]‚ Dunleavy [165] and Roth-
stein [447‚ 449].

There was also much lively debate surrounding the oversale-auction
idea‚ captured in a series of articles by Simon [472–475]. Vickery [534]
proposed using his second-price auction mechanism for the problem as
well.

The static overbooking problem of Section 4.2 first appeared in
a pair of papers by Beckmann [31‚ 32]. Other early treatments of
the static problem are Taylor [504]‚ Thompson [508]‚ and Rothstein
and Stone [446]. See also Bierman and Thomas [66] and Shlifer and
Vardi [465]. Martinez and Sanchez [362] test the memoryless property
of the binomial model empirically.

The Gram-Charlier approximation in Section 4.2.2.3 is due to Tay-
lor [504] as is the moment-generating-function method presented in Sec-
tion 4.2.4.

The material in Section 4.3 on dynamic overbooking is from Chatwin’s
thesis ([107]) and subsequent published articles [108‚ 109].

The material on combined allocation and overbooking problem of Sec-
tion 4.4 is from Subramanian et al. [494]‚ who also developed the cost
transformation technique of Sections 4.4.2 and 4.4.4.

The multiclass overbooking model with substitution (and associated
optimization algorithm) in Section 4.5 are from Karaesmen and van
Ryzin [290]. The network overbooking model and algorithm presented in
Section 4.6 is from Karaesmen and van Ryzin [291]; see also Karaesmen’s
thesis [292]. Ladany [320] analyzes a two-class version of this problem
for hotels using dynamic programming.

Some papers on practical considerations in hotel overbooking include
Lambert et al. [326] and Lefever [337]. The latter discusses handling
oversales situations in hotels. For models of hotel overbooking‚ see
Ladany [320‚ 321] and Liberman and Yechiali [343‚ 344]. Bitran and
Gilbert [71] analyze the problem of sequentially determining when to
deny service to arriving customers based on the relative costs of denying
service early and late in the evening.

APPENDIX 4.A: Computations for the Substitutable
Capacity Model

The optimization problem (4.20) with Poisson cancellations and continuous book-
ing limits can be solved numerically using a simulation-based optimization (stochastic
gradient) method. To do so we need an estimator of the gradient of the objective func-
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tion G(x). Let the vector denote a gradient estimator at the iteration of the
algorithm. (How this estimator is constructed is discussed below.) The algorithm re-
quires a sequence of step sizes‚ satisfying and
for example Then‚ the algorithm proceeds as follows:

STEP 0: Initialize: and

STEP 1: Get the next stochastic gradient:

 Randomly generate a new vector

 Compute the gradient estimate (discussed below).

STEP 2: Compute

where  projects onto

STEP 3: Set and GOTO STEP 1.

An estimator for can be constructed using the random function

Letting

one can show that

so is an unbiased estimator of the gradient of E[V(Z(x))]. The estimator
can be obtained easily by simulating Z(x) and solving a network-flow

problem to obtain V(Z(x)). Then each estimate  can be
determined by perturbing Z(x) and re-solving the network problem.

Let be a realization of show demand when the number of reservations on hand
is at the iteration of the stochastic gradient algorithm. Then the gradient
of the objective function at that time is given by the vector
where

for

APPENDIX 4.B: Alternating-Direction Method for
Network Overbooking

To determine the optimal solution (y* ,x* ) for the model (4.22), one can use an
alternating-direction method for the function. This method efficiently exploits the
structure of the problem.
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Define the set and The augmented
Lagrangian function is

where is a positive (scalar) parameter. An alternating-direction method can be
used to find the maximizers of the augmented Lagrangian. The method proceeds at
iteration as follows:

The parameter initial vectors and are arbitrary. Let
One can show that a sequence generated by the algorithm (4.B.1)‚
(4.B.2)‚ and (4.B.3) is bounded and every limit point of is an optimal
solution to the original problem (4.22). Furthermore‚ converges to the optimal
dual variable associated with the virtual capacity constraints. A proof of this fact
and more details on the method are provided in Bertsekas and Tsitsiklis [56].

To apply this algorithm‚ we have to solve two different nonlinear programming
problems.

Finding requires solving the following problem:

for For the DLP model‚ this is equivalent to the following quadratic program:

Problem (QP) can be solved by any standard nonlinear programming method spe-
cialized to quadratic programming.

Finding requires solving

The function in (4.B.7) is separable‚ convex‚ and differentiable under the Poisson
model of cancellation‚ and can therefore be solved with a simple line-search method.

We summarize the steps of the algorithm:

171
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STEP 0: Initialize:

STEP 1: Solve problem (QP) and get

STEP 2: Solve problem (SP) and get

STEP 3: Compute using (4.B.3).

STEP 4: Set and GOTO STEP 1 if do not meet a stopping
criterion.

There are several options for the stopping criteria: (1) check that
satisfy the KKT conditions‚ (2) check that are not significantly different
from the values of or (3) reach a preset number of iterations;
this can be done if one has prior experience with the algorithm and the problems.
Karaesmen and van Ryzin [291] show that the algorithm is quite fast and stable on
many examples.


