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CHAPTER 10

IPsec

Chapter 9 deals with the netfilter subsystem and with its kernel implementation. This chapter discusses the 
Internet Protocol Security (IPsec) subsystem. IPsec is a group of protocols for securing IP traffic by authenticating 
and encrypting each IP packet in a communication session. Most security services are provided by two major 
IPsec protocols: the Authentication Header (AH) protocol and the Encapsulating Security Payload (ESP) protocol. 
Moreover, IPsec provides protection against trying to eavesdrop and send again packets (replay attacks). IPsec is 
mandatory according to IPv6 specification and optional in IPv4. Nevertheless, most modern operating systems, 
including Linux, have support for IPsec both in IPv4 and in IPv6. The first IPsec protocols were defined in 1995 (RFCs 
1825–1829). In 1998, these RFCs were deprecated by RFCs 2401–2412. Then again in 2005, these RFCs were updated 
by RFCs 4301–4309.

The IPsec subsystem is very complex—perhaps the most complex part of the Linux kernel network stack. Its 
importance is paramount when considering the growing security requirements of organizations and of private 
citizens. This chapter gives you a basis for delving into this complex subsystem.

General
IPsec has become a standard for most of the IP Virtual Private Network (VPN) technology in the world. That said, 
there are also VPNs based on different technologies, such as Secure Sockets Layer (SSL) and pptp (tunneling a PPP 
connection over the GRE protocol). Among IPsec’s several modes of operation, the most important are transport 
mode and tunnel mode. In transport mode, only the payload of the IP packet is encrypted, whereas in tunnel mode, 
the entire IP packet is encrypted and inserted into a new IP packet with a new IP header. When using a VPN with 
IPsec, you usually work in tunnel mode, although there are cases in which you work in transport mode (L2TP/IPsec, 
for example).

I start with a short discussion about the Internet Key Exchange (IKE) userspace daemon and cryptography in 
IPsec. These are topics that are mostly not a part of the kernel networking stack but that are related to IPsec operation 
and are needed to get a better understanding of the kernel IPsec subsystem. I follow that with a discussion of the 
XFRM framework, which is the configuration and monitoring interface between the IPsec userspace part and IPsec 
kernel components, and explain the traversal of IPsec packets in the Tx and Rx paths. I conclude the chapter with a 
short section about NAT traversal in IPsec, which is an important and interesting feature, and a “Quick Reference” 
section. The next section begins the discussion with the IKE protocol.

IKE (Internet Key Exchange)
The most popular open source userspace Linux IPsec solutions are Openswan (and libreswan, which forked from 
Openswan), strongSwan, and racoon (of ipsec-tools). Racoon is part of the Kame project, which aimed to provide a 
free IPv6 and IPsec protocol stack implementation for variants of BSD.
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To establish an IPsec connection, you need to set up a Security Association (SA). You do that with the help 
of the already mentioned userspace projects. An SA is defined by two parameters: a source address and a 32-bit 
Security Parameter Index (SPI). Both sides (called initiator and responder in IPsec terminology) should agree on 
parameters such as a key (or more than one key), authentication, encryption, data integrity and key exchange 
algorithms, and other parameters such as key lifetime (IKEv1 only). This can be done in two different ways of key 
distribution: by manual key exchange, which is rarely used since it is less secure, or by the IKE protocol. Openswan 
and strongSwan implementations provide an IKE daemon (pluto in Openswan and charon in strongSwan) that uses 
UDP port 500 (both source and destination) to send and receive IKE messages. Both use the XFRM Netlink interface 
to communicate with the native IPsec stack of the Linux kernel. The strongSwan project is the only complete open 
source implementation of RFC 5996, “Internet Key Exchange Protocol Version 2 (IKEv2),” whereas the Openswan 
project only implements a small mandatory subset. 

You can use IKEv1 Aggressive Mode in Openswan and in strongSwan 5.x (for strongSwan, it should be explicitly 
configured, and the name of the charon daemon changes to be weakSwan in this case); but this option is regarded 
unsafe. IKEv1 is still used by Apple operating systems (iOS and Mac OS X) because of the built-in racoon legacy client. 
Though many implementations use IKEv1, there are many improvements and advantages when using IKEv2. I’ll 
mention some of them very briefly: in IKEv1, more messages are needed to establish an SA than in IKEv2. IKEv1 is 
very complex, whereas IKEv2 is considerably simpler and more robust, mainly because each IKEv2 request message 
must be acknowledged by an IKEv2 response message. In IKEv1, there are no acknowledgements, but there is a 
backoff algorithm which, in case of packet loss, keeps trying forever. However, in IKEv1 there can be a race when the 
two sides perform retransmission, whereas in IKEv2 that can’t happen because the responsibility for retransmission 
is on the initiator only. Among the other important IKEv2 features are that IKEv2 has integrated NAT traversal 
support,  automatic narrowing of Traffic Selectors (left|rightsubnet on both sides don’t have to match exactly, 
but one proposal can be a subset of the other proposal), an IKEv2 configuration payload allowing to assign virtual 
IPv4/IPv6 addresses and internal DNS information (replacement for IKEv1 Mode Config), and finally IKEv2 EAP 
authentication (replacement for the dangerous IKEv1 XAUTH protocol), which solves the problem of potentially weak 
PSKs by requesting a VPN server certificate and digital signature first, before the client uses a potentially weak EAP 
authentication algorithm (for example, EAP-MSCHAPv2).

There are two phases in IKE: the first is called Main Mode. In this stage, each side verifies the identity of the 
other side, and a common session key is established using the Diffie-Hellman key exchange algorithm. This mutual 
authentication is based on RSA or ECDSA certificates or pre-shared secrets (pre-shared key, PSKs), which are 
password based and assumed to be weaker. Other parameters like the Encryption algorithm and the Authentication 
method to be used are also negotiated. If this phase completes successfully, the two peers are said to establish an 
ISAKMP SA (Internet Security Association Key Management Protocol Security Association). The second phase 
is called Quick Mode. In this phase, both sides agree on the cryptographic algorithms to use. The IKEv2 protocol 
does not differentiate between phase 1 and 2 but establishes the first CHILD_SA as part of the IKE_AUTH message 
exchange. THE CHILD_SA_CREATE message exchange is used only to establish additional CHILD_SAs or for the 
periodic rekeying of the IKE and IPsec SAs. This is why IKEv1 needs nine messages to establish a single IPsec SA, 
whereas IKEv2 does the same in just four messages.

The next section briefly discusses cryptography in the context of IPsec (a fuller treatment of the subject would be 
beyond the scope of this book).

IPsec and Cryptography
There are two widely used IPsec stacks for Linux: the native Netkey stack (developed by Alexey Kuznetsov and David 
S. Miller) introduced with the 2.6 kernel, and the KLIPS stack, originally written for 2.0 kernel (it predates netfilter!). 
Netkey uses the Linux kernel Crypto API, whereas KLIPS might support more crypto hardware through Open 
Cryptography Framework (OCF). OCF’s advantage is that it enables using asynchronous calls to encrypt/decrypt data. 
In the Linux kernel, most of the Crypto API performs synchronous calls. I should mention the acrypto kernel code, 
which is the asynchronous crypto layer of the Linux kernel. There are asynchronous implementations for all algorithm 
types. A lot of hardware crypto accelerators use the asynchronous crypto interface for crypto request offloading. That 
is simply because they can’t block until the crypto job is done. They have to use the asynchronous API.
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It is also possible to use software-implemented algorithms with the asynchronous API. For example, the cryptd 
crypto template can run arbitrary algorithms in asynchronous mode. And you can use the pcrypt crypto template 
when working in multicore environment. This template parallelizes the crypto layer by sending incoming crypto 
requests to a configurable set of CPUs. It also takes care of the order of the crypto requests, so it does not introduce 
packet reorder when used with IPsec. The use of pcrypt can speed up IPsec by magnitudes in some situations. The 
crypto layer has a user management API which is used by the crconf (http://sourceforge.net/projects/crconf/) 
tool to configure the crypto layer, so asynchronous crypto algorithms can be configured whenever needed. With 
the Linux  2.6.25 kernel, released in 2008, the XFRM framework started to offer support for the very efficient AEAD 
(Authenticated Encryption with Associated Data) algorithms (for example, AES-GCM), especially when the Intel  
AES-NI instruction set is available and data integrity comes nearly for free. Delving deeply into the details of 
cryptography in IPsec is beyond the scope of this book. For further information, I suggest reading the relevant chapters  
in Network Security Essentials, Fifth Edition by William Stallings (Prentice Hall, 2013).

The next section discusses the XFRM framework, which is the infrastructure of IPsec.

The XFRM Framework
IPsec is implemented by the XFRM (pronounced “transform”) framework, originated in the USAGI  project, which 
aimed at providing a production quality IPv6 and IPsec protocol stack. The term transform refers to an incoming 
packet or an outgoing packet being transformed in the kernel stack according to some IPsec rule. The XFRM 
framework was introduced in kernel 2.5. The XFRM infrastructure is protocol-family independent, which means that 
there is a generic part common to both IPv4 and IPv6, located under net/xfrm. Both IPv4 and IPv6 have their own 
implementation of ESP, AH, and IPCOMP. For example, the IPv4 ESP module is net/ipv4/esp4.c, and the IPv6 ESP 
module is net/ipv6/esp6.c. Apart from it, IPv4 and IPv6 implement some protocol-specific modules for supporting 
the XFRM infrastructure, such as net/ipv4/xfrm4_policy.c or net/ipv6/xfrm6_policy.c.

The XFRM framework supports network namespaces, which is a form of lightweight process virtualization that 
enables a single process or a group of processes to have their own network stack (I discuss network namespaces in 
Chapter 14).  Each network namespace (instance of struct net) includes a member called xfrm, which is an instance 
of the netns_xfrm structure. This object includes many data structures and variables that you will encounter in this 
chapter, such as the hash tables of XFRM policies and the hash tables of XFRM states, sysctl parameters, XFRM state 
garbage collector, counters, and more:
 
struct netns_xfrm {
        struct hlist_head       *state_bydst;
        struct hlist_head       *state_bysrc;
        struct hlist_head       *state_byspi;
        . . .
        unsigned int            state_num;
        . . .
 
        struct work_struct      state_gc_work;
 
     . . .
 
        u32                     sysctl_aevent_etime;
        u32                     sysctl_aevent_rseqth;
        int                     sysctl_larval_drop;
        u32                     sysctl_acq_expires;
};
 
(include/net/netns/xfrm.h)

http://sourceforge.net/projects/crconf/
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XFRM Initialization
In IPv4, XFRM initialization is done by calling the xfrm_init() method and the xfrm4_init() method from the  
ip_rt_init() method in net/ipv4/route.c. In IPv6, the xfrm6_init() method is invoked from the ip6_route_init()  
method for performing XFRM initialization. Communication between the userspace and the kernel is done by 
creating a NETLINK_XFRM netlink socket and sending and receiving netlink messages. The netlink NETLINK_XFRM 
kernel socket is created in the following method:
 
static int __net_init xfrm_user_net_init(struct net *net)
{
        struct sock *nlsk;
        struct netlink_kernel_cfg cfg = {
                .groups = XFRMNLGRP_MAX,
                .input  = xfrm_netlink_rcv,
        };
 
        nlsk = netlink_kernel_create(net, NETLINK_XFRM, &cfg);
        . . .
        return 0;
}
 

Messages sent from userspace (like XFRM_MSG_NEWPOLICY for creating a new Security Policy or  
XFRM_MSG_NEWSA for creating a new Security Association) are handled by the xfrm_netlink_rcv() method  
(net/xfrm/xfrm_user.c), which in turn calls the xfrm_user_rcv_msg() method (I discuss netlink sockets in Chapter 2).

The XFRM policy and the XFRM state are the fundamental data structures of the XFRM framework. I start by 
describing what XFRM policy is, and subsequently I describe what XFRM state is.

XFRM  Policies
A Security Policy is a rule that tells IPsec whether a certain flow should be processed or whether it can bypass IPsec 
processing. The xfrm_policy structure represents an IPsec policy. A policy includes a selector (an xfrm_selector 
object). A policy is applied when its selector matches a flow. The XFRM selector consists of fields like source and 
destination addresses, source and destination ports, protocol, and more, which can identify a flow:
 
struct xfrm_selector {
        xfrm_address_t  daddr;
        xfrm_address_t  saddr;
        __be16  dport;
        __be16  dport_mask;
        __be16  sport;
        __be16  sport_mask;
        __u16   family;
        __u8    prefixlen_d;
        __u8    prefixlen_s;
        __u8    proto;
        int     ifindex;
        __kernel_uid32_t        user;
};
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(include/uapi/linux/xfrm.h)
The xfrm_selector_match() method, which gets an XFRM selector, a flow, and a family (AF_INET for IPv4 or 

AF_INET6 for IPv6) as parameters, returns true when the specified flow matches the specified XFRM selector. Note 
that the xfrm_selector structure is also used in XFRM states, as you will see hereafter in this section. A Security Policy 
is represented by the xfrm_policy structure:
 
struct xfrm_policy {
        . . .
        struct hlist_node             bydst;
        struct hlist_node             byidx;
 
        /* This lock only affects elements except for entry. */
        rwlock_t                      lock;
        atomic_t                      refcnt;
        struct timer_list             timer;
 
        struct flow_cache_object      flo;
        atomic_t                      genid;
        u32                           priority;
        u32                           index;
        struct xfrm_mark              mark;
        struct xfrm_selector          selector;
        struct xfrm_lifetime_cfg      lft;
        struct xfrm_lifetime_cur      curlft;
        struct xfrm_policy_walk_entry walk;
        struct xfrm_policy_queue      polq;
        u8                            type;
        u8                            action;
        u8                            flags;
        u8                            xfrm_nr;
        u16                           family;
        struct xfrm_sec_ctx           *security;
        struct xfrm_tmpl              xfrm_vec[XFRM_MAX_DEPTH];
};
 
(include/net/xfrm.h)

The following description covers the important members of the xfrm_policy structure:

•฀ refcnt: The XFRM policy reference counter; initialized to 1 in the xfrm_policy_alloc( ) 
method, incremented by the xfrm_pol_hold() method, and decremented by the  
xfrm_pol_put() method.

•฀ timer: Per-policy timer; the timer callback is set to be xfrm_policy_timer()  in the  
xfrm_policy_alloc() method. The xfrm_policy_timer() method handles policy expiration: 
it is responsible for deleting a policy when it is expired by calling the  
xfrm_policy_delete() method, and sending an event (XFRM_MSG_POLEXPIRE) to all 
registered Key Managers by calling the km_policy_expired() method.

•฀ lft: The XFRM policy lifetime (xfrm_lifetime_cfg object). Every XFRM policy has a lifetime, 
which is a time interval (expressed as a time or byte count).
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You can set XFRM policy lifetime values with the ip command and the limit parameter—for example:
 
ip xfrm policy add src 172.16.2.0/24 dst 172.16.1.0/24 limit byte-soft 6000 ...
 

sets the •฀ soft_byte_limit of the XFRM policy lifetime (lft) to be 6000; see man 8 ip xfrm.

You can display the lifetime (lft) of an XFRM policy by inspecting the lifetime configuration entry when running 
ip -stat xfrm policy show.

•฀ curlft: The XFRM policy current lifetime, which reflects the current status of the policy in 
context of lifetime. The curlft is an xfrm_lifetime_cur object. It consists of four members 
(all of them are fields of 64 bits, unsigned):

•฀ bytes: The number of bytes which were processed by the IPsec subsystem, incremented 
in the Tx path by the xfrm_output_one() method and in the Rx path by the xfrm_input() 
method.

•฀ packets: The number of packets that were processed by the IPsec subsystem, incremented 
in the Tx path by the xfrm_output_one() method, and in the Rx path by the xfrm_input() 
method.

•฀ add_time: The timestamp of adding the policy, initialized when adding a policy, in the 
xfrm_policy_insert() method and in the xfrm_sk_policy_insert() method.

•฀ use_time: The timestamp of last access to the policy. The use_time timestamp is 
updated, for example, in the xfrm_lookup() method or in the __xfrm_policy_check() 
method. Initialized to 0 when adding the XFRM policy, in the xfrm_policy_insert() 
method and in the xfrm_sk_policy_insert() method.

Note ■  You can display the current lifetime (curlft) object of an XFRM policy by inspecting the lifetime current entry 

when running ip -stat xfrm policy show.

•฀ polq: A queue to hold packets that are sent while there are still no XFRM states associated 
with the policy. As a default, such packets are discarded by calling the make_blackhole() 
method. When setting the xfrm_larval_drop sysctl entry to 0 (/proc/sys/net/core/xfrm_
larval_drop), these packets are kept in a queue (polq.hold_queue) of SKBs; up to 100 packets 
(XFRM_MAX_QUEUE_LEN) can be kept in this queue. This is done by creating a dummy 
XFRM bundle, by the xfrm_create_dummy_bundle() method (see more in the “XFRM lookup” 
section later in this chapter). By default, the xfrm_larval_drop sysctl entry is set to 1 (see 
the __xfrm_sysctl_init() method in net/xfrm/xfrm_sysctl.c).

•฀ type: Usually the type is XFRM_POLICY_TYPE_MAIN (0). When the kernel has support for 
subpolicy (CONFIG_XFRM_SUB_POLICY is set), two policies can be applied to the same 
packet, and you can use the XFRM_POLICY_TYPE_SUB (1) type. Policy that lives a shorter 
time in kernel should be a subpolicy. This feature is usually needed only for developers/
debugging and for mobile IPv6, because you might apply one policy for IPsec and one for 
mobile IPv6. The IPsec policy is usually the main policy with a longer lifetime than the mobile 
IPv6 (sub) policy.

•฀ action: Can have one of these two values:

XFRM_POLICY_ALLOW (0): Permit the traffic.•฀

XFRM_POLICY_BLOCK(1): Disallow the traffic (for example, when using •฀ type=reject or 
type=drop in /etc/ipsec.conf).
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•฀ xfrm_nr: Number of templates associated with the policy—can be up to six templates  
(XFRM_MAX_DEPTH). The xfrm_tmpl structure is an intermediate structure between the 
XFRM state and the XFRM policy. It is initialized in the copy_templates() method,  
net/xfrm/xfrm_user.c.

•฀ family: IPv4 or IPv6.

•฀ security: A security context (xfrm_sec_ctx object) that allows the XFRM subsystem to 
restrict the sockets that can send or receive packets via Security Associations (XFRM states). 
For more details, see http://lwn.net/Articles/156604/.

•฀ xfrm_vec: An array of XFRM templates (xfrm_tmpl objects).

The kernel stores the IPsec Security Policies in the Security Policy Database (SPD). Management of the SPD is 
done by sending messages from a userspace socket. For example:

Adding an XFRM policy (XFRM_MSG_NEWPOLICY) is handled by the •฀ xfrm_add_policy() 
method.

Deleting an XFRM policy (XFRM_MSG_DELPOLICY) is handled by the •฀ xfrm_get_policy() 
method.

Displaying the SPD (XFRM_MSG_GETPOLICY) is handled by the •฀ xfrm_dump_policy() 
method.

Flushing the SPD (XFRM_MSG_FLUSHPOLICY) is handled by the •฀ xfrm_flush_policy() 
method.

The next section describes what XFRM state is.

XFRM States (Security Associations)
The xfrm_state structure represents an IPsec Security Association (SA) (include/net/xfrm.h). It represents 
unidirectional traffic and includes information such as cryptographic keys, flags, request id, statistics, replay 
parameters, and more. You add XFRM states by sending a request (XFRM_MSG_NEWSA) from a userspace socket;  
it is handled in the kernel by the xfrm_state_add() method (net/xfrm/xfrm_user.c). Likewise, you delete a state  
by sending an XFRM_MSG_DELSA message, and it is handled in the kernel by the xfrm_del_sa() method:
 
struct xfrm_state {
        . . .
        union {
                struct hlist_node       gclist;
                struct hlist_node       bydst;
        };
        struct hlist_node       bysrc;
        struct hlist_node       byspi;
 
        atomic_t                refcnt;
        spinlock_t              lock;
 
        struct xfrm_id          id;
        struct xfrm_selector    sel;
        struct xfrm_mark        mark;
        u32                     tfcpad;
 

http://lwn.net/Articles/156604/
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        u32                     genid;
 
        /* Key manager bits */
        struct xfrm_state_walk  km;
 
        /* Parameters of this state. */
        struct {
                u32             reqid;
                u8              mode;
                u8              replay_window;
                u8              aalgo, ealgo, calgo;
                u8              flags;
                u16             family;
                xfrm_address_t  saddr;
                int             header_len;
                int             trailer_len;
        } props;
 
        struct xfrm_lifetime_cfg lft;
 
        /* Data for transformer */
        struct xfrm_algo_auth   *aalg;
        struct xfrm_algo        *ealg;
        struct xfrm_algo        *calg;
        struct xfrm_algo_aead   *aead;
 
        /* Data for encapsulator */
        struct xfrm_encap_tmpl  *encap;
 
        /* Data for care-of address */
        xfrm_address_t  *coaddr;
 
        /* IPComp needs an IPIP tunnel for handling uncompressed packets */
        struct xfrm_state       *tunnel;
 
        /* If a tunnel, number of users + 1 */
        atomic_t                tunnel_users;
 
        /* State for replay detection */
        struct xfrm_replay_state replay;
        struct xfrm_replay_state_esn *replay_esn;
 
        /* Replay detection state at the time we sent the last notification */
        struct xfrm_replay_state preplay;
        struct xfrm_replay_state_esn *preplay_esn;
 
        /* The functions for replay detection. */
        struct xfrm_replay      *reply;
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        /* internal flag that only holds state for delayed aevent at the
         * moment
        */
        u32                     xflags;
 
        /* Replay detection notification settings */
        u32                     replay_maxage;
        u32                     replay_maxdiff;
 
        /* Replay detection notification timer */
        struct timer_list       rtimer;
 
        /* Statistics */
        struct xfrm_stats       stats;
 
        struct xfrm_lifetime_cur curlft;
        struct tasklet_hrtimer  mtimer;
 
        /* used to fix curlft->add_time when changing date */
        long            saved_tmo;
 
        /* Last used time */
        unsigned long           lastused;
 
        /* Reference to data common to all the instances of this
         * transformer. */
        const struct xfrm_type  *type;
        struct xfrm_mode        *inner_mode;
        struct xfrm_mode        *inner_mode_iaf;
        struct xfrm_mode        *outer_mode;
 
        /* Security context */
        struct xfrm_sec_ctx     *security;
 
        /* Private data of this transformer, format is opaque,
         * interpreted by xfrm_type methods. */
        void                    *data;
};
 
(include/net/xfrm.h)

The following description details some of the important members of the xfrm_state structure:

•฀ refcnt: A reference counter, incremented by the xfrm_state_hold() method and 
decremented by the __xfrm_state_put() method or by the xfrm_state_put() method  
(the latter also releases the XFRM state by calling the __xfrm_state_destroy() method when 
the reference counter reaches 0).

•฀ id: The id (xfrm_id object) consists of three fields, which uniquely define it: destination 
address, spi, and security protocol (AH, ESP, or IPCOMP).
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•฀ props: The properties of the XFRM state. For example:

•฀ mode: Can be one of five modes (for example, XFRM_MODE_TRANSPORT for transport 
mode or XFRM_MODE_TUNNEL for tunnel mode; see include/uapi/linux/xfrm.h).

•฀ flag: For example, XFRM_STATE_ICMP. These flags are available in include/uapi/
linux/xfrm.h. These flags can be set from userspace, for example, with the ip command 
and the flag option: ip xfrm add state flag icmp ...

•฀ family: IPv4 of IPv6.

•฀ saddr: The source address of the XFRM state.

•฀ lft: The XFRM state lifetime (xfrm_lifetime_cfg object).

•฀ stats: An xfrm_stats object, representing XFRM state statistics. You can display the 
XFRM state statistics by ip –stat xfrm show.

The kernel stores the IPsec Security Associations in the Security Associations Database (SAD). The xfrm_state 
objects are stored in three hash tables in netns_xfrm (the XFRM namespace, discussed earlier): state_bydst, 
state_bysrc, state_byspi. The keys to these tables are computed by the xfrm_dst_hash(),  xfrm_src_hash(), and 
xfrm_spi_hash() methods, respectively. When an xfrm_state object is added, it is inserted into these three hash  
tables. If the value of the spi is 0 (the value 0 is not normally to be used for spi—I will shortly mention when it is 0),  
the xfrm_state object is not added to the state_byspi hash table (see the __xfrm_state_insert() method in  
net/xfrm/xfrm_state.c).

Note ■  An spi with value of 0 is only used for acquire states. The kernel sends an acquire message to the key  

manager and adds a temporary acquire state with spi 0 if traffic matches a policy, but the state is not yet resolved.  

The kernel does not bother to send a further acquire as long as the acquire state exists; the lifetime can be configured  

at net->xfrm.sysctl_acq_expires. If the state gets resolved, this acquire state is replaced by the actual state.

Lookup in the SAD can be done by the following:

•฀ xfrm_state_lookup() method: In the state_byspi hash table.

•฀ xfrm_state_lookup_byaddr() method: In the state_bysrc hash table.

•฀ xfrm_state_find()  method: In the state_bydst hash table.

The ESP protocol is the most commonly used IPsec protocol; it supports both encryption and authentication. 
The next section discusses the IPv4 ESP implementation.

ESP Implementation (IPv4)
The ESP protocol is specified in RFC 4303; it supports both encryption and authentication. Though it also supports 
encryption-only and authentication-only modes, it is usually used with both encryption and authentication because 
it is safer. I should also mention here the new Authenticated Encryption (AEAD) methods like AES-GCM, which can 
do the encryption and data integrity computations in a single pass and can be highly parallelized on multiple cores, 
so that with the Intel AES-NI instruction set, an IPsec throughput of several Gbit/s can be achieved. The ESP protocol 
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supports both tunnel mode and transport mode; the protocol identifier is 50 (IPPROTO_ESP). The ESP adds  
a new header and a trailer to each packet. According to the ESP format, illustrated in Figure 10-1, there are the 
following fields:

•฀ SPI: A 32-bit Security Parameter Index. Together with the source address, it identities an SA.

•฀ Sequence Number: 32 bits, incremented by 1 for each transmitted packet in order to protect 
against replay attacks.

•฀ Payload Data: A variable size encrypted data block.

•฀ Padding:  Padding for the encrypted data block in order to satisfy alignment requirements 
(0–255 bytes).

•฀ Pad Length: The size of padding in bytes (1 byte).

•฀ Next Header: The type of the next header (1 byte).

•฀ Authentication Data: The Integrity Check Value (ICV).

The next section discusses IPv4 ESP initialization.

Figure 10-1. ESP format
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IPv4 ESP  Initialization
We first define an esp_type (xfrm_type object) and esp4_protocol (net_protocol object) and register them thus: 
 
static const struct xfrm_type esp_type =
{
        .description    = "ESP4",
        .owner          = THIS_MODULE,
        .proto          = IPPROTO_ESP,
        .flags          = XFRM_TYPE_REPLAY_PROT,
        .init_state     = esp_init_state,
        .destructor     = esp_destroy,
        .get_mtu        = esp4_get_mtu,
        .input          = esp_input,
        .output         = esp_output
};
 
static const struct net_protocol esp4_protocol = {
        .handler        =       xfrm4_rcv,
        .err_handler    =       esp4_err,
        .no_policy      =       1,
        .netns_ok       =       1,
};
 
static int __init esp4_init(void)
{
 

Each protocol family has an instance of an xfrm_state_afinfo object, which includes protocol-family specific 
state methods; thus there is xfrm4_state_afinfo for IPv4 (net/ipv4/xfrm4_state.c) and xfrm6_state_afinfo for 
IPv6. This object includes an array of xfrm_type objects called type_map. Registering XFRM type by calling the  
xfrm_register_type() method will set the specified xfrm_type as an element in this array:
 
        if (xfrm_register_type(&esp_type, AF_INET) < 0) {
                pr_info("%s: can't add xfrm type\n", __func__);
                return -EAGAIN;
        }
 

Registering the IPv4 ESP protocol is done like registering any other IPv4 protocol, by calling the inet_add_protocol()  
method. Note that the protocol handler used by IPv4 ESP, namely the xfrm4_rcv() method, is also used by the IPv4 
AH protocol (net/ipv4/ah4.c) and by the IPv4 IPCOMP (IP Payload Compression Protocol ) protocol (net/ipv4/
ipcomp.c).
 
        if (inet_add_protocol(&esp4_protocol, IPPROTO_ESP) < 0) {
                pr_info("%s: can't add protocol\n", __func__);
                xfrm_unregister_type(&esp_type, AF_INET);
                return -EAGAIN;
        }
        return 0;
}
 
(net/ipv4/esp4.c)
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Receiving an IPsec Packet (Transport Mode)
Suppose you work in transport mode in IPv4, and you receive an ESP packet that is destined to the local host. ESP in 
transport mode does not encrypt the IP header, only the IP payload. Figure 10-2 shows the traversal of an incoming 
IPv4 ESP packet, and its stages are described in this section. We will pass all the usual stages of local delivery, starting 
with the ip_rcv() method, and we will reach the ip_local_deliver_finish() method. Because the value of the 
protocol field in the IPv4 header is ESP (50), we invoke its handler, which is the xfrm4_rcv() method, as you saw 
earlier. The xfrm4_rcv() method further calls the generic xfrm_input() method, which performs a lookup in the SAD 
by calling the xfrm_state_lookup() method. If the lookup fails, the packet is dropped. In case of a lookup hit, the 
input callback method of the corresponding IPsec protocol is invoked:
 
int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type)
{
         struct xfrm_state *x;
         do {
                 . . .
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Perform a lookup in the state_byspi hash table:
 

                 x = xfrm_state_lookup(net, skb->mark, daddr, spi, nexthdr, family);
 

Drop the packet silently if the lookup failed:
 

                 if (x == NULL) {
                         XFRM_INC_STATS(net, LINUX_MIB_XFRMINNOSTATES);
                         xfrm_audit_state_notfound(skb, family, spi, seq);
                         goto drop;
                 } 

Figure 10-2. Receiving IPv4 ESP packet, local delivery, transport mode. Note: The figure describes an IPv4 ESP packet. 
For IPv4 AH packets, the ah_input() method is invoked instead of the esp_input( ) method; likewise, for IPv4 IPCOMP 
packets, the ipcomp_input() method is invoked instead of the esp_input( ) method
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In this case, of IPv4 ESP incoming traffic, the XFRM type associated with the state (x->type) is the ESP XFRM 
Type (esp_type); its input callback was set to esp_input(), as mentioned earlier in the “IPv4 ESP initialization” 
section.

By calling x->type->input(), in the following line the esp_input() method is invoked;  this method returns the 
protocol number of the original packet, before it was encrypted by ESP:
 
                    nexthdr = x->type->input(x, skb);
                    . . .
 

The original protocol number is kept in the control buffer (cb) of the SKB by using the XFRM_MODE_SKB_CB 
macro; it will be used later for modifying the IPv4 header of the packet, as you will see:
 
                    XFRM_MODE_SKB_CB(skb)->protocol = nexthdr;
 

After the esp_input() method terminates, the xfrm4_transport_finish() method is invoked. This method 
modifies various fields of the IPv4 header. Take a look at the xfrm4_transport_finish() method:
 
int xfrm4_transport_finish(struct sk_buff *skb, int async)
{
        struct iphdr *iph = ip_hdr(skb);
 

The protocol of the IPv4 header (iph->protocol) is 50 (ESP) at this point; you should set it to be the protocol 
number of the original packet (before it was encrypted by ESP) so that it will be processed by L4 sockets. The protocol 
number of the original packet was kept in XFRM_MODE_SKB_CB(skb)->protocol, as you saw earlier in this section:
 
        iph->protocol = XFRM_MODE_SKB_CB(skb)->protocol;
 
        . . .
        __skb_push(skb, skb->data - skb_network_header(skb));
        iph->tot_len = htons(skb->len);
 

Recalculate the checksum, since the IPv4 header was modified:
 
        ip_send_check(iph);
 

Invoke any netfilter NF_INET_PRE_ROUTING hook callback and then call the xfrm4_rcv_encap_finish() 
method:
 
        NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
                xfrm4_rcv_encap_finish);
        return 0;
}
 

The xfrm4_rcv_encap_finish() method calls the ip_local_deliver() method. Now the value of the protocol 
member in the IPv4 header is the original transport protocol (UDPv4, TCPv4, and so on), so from now on you proceed 
in the usual packet traversal, and the packet is passed to the transport layer (L4).
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Sending an IPsec Packet (Transport Mode)
Figure 10-3 shows the Tx path of an outgoing packet sent via IPv4 ESP in transport mode. The first step after 
performing a lookup in the routing subsystem (by calling the ip_route_output_flow() method), is to perform a 
lookup for an XFRM policy, which can be applied on this flow. You do that by calling the xfrm_lookup() method  
(I discuss the internals of this method later in this section). If there is a lookup hit, continue to the ip_local_out() 
method, and then, after calling several methods as you can see in Figure 10-3, you eventually reach the esp_output() 
method, which encrypts the packet and then sends it out by calling the ip_output() method.

Figure 10-3. Transmitting IPv4 ESP packet, transport mode. For the sake of simplicity, the case of creating a dummy 
bundle (when there are no XFRM states) and some other details are omitted

The following section talks about how a lookup is performed in XFRM.
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XFRM Lookup
The xfrm_lookup() method is called for each packet that is sent out of the system. You want this lookup to be as 
efficient as possible. To achieve this goal, bundles are used. Bundles let you cache important information such as the 
route, the policies, the number of policies, and more; these bundles, which are instances of the xfrm_dst structure, 
are stored by using the flow cache. When the first packet of some flow arrives, you create an entry in the generic flow 
cache and subsequently create a bundle (xfrm_dst object). The bundle creation is done after a lookup for this bundle 
fails, because it is the first packet of this flow. When subsequent packets of this flow arrive, you will get a hit when 
performing a flow cache lookup:
 
struct xfrm_dst {
        union {
                struct dst_entry        dst;
                struct rtable           rt;
                struct rt6_info         rt6;
        } u;
        struct dst_entry *route;
        struct flow_cache_object flo;
        struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX];
        int num_pols, num_xfrms;
#ifdef CONFIG_XFRM_SUB_POLICY
        struct flowi *origin;
        struct xfrm_selector *partner;
#endif
        u32 xfrm_genid;
        u32 policy_genid;
        u32 route_mtu_cached;
        u32 child_mtu_cached;
        u32 route_cookie;
        u32 path_cookie;
};
 
(include/net/xfrm.h)

The xfrm_lookup() method is a very complex method. I discuss its important parts but I don’t delve into all its 
nuances. Figure 10-4 shows a block diagram of the internals of the xfrm_lookup() method.
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Let’s take a look at the xfrm_lookup() method:
 
struct dst_entry *xfrm_lookup(struct net *net, struct dst_entry *dst_orig,
                              const struct flowi *fl, struct sock *sk, int flags)
{
 

The xfrm_lookup() method handles only the Tx path; so you set the flow direction (dir) to be FLOW_DIR_OUT by:
 
         u8 dir = policy_to_flow_dir(XFRM_POLICY_OUT);
 

Figure 10-4. xfrm_lookup( ) internals
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If a policy is associated with this socket, you perform a lookup by the xfrm_sk_policy_lookup() method,  
which checks whether the packet flow matches the policy selector. Note that if the packet is to be forwarded, the  
xfrm_lookup() method was invoked from the __xfrm_route_forward() method, and there is no socket associated 
with the packet, because it was not generated on the local host; in this case, the specified sk argument is NULL:
 
        if (sk && sk->sk_policy[XFRM_POLICY_OUT]) {
                num_pols = 1;
                pols[0] = xfrm_sk_policy_lookup(sk, XFRM_POLICY_OUT, fl);
 
      
        . . .
}
 

If there is no policy associated with this socket, you perform a lookup in the generic flow cache by calling the 
flow_cache_lookup() method, passing as an argument a function pointer to the xfrm_bundle_lookup method (the 
resolver callback). The key to the lookup is the flow object (the specified fl parameter). If you don’t find an entry in 
the flow cache, allocate a new flow cache entry. If you find an entry with the same genid, call the xfrm_bundle_flo_
get() method by invoking flo->ops->get(flo). Eventually, you call the xfrm_bundle_lookup() method by invoking 
the resolver callback, which gets the flow object as a parameter (oldflo). See the flow_cache_lookup() method 
implementation in net/core/flow.c:
 
               flo = flow_cache_lookup(net, fl, family, dir, xfrm_bundle_lookup, dst_orig);
 

Fetch the bundle (xfrm_dst object) that contains the flow cache object as a member:
 
               xdst = container_of(flo, struct xfrm_dst, flo);
 

Fetch cached data, like the number of policies, number of templates, the policies and the route:
 
       num_pols = xdst->num_pols;
       num_xfrms = xdst->num_xfrms;
       memcpy(pols, xdst->pols, sizeof(struct xfrm_policy*) * num_pols);
       route = xdst->route;
}
 
dst = &xdst->u.dst;
 

Next comes handling a dummy bundle. A dummy bundle is a bundle where the route member is NULL. It is 
created in the XFRM bundle lookup process (by the xfrm_bundle_lookup() method) when no XFRM states were 
found, by calling the xfrm_create_dummy_bundle() method. In such a case, either one of the two options are 
available, according to the value of sysctl_larval_drop (/proc/sys/net/core/xfrm_larval_drop):

If •฀ sysctl_larval_drop is set (which means its value is 1—it is so by default, as mentioned 
earlier in this chapter), the packet should be discarded.

If  •฀ sysctl_larval_drop is not set (its value is 0), the packets are kept in a per-policy queue 
(polq.hold_queue), which can contain up to 100 (XFRM_MAX_QUEUE_LEN) SKBs; this is 
implemented by the xdst_queue_output() method. These packets are kept until the XFRM 
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states are resolved or until some timeout elapses. Once the states are resolved, the packets are 
sent out of the queue. If the XFRM states are not resolved after some time interval (the timeout 
of the xfrm_policy_queue object), the queue is flushed by the xfrm_queue_purge() method:
 
if (route == NULL && num_xfrms > 0) {
        /* The only case when xfrm_bundle_lookup() returns a
         * bundle with null route, is when the template could
         * not be resolved. It means policies are there, but
         * bundle could not be created, since we don't yet
         * have the xfrm_state's. We need to wait for KM to
         * negotiate new SA's or bail out with error.*/
         if (net->xfrm.sysctl_larval_drop) {
 

For IPv4, the make_blackhole() method calls the ipv4_blackhole_route() method. For IPv6, it calls the ip6_
blackhole_route() method:
 
        return make_blackhole(net, family, dst_orig);
}
 

The next section covers one of the most important features of IPsec—NAT traversal—and explains what it is and 
why it is needed.

NAT Traversal in IPsec
Why don’t NAT devices allow IPsec traffic to pass? NAT changes the IP addresses and sometimes also the port 
numbers of the packet. As a result, it recalculates the checksum of the TCP or the UDP header. The transport 
layer checksum calculation takes into account the source and destination of the IP addresses. So even if only the 
IP addresses were changed, the TCP or UDP checksum should be recalculated. However, with ESP encryption in 
transport mode, the NAT device can’t update the checksum because the TCP or UDP headers are encrypted with 
ESP. There are protocols where the checksum does not cover the IP header (like SCTP), so this problem does not 
occur there. To solve these problems, the NAT traversal standard for IPsec was developed (or, as officially termed in 
RFC 3948, “UDP Encapsulation of IPsec ESP Packets”). UDP Encapsulation can be applied to IPv4 packets as well as  
to IPv6 packets. NAT traversal solutions are not limited to IPsec traffic; these techniques are typically required 
for client-to-client networking applications, especially for peer-to-peer and Voice over Internet Protocol (VoIP) 
applications.

There are some partial solutions for VoIP NAT-traversal, such as STUN, TURN, ICE, and more. I should mention 
here that strongSwan implements the IKEv2 Mediation Extension service (http://tools.ietf.org/html/draft-
brunner-ikev2-mediation-00), which allows two VPN endpoints located behind a NAT router each to establish a 
direct peer-to-peer IPsec tunnel using a mechanism similar to TURN and ICE. STUN, for example, is used in the VoIP 
open source Ekiga client (formerly gnomemeeting). The problem with these solutions is NAT devices they don’t cope 
with. Devices called SBCs (session border controllers) provide a full solution for NAT traversal in VoIP. SBCs can be 
implemented in hardware (Juniper Networks, for example, provides a router-integrated SBC solution) or in software. 
These SBC solutions perform NAT traversal of the media traffic—which is sent by Real Time Protocol (RTP)—and 
sometimes also for the signaling traffic—which is sent by Session Initiation Protocol (SIP). NAT traversal is optional 
in IKEv2. Openswan, strongSwan, and racoon support NAT traversal, but Openswan and racoon support NAT-T only 
with IKEv1, whereas strongSwan supports NAT traversal in both IKEv1 and IKEv2.

http://tools.ietf.org/html/draft-brunner-ikev2-mediation-00
http://tools.ietf.org/html/draft-brunner-ikev2-mediation-00
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NAT-T Mode of Operation
How does NAT traversal work? First, keep in mind that NAT-T is a good solution only for ESP traffic and not for AH. 
Another restriction is that NAT-T can’t be used with manual keying, but only with IKEv1 and IKEv2. This is because 
NAT-T is tied with exchanging IKEv1/IKEv2 messages. First, you must tell the userspace daemon (pluto) that you 
want to use the NAT traversal feature, because it is not activated by default. You do that in Openswan by adding 
nat_traversal=yes to the connection parameters in /etc/ipsec.conf. Clients not behind a NAT are not affected by 
the addition of this entry. In strongSwan, the IKEv2 charon daemon always supports NAT traversal, and this feature 
cannot be deactivated. In the first phase of IKE (Main Mode), you check whether both peers support NAT-T. In IKEv1, 
when a peer supports NAT-T, one of the ISAKAMP header members (vendor ID) tells whether it supports NAT-T. In 
IKEv2, NAT-T is part of the standard and does not have to be announced. If this condition is met, you check whether 
there is one or more NAT devices in the path between the two IPsec peers by sending NAT-D payload messages. If this 
condition is also met, NAT-T protects the original IPsec encoded packet by inserting in it a UDP header between the IP 
header and the ESP header. Both the source and destination ports in the UDP header are 4500. Besides, NAT-T sends 
keep-alive messages every 20 seconds so that the NAT retains its mapping. Keep alive messages are also sent on UDP 
port 4500 and are recognized by their content and value (which is one byte, 0xFF). When this packet reaches the IPsec 
peer, after going through the NAT, the kernel strips the UDP header and decrypts the ESP payload. See the  
xfrm4_udp_encap_rcv() method in net/ipv4/xfrm4_input.c.

Summary
This chapter covered IPsec and the XFRM framework, which is the infrastructure of IPsec, and XFRM policies 
and states, which are the fundamental data structures of the XFRM framework. I also discussed IKE, the ESP4 
implementation, the Rx/Tx path of ESP4 in transport mode, and NAT traversal in IPsec. Chapter 11 deals with the 
following transport Layer (L4) protocols: UDP, TCP, SCTP, and DCCP. The “Quick Reference” section that follows 
covers the top methods related to the topics discussed in this chapter, ordered by their context.

Quick Reference
I conclude this chapter with a short list of important methods of IPsec. Some of them were mentioned in this chapter. 
Afterward, I include a table of XFRM SNMP MIB counters.

Methods
Let’s start with the methods.

bool xfrm_selector_match(const struct xfrm_selector *sel, const struct flowi *fl, 

unsigned short family);

This method returns true when the specified flow matches the specified XFRM selector. Invokes the  
__xfrm4_selector_match() method for IPv4 or the __xfrm6_selector_match() method for IPv6.

int xfrm_policy_match(const struct xfrm_policy *pol, const struct flowi *fl, u8 type, 

u16 family, int dir);

This method returns 0 if the specified policy can be applied to the specified flow, otherwise it returns an –errno.
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struct xfrm_policy *xfrm_policy_alloc(struct net *net, gfp_t gfp);

This method allocates and initializes an XFRM policy. It sets its reference counter to 1, initializes the read-write 
lock, assigns the policy namespace (xp_net) to be the specified network namespace,  sets its timer callback to be 
xfrm_policy_timer(), and sets its state resolution packet queue timer (policy->polq.hold_timer) callback to be 
xfrm_policy_queue_process().

void xfrm_policy_destroy(struct xfrm_policy *policy);

This method removes the timer of specified XFRM policy object and releases the specified XFRM policy memory.

void xfrm_pol_hold(struct xfrm_policy *policy);

This method increments by 1 the reference count of the specified XFRM policy.

static inline void xfrm_pol_put(struct xfrm_policy *policy);

This method decrements by 1 the reference count of the specified XFRM policy. If the reference count reaches 0,  
call the xfrm_policy_destroy() method.

struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family);

This method returns the xfrm_state_afinfo object associated with the specified protocol family.

struct dst_entry *xfrm_bundle_create(struct xfrm_policy *policy, struct xfrm_state 

**xfrm, int nx, const struct flowi *fl, struct dst_entry *dst);

This method creates an XFRM bundle. Called from the xfrm_resolve_and_create_bundle() method.

int policy_to_flow_dir(int dir);

This method returns the flow direction according to the specified policy direction. For example, return FLOW_DIR_IN 
when the specified direction is XFRM_POLICY_IN, and so on.

static struct xfrm_dst *xfrm_create_dummy_bundle(struct net *net, struct  

dst_entry *dst, const struct flowi *fl, int num_xfrms, u16 family);

This method creates a dummy bundle. Called from the xfrm_bundle_lookup() method when policies were found but 
there are no matching states.

struct xfrm_dst *xfrm_alloc_dst(struct net *net, int family);

This method allocates an XFRM bundle object. Called from the xfrm_bundle_create() method and from the xfrm_
create_dummy_bundle() method.
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int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl);

This method adds an XFRM policy to the SPD. Invoked from the xfrm_add_policy() method  
(net/xfrm/xfrm_user.c), or from the pfkey_spdadd() method (net/key/af_key.c).

int xfrm_policy_delete(struct xfrm_policy *pol, int dir);

This method releases the resources of the specified XFRM policy object. The direction argument (dir) is needed to 
decrement by 1 the corresponding XFRM policy counter in the policy_count in the per namespace  
netns_xfrm object.

int xfrm_state_add(struct xfrm_state *x);

This method adds the specified XFRM state to the SAD.

int xfrm_state_delete(struct xfrm_state *x);

This method deletes the specified XFRM state from the SAD.

void __xfrm_state_destroy(struct xfrm_state *x);

This method releases the resources of an XFRM state by adding it to the XFRM states garbage list and activating the 
XFRM state garbage collector.

int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, int (*func)(struct 

xfrm_state *, int, void*), void *data);

This method iterates over all XFRM states (net->xfrm.state_all) and invokes the specified func callback.

struct xfrm_state *xfrm_state_alloc(struct net *net);

This method allocates and initializes an XFRM state.

void xfrm_queue_purge(struct sk_buff_head *list);

This method flushes the state resolution per-policy queue (polq.hold_queue).

int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type);

This method is the main Rx IPsec handler.
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static struct dst_entry *make_blackhole(struct net *net, u16 family, struct dst_entry 

*dst_orig);

This method is invoked from the xfrm_lookup() method when there are no resolved states and sysctl_larval_drop 
is set. For IPv4, the make_blackhole() method calls the ipv4_blackhole_route() method; for IPv6, it calls the  
ip6_blackhole_route() method.

int xdst_queue_output(struct sk_buff *skb);

This method handles adding packets to the per-policy state resolution packet queue (pq->hold_queue). This queue 
can contain up to 100 (XFRM_MAX_QUEUE_LEN) packets.

struct net *xs_net(struct xfrm_state *x);

This method returns the namespace object (xs_net) associated with the specified xfrm_state object.

struct net *xp_net(const struct xfrm_policy *xp);

This method returns the namespace object (xp_net) associated with the specified xfrm_policy object.

int xfrm_policy_id2dir(u32 index);

This method returns the direction of the policy according to the specified index.

int esp_input(struct xfrm_state *x, struct sk_buff *skb);

This method is the main IPv4 ESP protocol handler.

struct ip_esp_hdr *ip_esp_hdr(const struct sk_buff *skb);

This method returns the ESP header associated with  the specified SKB.

int verify_newpolicy_info(struct xfrm_userpolicy_info *p);

This method verifies that the specified xfrm_userpolicy_info object contains valid values. (xfrm_userpolicy_info is 
the object which is passed from userspace). It returns 0 if it is a valid  object, and -EINVAL or -EAFNOSUPPORT if not.

Table
Table 10-1 lists XFRM SNMP MIB counters.
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Table 10-1. XFRM SNMP MIB counters

Linux Symbol SNMP (procfs) Symbol Methods in Which the Counter Might Be 

Incremented

LINUX_MIB_XFRMINERROR XfrmInError xfrm_input()

LINUX_MIB_XFRMINBUFFERERROR XfrmInBufferError xfrm_input(),__xfrm_policy_check()

LINUX_MIB_XFRMINHDRERROR XfrmInHdrError xfrm_input(),__xfrm_policy_check()

LINUX_MIB_XFRMINNOSTATES XfrmInNoStates xfrm_input()

LINUX_MIB_XFRMINSTATEPROTOERROR XfrmInStateProtoError xfrm_input()

LINUX_MIB_XFRMINSTATEMODEERROR XfrmInStateModeError xfrm_input()

LINUX_MIB_XFRMINSTATESEQERROR XfrmInStateSeqError xfrm_input()

LINUX_MIB_XFRMINSTATEEXPIRED XfrmInStateExpired xfrm_input()

LINUX_MIB_XFRMINSTATEMISMATCH XfrmInStateMismatch xfrm_input(),
__xfrm_policy_check()

LINUX_MIB_XFRMINSTATEINVALID XfrmInStateInvalid xfrm_input()

LINUX_MIB_XFRMINTMPLMISMATCH XfrmInTmplMismatch __xfrm_policy_check()

LINUX_MIB_XFRMINNOPOLS XfrmInNoPols __xfrm_policy_check()

LINUX_MIB_XFRMINPOLBLOCK XfrmInPolBlock __xfrm_policy_check()

LINUX_MIB_XFRMINPOLERROR XfrmInPolError __xfrm_policy_check()

LINUX_MIB_XFRMOUTERROR XfrmOutError xfrm_output_one(),xfrm_output()

LINUX_MIB_
XFRMOUTBUNDLEGENERROR

XfrmOutBundleGenError xfrm_resolve_and_create_bundle()

LINUX_MIB_
XFRMOUTBUNDLECHECKERROR

XfrmOutBundleCheckError xfrm_resolve_and_create_bundle()

LINUX_MIB_XFRMOUTNOSTATES XfrmOutNoStates xfrm_lookup()

LINUX_MIB_
XFRMOUTSTATEPROTOERROR

XfrmOutStateProtoError xfrm_output_one()

LINUX_MIB_
XFRMOUTSTATEMODEERROR

XfrmOutStateModeError xfrm_output_one()

LINUX_MIB_XFRMOUTSTATESEQERROR XfrmOutStateSeqError xfrm_output_one()

LINUX_MIB_XFRMOUTSTATEEXPIRED XfrmOutStateExpired xfrm_output_one()

LINUX_MIB_XFRMOUTPOLBLOCK XfrmOutPolBlock xfrm_lookup()

LINUX_MIB_XFRMOUTPOLDEAD XfrmOutPolDead n/a

LINUX_MIB_XFRMOUTPOLERROR XfrmOutPolError xfrm_bundle_lookup(),
xfrm_resolve_and_create_bundle()

LINUX_MIB_XFRMFWDHDRERROR XfrmFwdHdrError __xfrm_route_forward()

LINUX_MIB_XFRMOUTSTATEINVALID XfrmOutStateInvalid xfrm_output_one()
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Note ■  The IPsec git tree: git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec.git.

The ipsec git tree is for fixes for the IPsec networking subsystem; the development in this tree is done against  

David Miller’s net git tree.

The ipsec-next git tree: git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec-next.git.

The ipsec-next tree is for changes for IPsec with linux-next as target; the development in this tree is done against  

David Miller’s net-next git tree.

The IPsec subsystem maintainers are Steffen Klassert, Herbert Xu, and David S. Miller.


