
Chapter-5
Basic Traversal and Search Techniques

5.1 Techniques for Binary Trees

Binary Tree

A binary tree is a finite set of nodes which is either empty or consists of a root and 
two disjoint binary trees called the left sub tree and the right sub tree. 
In a traversal  of a binary tree,  each element  of the binary tree is visited exactly at  once. 
During the visiting of an element, all actions like clone, display, evaluate the operator etc is 
taken with respect to the element. When traversing a binary tree, we need to follow linear 
order i.e. L, D, R where 
L->Moving left 
D->printing the data 
R->moving right

 
 We have three traversal techniques on binary tree. They are 



• In order 

• Post order 

• Pre order 

Examples

For fig: 1 

In order: A-B-C-D-E-F-G-H-I 
Post order: A-C-E-D-B-H-I-G-F 
Pre order: F-B-A-D-C-E-G-I-H

Preorder, post order and in order algorithms

Algorithm preorder(x)            

Input: x is the root of a sub tree.                      

1. If x ≠ NULL 

2. Then output key(x); 

3. Preorder (left(x)); 

4. Preorder (right(x)); 

Algorithm postorder(x) 

Input: x is the root of a subtree 

1. If x ≠ NULL 



2. Then postorder(left(x));; 

3. Postorder(right(x));

4. Outputkey(x); 

 

Algorithm inorder(x) 

Input: x is the root of a subtree 

1. If x≠ null 

2. Then inorder(left(x)); 

3. Outputkey(x); 

4. Inorder(right(x));

Exercises 



5.2 Techniques for Graphs

Graph: The sequence of edges that connected two vertices. 
A graph is a pair (V, E), where 
V is a set of nodes, called vertices 
E is a collection (can be duplicated) of pairs of vertices, called edges 
Vertices and edges are data structures and store elements. 

Types of graphs: Graphs are of three types.

a. Directed/Undirected:  In  a  directed  graph  the  direction  of  the  edges  must  be 
considered 

                               

              Fig 5.1                                                                       Fig 5.2

b. Weighted/ Unweighted: A weighted graph has values on its edge. 
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c. Cyclic/Acyclic: A cycle is a path that begins and ends at same vertex and A graph with no 
cycles is acyclic.

                          

Representation of graphs

Graphs can be represented in three ways 

(i)  Adjacency Matrix:  A  V  x  V  array,  with matrix[i][j] storing whether there is an edge 
between  the  ith  vertex  and the  jth  vertex.  This  matrix  is  also  called  as  “Bit  matrix”  or 
“Boolean Matrix” 

(ii) Adjacency list: One linked list per vertex, each storing directly reachable vertices .



(iii) Linked List or Edge list: 

Graph traversal techniques
 
“The process of traversing all the nodes or vertices on a graph is called graph traversal”. 

We have two traversal techniques on graphs 
 DFS 
 BFS 

Depth First Search

The DFS explore each possible path to its conclusion before another path is tried. In other 
words go as a far as you can (if u don’t have a node to visit), otherwise, go back and try 
another way. Simply it can be called as “backtracking”.
 
Steps for DFS
 
(i) Select an unvisited node ‘v’ visits it and treats it as the current node. 

(ii) Find an unvisited neighbor of current node, visit it and make it new current node 



(iii) If the current node has no unvisited neighbors, backtrack to its parent and make it as a 
new current node 

(iv) Repeat steps 2 and 3 until no more nodes can be visited 

(v) Repeat from step 1 for remaining nodes also. 

Implementation of DFS

DFS (Vertex) 
{ 
Mark u as visiting 
For each vertex V directly reachable from u 
If v is unvisited 
DFS (v) 
}

Unexplored vertex: The node or vertex which is not yet visited. 

Visited vertex: The node or vertex which is visited is called ‘visited vertex’ i.e. can be called 
as “current node”. 

Unexplored edge: The edge or path which is not yet traversed. 

Discovery edge:  It is opposite to unexplored edge, the path which is already traversed is 
known as discovery edge. 

Back edge: If the current node has no unvisited neighbors we need to backtrack to its parent 
node. The path used in back tracking is called back edge.

For the following graph the steps for tracing are as follows:



                                                                             

Properties of DFS

i) DFS (G, v) visits all the vertices and edges in the connected component of v. 

ii)  The  discovery  edges  labeled  by  DFS  (G,  v)  form a  spanning  tree  of  the  connected 
component of v. 



Tracing of graph using Depth First Search



Exercise
1.

                 
Depth: W-U-V-Y-X-Z

2.

Depth: A-B-C-E-D

3

Depth: 1-2-3-4-5-6-7-8-9-10-11-12.



5.3 Breadth First Search

It is one of the simplest algorithms for searching or visiting each vertex in a graph. In this 
method each node on the same level is checked before the search proceeds to the next level. 
BFS makes use of a queue to store visited vertices,  expanding the path from the earliest 
visited vertices 
Breadth: a-b-c-d-e-f-g-h-i-j-k 

Steps for BFS: 

1. Mark all the vertices as unvisited. 

2. Choose any vertex say ‘v’, mark it as visited and put it on the end of the queue. 

3. Now, for each vertex on the list, examine in same order all the vertices adjacent to ‘v’ 

4. When all the unvisited vertices adjacent to v have been marked as visited and put it on the 
end (rear of the queue) of the list. 

5. Remove a vertex from the front of the queue and repeat this procedure. 

6. Continue this procedure until the list is empty. 

Implementation of BFS

While queue Q not empty 
De queue the first vertex u from Q 
For each vertex v directly reachable from u 
If v is unvisited 
En queue v to Q 
Mark v as visited 
1 Initially all vertices except the start vertex are marked as unvisited and the queue contains 
the start vertex only. 

Explored vertex: A vertex is said to be explored if all the adjacent vertices of v are visited.
Example 1: Breadth first search for the following graph:



 

 

  



    

Properties of BFS 

Notation: Gs (connected component of s) 

i) BFS (G, s) visits all the vertices and edges of Gs 
ii) The discovery edges labeled by BFS (G, s) form a spanning tree Ts of G 
iii) For each vertex v in Li 
a. The path of Ts from s to v has i edges 
b. Every path from s to v in Gs has at least i edges.

Complexity of BFS

Step1: read a node from the queue O (v) times. 
Step2:  examine  all  neighbors,  i.e.  we examine  all  edges  of  the currently  read  node.  Not 
oriented graph: 2*E edges to examine 
Hence the complexity of BFS is O (V + 2*E)



Tracing of graph using Breadth first search:

           BFS: a f h e g i d j k c l n b m o

BFS: 7-11-8-2-9-10-5-3



BFS: A-B-C-D-E-F-G-H

5.4 Connected Components and Spanning Trees 

Connected component: If G is connected undirected graph, then we can visit all the vertices 
of the graph in the first call to BFS. The sub graph which we obtain after traversing the graph 
using BFS represents the connected component of the graph. 

Thus BFS can be used to determine whether G is connected. All the newly visited vertices on 
call to BFS represent the vertices in connected component of graph G. The sub graph formed 
by theses vertices make the connected component. 

Spanning tree of a graph:  Consider the set of all edges (u, w) where all vertices w are 
adjacent to u and are not visited. According to BFS algorithm it is established that this set of 
edges give the spanning tree of G, if G is connected. We obtain depth first search spanning 
tree similarly
These are the BFS and DFS spanning trees of the graph G



Bi-connected Components
 
A connected undirected graph is said to be bi-connected if it remains connected after removal 
of any one vertex and the edges that are incident upon that vertex. 
In this we have two components. 
i.  Articulation point: Let G= (V, E) be a connected undirected graph. Then an articulation 
point of graph ‘G’ is a vertex whose articulation point of graph is a vertex whose removal 
disconnects the graph ‘G’. It is also known as “cut point”. 

ii.  Bi-connected graph:  A graph ‘G’ is said to be bi-connected if it contains no-articulation 
point. 

Articulation points for the above undirected graph are B, E, F 

i)  After  deleting  vertex  B and incident  edges  of  B,  the  given  graph is  divided  into  two 
components 



ii) After deleting the vertex E and incident edges of E, the resulting components are 

iii)  After  deleting  vertex F and incident  edges  of  F,  the  given  graph is  divided  into  teo 
components. 



Note:  If there exists any articulation point,  it  is an undesirable feature in communication 
network where joint point between two networks failure in case of joint node fails.

Algorithm to construct the Bi- Connected graph
 
1. For each articulation point ‘a’ do 

2. Let B1, B2, B3 ….Bk are the Bi-connected components 

3. Containing the articulation point ‘a’ 

4. Let Vi E Bi, Vi # a i<=i<=k 

5. Add (Vi,Vi+1) to Graph G. 

Vi-vertex belong Bi 
Bi-Bi-connected component 
      i- Vertex number 1 to k 

a- articulation point 

Exercise

***********


