<table>
<thead>
<tr>
<th>Technology Guide</th>
<th>Telecommunications</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG4.1</td>
<td>Telecommunications Concepts</td>
</tr>
<tr>
<td>TG4.2</td>
<td>Communications Media (Channels)</td>
</tr>
<tr>
<td>TG4.3</td>
<td>Network Systems: Protocols, Standards, Interfaces, and Topologies</td>
</tr>
</tbody>
</table>
The term **telecommunications** generally refers to all types of long-distance communications that use common carriers, including telephone, television, and radio. **Data communications** is a subset of telecommunications and is achieved through the use of telecommunication technologies.

In modern organizations, communications technologies are integrated. Businesses are finding electronic communications essential for minimizing time and distance limitations. Telecommunications plays a special role when customers, suppliers, vendors, and regulators are part of a multinational organization in a world that is continuously awake and doing business somewhere 24 hours a day, 7 days a week (24/7). Figure TG4.1 represents a model of an integrated computer and telecommunications system common in today’s business environment.

A **telecommunications system** is a collection of compatible hardware and software arranged to communicate information from one location to another. These systems can transmit text, data, graphics, voice, documents, or video information.

A typical telecommunications system is shown in Figure TG4.2. Such systems have two sides: the transmitter and the receiver.

The major components are:

1. **Hardware.** All types of computers and communications processors (such as modems or small computers dedicated solely to communications)
2. **Communications media.** The physical media through which electronic signals are transferred; includes both wired lines and wireless media
3. **Communications networks.** The linkages among computers and communications devices
4. **Communications processors.** Devices that perform specialized data communication functions; includes front-end processors, controllers, multiplexors, and modems
5. **Communications software.** Software that controls the telecommunications system and the entire transmission process
6. **Data communications providers.** Regulated utilities or private firms that provide data communications services
7. **Communications protocols.** The rules for transferring information across the system
8. **Communications applications.** Electronic data interchange (EDI), teleconferencing, videoconferencing, e-mail, facsimile, electronic funds transfer, and others

To transmit and receive information, a telecommunications system must perform the following separate functions that are transparent to the user:

- Transmit information
- Establish the interface between the sender and the receiver
- Route messages along the most efficient paths
- Process the information to ensure that the right message gets to the right receiver
- Check the message for errors and rearrange the format if necessary
- Convert messages from one speed to that of another communications line or from one format to another
Telecommunications media can carry two basic types of signals, analog and digital (see Figure TG4.3). Analog signals are continuous waves that “carry” information by altering the amplitude and frequency of the waves. For example, sound is analog and travels to our ears in the form of waves—the greater the height (amplitude) of the waves, the louder the sound; the more closely packed the waves (higher frequency), the higher the pitch. Radio, telephones, and recording equipment historically transmitted and received analog signals, but they are rapidly changing to digital signals.

Digital signals are discrete on–off pulses that convey information in terms of 1s and 0s, just like the central processing unit in computers. Digital signals have several advantages over analog signals. First, digital signals tend to be less affected by interference, or “noise.” Noise (e.g., static) can seriously alter the information-carrying characteristics of analog signals, whereas it is generally easier, in spite of noise, to distinguish between an “on” and an “off.” Consequently, digital signals can be repeatedly strengthened over long distances, minimizing the effect of any noise. Second, because computer-based systems process digitally, digital communications among computers require no conversion from digital to analog to digital.

Communications processors are hardware devices that support data transmission and reception across a telecommunications system. These devices include modems, multiplexors, front-end processors, and concentrators.

Modem. A modem is a communications device that converts a computer’s digital signals to analog signals before they are transmitted over standard telephone lines. The public telephone system (called POTS for “plain old telephone service”) was designed as an analog network to carry voice signals or sounds in an analog wave format. In order for this type of circuit to carry digital information, that information must be converted into an analog wave pattern. The conversion from digital to analog is called modulation, and the reverse is demodulation. The device that performs these two processes is called a modem, a contraction of the terms modulate/demodulate (see Figure TG4.4). Modems are always used in pairs.
Alternatives to Analog Modems. Digital subscriber line (DSL) service allows the installed base of twisted-pair wiring in the telecommunications system (see Section TG4.2) to be used for high-volume data transmission. DSL uses digital transmission techniques over copper wires to connect the subscribers to network equipment located at the telephone company central office. Asymmetric DSL (ADSL) is a variety of DSL that enables a person connecting from home to upload data at speeds from 16 to 640 Kbps and download data at 1.5 to 12 Mbps. Clearly, this is many times faster than an analog modem.

A DSL circuit connects a DSL modem on each end of a twisted-pair telephone line, creating three information channels—a high-speed downstream channel; a medium-speed duplex channel, depending on the implementation of the DSL architecture; and a POTS or an ISDN channel. The POTS/ISDN channel is split off from the digital modem by filters, thus guaranteeing uninterrupted POTS/ISDN, even if DSL fails.

Cable modems are offered by cable television companies in many areas as a high-speed way to access a telecommunications network. These modems operate on one channel of the TV coaxial cable. Cost and transmission speed are comparable to that of a DSL. A cable modem gives users high-speed Internet access through a cable TV network up to 10 Mbps (10 million bits per second), or about 100 times faster than a traditional dial-up modem. When a cable modem unit is installed next to the computer, a splitter is placed on the side of the household. It separates the coaxial cable line serving the cable modem from the line that serves the TV sets. A separate coaxial cable line is then run from the splitter to the cable modem. Cable modems typically connect to computers through a standard 100 Base-T Ethernet interface. Data can be transmitted between the cable modem and computer at speeds up to 100 Mbps.

TG4-2 Communications Media (Channels)

For data to be communicated from one location to another, a physical pathway or medium must be used. These pathways are called communications media (channels) and can be either physical or wireless. The physical transmission media use wire, cable, and other tangible materials; wireless transmission media send communications signals through the air or space. The physical transmission media are generally referred to as cable media (e.g., twisted-pair wire, coaxial cable, and fiber-optic cable). Wireless media include cellular radio, microwave transmission, satellite transmission, radio, and infrared media.

Cable media (also called wireline media) use physical wires or cables to transmit data and information. Twisted-pair wire and coaxial cable are made of copper, and fiber-optic cable is made of glass. However, with the exception of fiber-optic cables, cables present several problems, notably the expense of installation and change, as well as a fairly limited capacity.

Several cable media exist, and in many systems a mix of media (e.g., fiber coax) can be found. The major cable media are shown in Table TG4.1.
Twisted-Pair Wire. Twisted-pair wire is the most prevalent form of communications wiring because it is used for almost all business telephone wiring. Twisted-pair wire consists of strands of insulated copper wire twisted in pairs to reduce the effect of electrical noise.

Twisted-pair wire is relatively inexpensive, widely available, and easy to work with; it can be made relatively unobtrusive by running it inside walls, floors, and ceilings. However, twisted-pair wire has some important disadvantages. It emits electromagnetic interference, is relatively slow for transmitting data, is subject to interference from other electrical sources, and can be easily “tapped” to gain unauthorized access to data.

Coaxial Cable. Coaxial cable consists of insulated copper wire surrounded by a solid or braided metallic shield and wrapped in a plastic cover. It is much less susceptible to electrical interference and can carry much more data than twisted-pair wire. For these reasons, it is commonly used to carry high-speed data traffic as well as television signals (i.e., in cable television). However, coaxial cable is 10 to 20 times more expensive, more difficult to work with, and relatively inflexible. Because of its inflexibility, it can increase the cost of installation or recabling when equipment must be moved.

Data transmission over coaxial cable is divided into two basic types:

- **Baseband.** Transmission is analog, and each wire carries only one signal at a time.
- **Broadband.** Transmission is digital, and each wire can carry multiple signals simultaneously.

Because broadband media can transmit multiple signals simultaneously, it is faster and better for high-volume use. Therefore, it is the most popular Internet-access method.

| Table TG4.1: Advantages and Disadvantages of Communications Channels |
|--|-----------------------------|-----------------------------|
| Channel | Advantages | Disadvantages |
| Twisted-pair | Inexpensive | Slow (low bandwidth) |
| | Widely available | Subject to interference |
| | Easy to work with | Easily tapped (low security) |
| | Unobtrusive | |
| Coaxial cable | Higher bandwidth than twisted-pair | Relatively expensive and inflexible |
| | Less susceptible to electromagnetic interference | Easily tapped (low-to-medium security) |
| Fiber-optic cable | Very high bandwidth | Somewhat difficult to work with |
| | Relatively inexpensive | Difficult to work with (difficult to splice) |
| | Difficult to tap (good security) | |
| Microwave | High bandwidth | Must have unobstructed line of sight |
| | Relatively inexpensive | Susceptible to environmental interference |
| Satellite | High bandwidth | Expensive |
| | Large coverage area | Must have unobstructed line of sight |
| | | Signals experience propagation delay |
| | | Must use encryption for security |
| Radio | High bandwidth | Creates electrical interference problems |
| | No wires needed | Susceptible to snooping unless encrypted |
| | Signals pass through walls | |
| | Inexpensive and easy to install | |
| Cellular radio | Low-to-medium bandwidth | Requires construction of towers |
| | Signals pass through walls | Susceptible to snooping unless encrypted |
| Infrared | Low-to-medium bandwidth | Must have unobstructed line of sight |
| | | Used only for short distances |
Broadband needs a **network interface card (NIC)**, also called a LAN adapter, in order to run. An NIC is a card that is inserted into an expansion slot of a computer or other device, enabling the device to connect to a network.

Fiber Optics. Fiber-optic cables (FOCs) have been replacing copper wire as a means of communications signal transmission.

FOCs are used over long distances to connect local phone systems, and they provide the backbone for many network systems. Other FOC users are office buildings, industrial plants, cable TV services, university campuses, and electric utilities. Fiber is the ultimate medium for broadband (short for *broad bandwidth*). Bandwidth refers to the size of existing fiber-optic lines and their ability to carry all the data traffic companies want to send.

The fiber-optic system is similar to the copper wire system that it continues to replace. The key difference is that fiber optics use light pulses (light waves) to transmit information down fiber lines instead of using electronic pulses to transmit information down copper lines. The advantages of FOC over copper wire are:

1. **Speed.** FOC networks operate at higher speeds, in the gigabits (Gbit) range. Speeds up to 10-Gbit-per-second (Gbit/sec) are currently being tested.

2. **Bandwidth.** FOC has larger carrying capacity. Using wavelength division multiplexing (WDM), the bandwidth carried by a single fiber is in the range of terabits per second. In comparison, the bandwidth for WiMax is in the 3- to 10-megabit range.

3. **Distance.** Signals can be transmitted farther distances without needing to be strengthened (regenerated).

4. **Maintenance.** FOC costs much less to maintain.

5. **Resistance.** FOC has greater resistance to electromagnetic noise such as radios, motors, or other nearby cables.

Telecommunication applications of fiber optics range from global networks to desktop computers. These involve the transmission of voice, data, or video over distances of less than a meter to hundreds of kilometers.

Telecommunications carriers use optical fiber to carry POTS across their nationwide networks. Local exchange carriers (LECs) use fiber to carry this same service between central office switches at local levels and sometimes to neighborhoods or individual homes. Fiber to the home (FTTH) is being deployed in select areas of the United States.

Multinational firms use FOC for secure, reliable data transfer between buildings to the desktop computers and to transfer data around the world. Cable television companies also use fiber for delivery of digital video and data services. The high bandwidth provided by fiber makes it the perfect choice for transmitting broadband signals, such as high-definition television (HDTV) telecasts. Intelligent transportation systems, such as smart highways with intelligent traffic lights, automated tollbooths, and changeable message signs, also use fiber-optic-based telemetry systems. The biomedical industry uses fiber-optic systems in modern telemedicine devices for transmission of digital diagnostic images. Other industries that use FOC extensively are space, military, automotive, and the industrial sector.

Companies such as Time Warner Telecom, Level 3, and Qwest have thousands of miles of **dark fiber** in the ground, which is buried FOC that has not been used but can be put to use by adding the switch technology.

Wireless Media

Cable media (with the exception of FOC) present several problems, notably the expense of installation and change, as well as a fairly limited capacity. The alternative is **wireless communication.** Common uses of wireless data transmission include pagers, cellular telephones, microwave transmissions, communications satellites, mobile data networks, personal communications services, and smartphones.
Microwave. Microwave systems are widely used for high-volume, long-distance, point-to-point communication. These systems were first used extensively to transmit very-high-frequency (up to 500 GHz) radio signals at the speed of light in a line-of-sight path between relay stations spaced approximately 30 miles apart (due to the earth’s curvature). To minimize line-of-sight problems, microwave antennas were usually placed on top of buildings, towers, and mountain peaks. Long-distance telephone carriers adopted microwave systems because they generally provide about 10 times the data-carrying capacity of a wire without the significant efforts necessary to string or bury wire. Compared to 30 miles of wire, microwave communications can be set up much more quickly (within a day) and at much lower cost.

Satellite. A satellite is a space station that receives microwave signals from an earth-based station, amplifies the signals, and broadcasts the signals back over a wide area to any number of earth-based stations. Transmission to a satellite is an uplink, whereas transmission from a satellite to an earth-based station is a downlink.

A major advance in communications in recent years is the use of communications satellites for digital transmissions. Although the radio frequencies used by satellite data communication transponders are also line-of-sight, the enormous “footprint” of a satellite’s coverage area from high altitudes overcomes the limitations of microwave data relay stations. For example, a network of just three evenly spaced communications satellites in stationary “geosynchronous” orbit 22,241 miles above the equator is sufficient to provide global coverage.

The advantages of satellites include the following: The cost of transmission is the same regardless of the distance between the sending and receiving stations within the footprint of a satellite, and cost remains the same regardless of the number of stations receiving that transmission (simultaneous reception). Satellites have the ability to carry very large amounts of data. They can easily cross or span political borders, often with minimal government regulation. Transmission errors in a digital satellite signal occur almost completely at random; thus, statistical methods for error detection and correction can be applied efficiently and reliably. Finally, users can be highly mobile while sending and receiving signals.

The disadvantages of satellites include the following: Any one-way transmission over a satellite link has an inherent propagation delay (approximately one-quarter of a second), which makes the use of satellite links inefficient for some data communications needs (voice communication and “stepping-on” each other’s speech).

Global Positioning Systems. A Global Positioning System (GPS) is a wireless system that uses satellites to enable users to determine their position anywhere on the earth. GPS is supported by 24 U.S. government satellites that are shared worldwide. Each satellite orbits the earth once in 12 hours, on a precise path at an altitude of 10,900 miles. At any point in time, the exact position of each satellite is known, because the satellite broadcasts its position and a time signal from its on-board atomic clock, accurate to one-billionth of a second. Receivers also have accurate clocks that are synchronized with those of the satellites. Knowing the speed of signals (186,272 miles per second), it is possible to find the location of any receiving station (latitude and longitude) within an accuracy of 50 feet by triangulation, using the distance of three satellites for the computation. GPS software computes the latitude and longitude and converts it to an electronic map.

GPS equipment has been used extensively for navigation by commercial airlines and ships and for locating trucks. GPS is now also being added to many consumer-oriented electronic devices. The first dramatic use of GPS came during the Persian Gulf War, when troops relied on the technology to find their way in the Iraqi desert. GPS also played the key role in targeting for smart bombs. Since then, commercial use has become widespread, including navigation, mapping, and surveying, particularly in remote areas. For example, several car manufacturers (e.g., Toyota, Cadillac) provide built-in GPS navigation systems in their cars. GPSs are also available on cell phones, so you can know where the caller is located.
Radio. Radio electromagnetic data communications do not have to depend on microwave or satellite links, especially for short ranges such as within an office setting. Broadcast radio is a wireless transmission medium that distributes radio signals through the air over both long and short distances. Radio is being used increasingly to connect computers and peripheral equipment or computers and local area networks. The greatest advantage of radio for data communications is that no wires need be installed. Radio waves tend to propagate easily through normal office walls. The devices are fairly inexpensive and easy to install. Radio also allows for high data transmission speeds.

Infrared. Infrared (IR) light is light not visible to human eyes that can be modulated or pulsed for conveying information. IR requires a line-of-sight transmission. Many computers and devices have an IrDA (Infrared Data Association) port that enables the transfer of data using infrared light rays. IrDA is a standard defined by the IrDA Consortium. It specifies a way to transfer data wirelessly via infrared radiation. The most common application of infrared light is with television or videocassette recorder remote control units. With computers, infrared transmitters and receivers (or “transceivers”) are being used for short-distance connection between computers and peripheral equipment or between computers and local area networks. Many mobile phones have a built-in infrared (IrDA) port that supports data transfer.

Cellular (Radio) Technology. Mobile telephones, which are being used increasingly for data communications, are based on cellular (radio) technology, which is a form of broadcast radio that is widely used for mobile communications. The basic concept behind this technology is relatively simple: The Federal Communications Commission (FCC) has defined geographic cellular service areas; each area is subdivided into hexagonal cells that fit together like a honeycomb to form the backbone of that area’s cellular radio system. Located at the center of each cell is a radio transceiver and a computerized cell-site controller that handles all cell-site control functions. All of the cell sites are connected to a mobile telephone switching office that provides the connections from the cellular system to a wired telephone network and transfers calls from one cell to another as a user travels out of the cell serving one area and into another.

Personal Communication Service. Personal communication service (PCS) uses lower-power, higher-frequency radio waves than does cellular technology. It is a set of technologies used for completely digital cellular devices, including handheld computers, cellular telephones, pagers, and fax machines. The cellular devices have wireless modems, allowing you Internet access and e-mail capabilities. The lower power means that PCS cells are smaller and must be more numerous and closer together. The higher frequency means that PCS devices are effective in many places where cellular telephones are not, such as in tunnels and inside office buildings. PCS telephones need less power, are smaller, and are less expensive than cellular telephones. They also operate at higher, less crowded frequencies than cellular telephones, meaning that they have the bandwidth necessary to provide video and multimedia communications.

4G. 4G is short for fourth-generation technology. 4G is the next generation of high-speed cellular data transfer technology. Simply put, it is faster than 3G. While 3G has a maximum download speed of 2.4 Mbps (megabits per second), 4G should at least theoretically be able to reach download speeds of 50 Mbps. However, Sprint’s maximum reported speeds have only reached 10 Mbps, with average speeds from 3 Mbps to 6 Mbps.

4G is still not widely available in the United States. Sprint has the largest 4G network in the United States, but it only has coverage in 27 cities, and Sprint is currently the only wireless carrier offering 4G.
There are two different types of 4G: LTE and WiMax. LTE is used by Verizon and AT&T, while WiMax is used by Sprint. It is not known at this time what T-Mobile will use.

Personal Digital Assistants. Personal digital assistants (PDAs) have built-in wireless telecommunications capabilities. Applications include Internet access, e-mail, fax, electronic scheduler, calendar, and notepad software.

UPS’s Delivery Information Acquisition Device (DIAD) is a handheld electronic data collector that UPS drivers use to record and store information, thus helping UPS to keep track of packages and gather delivery information within UPS’s nationwide, mobile cellular network. It digitally captures customers’ package information, thus enabling UPS to keep accurate delivery records. Drivers insert the DIAD into a DIAD vehicle adapter (DVA) in their delivery vehicles to transmit over UPS’s nationwide cellular network for immediate customer use.

Wireless Application Protocol. Wireless Application Protocol (WAP) is a technology that enables wireless transmissions. For example, one popular application that utilizes WAP is i-mode, a wireless portal that enables users to connect to the Internet. Developed by NTT DoCoMo, i-mode provides an always-on connection to the Internet and content sites from popular media outlets, all accessible via color-screen handsets with polyphonic sound. It is charged at actual usage instead of on a pre-paid basis. WAP is criticized for browsing with small screens, little compelling content, and bad connections at great cost through a browser. Despite these drawbacks, it offers users the ability to make wireless connections to the Internet, which has enormous commercial appeal. WAP has been almost abandoned because of smartphones that can connect to the full Internet.

Bluetooth. Bluetooth is the term used to describe the protocol of a short-range (10-meter), frequency-hopping radio link between devices. Bluetooth allows wireless communication between mobile phones, laptops, and other devices. Bluetooth technology is currently being built into mobile PCs, mobile telephones, and PDAs.

Bluetooth is the code name for a technology designed to provide an open specification for wireless communication of data and voice. It is based on a low-cost, short-range radio link built into a 9 x 9 mm microchip, providing protected ad hoc connections for stationary and mobile communication environments. It allows for the replacement of the many existing proprietary cables that connect one device to another with one universal short-range radio link.

Network architectures facilitate the operation, maintenance, and growth of the network by isolating the user and the application from the physical details of the network. Network architectures include protocols, standards, interfaces, and topologies.

Devices that are nodes in a network must access and share the network to transmit and receive data. These components work together by adhering to a common set of rules that enable them to communicate with each other. This set of rules and procedures governing transmission across a network is a protocol.

The principal functions of protocols in a network are line access and collision avoidance. Line access concerns how the sending device gains access to the network to send a message. Collision avoidance refers to managing message transmission so that two messages do not collide with each other on the network. Other functions of protocols are to identify each device in the communication path, to secure the attention of the other device, to verify correct receipt of the transmitted message, to
verify that a message requires retransmission because it cannot be correctly interpreted, and to perform recovery when errors occur.

The Transmission Control Protocol/Internet Protocol (TCP/IP) is a protocol for sending information across sometimes-unreliable networks with the assurance that it will arrive in uncorrupted form. TCP/IP allows efficient and reasonably error-free transmission between different systems and is the standard protocol of the Internet and intranets.

Convergence refers to the ability to transfer all types of information—voice, data, video—utilizing a single Internet Protocol (IP) network infrastructure. In voice-over IP (VoIP) systems, analog voice signals are digitized and transmitted as a stream of packets over a digital IP data network. VoIP utilizes a gateway to compress and convert the caller’s voice into digital IP packets. These packets are then sent along the IP network. A second gateway then puts the voice packets in the correct order, decompresses them, and converts the voice packets back into a sound signal that can be received by existing telephone equipment.

Internet telephony (IP) is the transport of telephone calls over the Internet, no matter whether traditional telephony devices, multimedia PCs, or dedicated terminals take part in the calls and no matter whether the calls are entirely or only partially transmitted over the Internet.

In 1999, the Internet Engineering Task Force (IETF) published RFC 2543, which defined the session initiation protocol (SIP). SIP is the IETF’s take on the end-to-end model of IP telephony. It can be used to increase speed, scalability, and functionality for emergency calling and notification systems.

Networks typically have hardware and software from a number of different vendors that must communicate with each other by “speaking the same language” and following the same protocols. Unfortunately, commercially available data communication devices speak a variety of languages and follow a number of different protocols, causing substantial problems with data communications networks.

Attempts at standardizing data communications have been somewhat successful, but standardization in the United States has lagged behind that in other countries where the communications industry is more closely regulated. Various organizations, including the Electronic Industries Association (EIA), the Consultative Committee for International Telegraph and Telephone (CCITT), and the International Standards Organization (ISO), have developed electronic interfacing standards that are widely used within the industry. The major types of standards are networking standards, transmission standards, and software standards.

Networking Standards. Typically, the protocols required to achieve communication on behalf of an application are actually multiple protocols existing at different levels or layers. Each layer defines a set of functions that are provided as services to upper layers, and each layer relies on services provided by lower layers. At each layer, one or more protocols define precisely how software programs on different systems interact to accomplish the functions for that layer.

This layering notion has been formalized in several architectures. The most widely known is the Open Systems Interconnection (OSI) Reference Model developed by the ISO. There is peer-to-peer communication between software at each layer, and each relies on underlying layers for services to accomplish communication. The OSI model has seven layers, each having its own well-defined function:

• **Layer 1: Physical layer.** Concerned with transmitting raw bits over a communications channel; provides a physical connection for the transmission of data among network entities and creates the means by which to activate and deactivate a physical connection.

• **Layer 2: Data link layer.** Provides a reliable means of transmitting data across a physical link; breaks up the input data into data frames sequentially and processes the acknowledgment frames sent back by the receiver.
• **Layer 3: Network layer.** Routes information from one network computer to another; computers may be physically located within the same network or within another network that is interconnected in some fashion; accepts messages from the source host and sees to it they are directed toward the destination.

• **Layer 4: Transport layer.** Provides a network-independent transport service to the session layer; accepts data from the session layer, splits it up into smaller units as required, passes these to the network layer, and ensures that all pieces arrive correctly at the other end.

• **Layer 5: Session layer.** User’s interface into network; where user must negotiate to establish a connection with the process on another machine; once the connection is established, the session layer can manage the dialogue in an orderly manner.

• **Layer 6: Presentation layer.** Here messages are translated from and to the format used in the network to and from a format used at the application layer.

• **Layer 7: Application layer.** Includes activities related to users, such as supporting file transfer, handling messages, and providing security.

The **Systems Network Architecture (SNA)** is a standard developed by IBM that is widely used in private networks. Similar to OSI, SNA uses a layered approach; however, the layers are somewhat different. Certain types of expected errors, such as those occurring over phone lines, are handled automatically. Other errors, such as software problems, are isolated, logged, and reported to the central technical staff for analysis.

Network management software comes in different shapes and has many functions in operating a network. These functions reduce time spent on routine tasks, such as remote, electronic installation of new software on many devices across a network. They also provide faster response to network problems, greater control over the network, and remote diagnosing of problems in devices connected to the network. In short, network management software performs functions that decrease the human resources needed to manage the network.

Active Directory. Active Directory (AD) is a software product created by Microsoft that provides applications with a single user interface for accessing network directory services from multiple operating systems. An AD service application interacts with the directory services of each operating system through the set of interfaces supported for each namespace. Because many of the administrative tasks and directory services are performing across namespaces, a similar set of interfaces is supported by each directory service implementation on the organization’s network. Active Directory is a key component of Microsoft’s Windows Server operating system, which simplifies management tasks, enhances data security, and extends interoperability with other networked operating systems.

Interfaces

An interface is a physical connection between two communications devices. One important concept of interfacing concerns the types of data transfer—parallel or serial. **Parallel data transfer,** most often used for local communication, employs a communications interface with a series of dedicated wires, each serving one purpose. In parallel communication, both data and control signals are transmitted simultaneously.

A serial data transfer, most often used for long-distance communications, is bit by bit rather than many bits in parallel. Most data communications devices transmit in serial fashion. While much slower than parallel data transfer, serial transfer is simpler and requires much less on the part of the receiving system.

Network Topology

The **topology** of a network is the physical layout and connectivity of a network. Specific protocols, or rules of communications, are often used on specific topologies, but the two concepts are different. **Topology** refers to the ways the channels connect
the nodes, whereas protocol refers to the rules by which data communications take place over these channels. Neither concept should be confused with the physical cabling of the network.

There are several basic network topologies: star, bus, ring, mesh, and hierarchical. Figure TG4.5 illustrates these different types. Hierarchical topologies typically connect desktops and minicomputers to a mainframe. Networks that combine more than one type (such as a ring segment connected to a star segment) are considered hybrid topologies. We discuss the various topologies in more detail below.

Star. A star network has a central node that connects to each of the other nodes by a single point-to-point link. Any communication between one node and another in a star topology must pass through the central node.

Bus. In a bus topology, nodes are arranged along a single length of twisted-pair wire, coaxial cable, or fiber-optic cable that can be extended at the ends. Using a bus topology, it is easy and inexpensive to add a node to the network, and losing a node in the network will not cause the network to fail. The main disadvantages to the bus topology are that a defective bus causes the entire network to fail. Also, providing a bus with inadequate bandwidth will degrade the performance of the network.

Ring. In a ring topology, nodes are arranged along the transmission path so that signals pass through each station one at a time before returning to their originating node. The nodes, then, form a closed circle. It is relatively easy and inexpensive to add a node to the network, and losing a node does not necessarily mean that the network will fail.

Mesh. A mesh network design is one in which each device is connected to every other device located on the network, like a spider web. The advantage to this design...
is the redundancy of the connected devices; if one link fails, it will not affect the rest of the network. The disadvantages of this design are the cost of all of the required medium and limited scalability. If you add a device to a network that currently has four devices, then you must connect the new device to the four existing devices with individual cable drops.

Hierarchical. In a hierarchical topology, nodes are arranged like an inverted tree with the root (usually the mainframe computer) as the highest level and the leaves (usually the desktop computers) as the lowest level. It is very cheap but may have possible traffic jams at the top level.

An advantage of the hierarchical topology is its ability to scale to very large networks. This scalability exists because of the exponential reduction in size of the visible topology and the amount of received topology state information at each switch in the network. These reductions improve the effectiveness of a network by reducing the control traffic, memory, and processing required by each switch in the network.

Hybrid. In a hybrid topology, nodes are arranged in more than one topology, which may include star, ring, and hierarchical (see Figure TG4.6). A hybrid topology can integrate together various computer configurations that may have special reasons for their own choice of topology (as mentioned in the preceding sections). A hybrid network will allow companies to pick the advantages from several different topologies.

Each topology has strengths and weaknesses. When systems developers choose a topology, they should consider such performance issues as delay, speed, reliability, and the network’s ability to continue through, or recover after, the failure of one or more of its nodes. A company should also consider such physical constraints as the maximum transmission speed of the circuit, the distances between nodes, the circuit’s susceptibility to errors, and the overall system costs.

Because people need to communicate over long as well as short distances, the geographic size of data communications networks is important. There are two general network sizes: local area networks and wide area networks. A “metropolitan” area network falls between the two in size. In addition, home networks are a type of LAN.

Local Area Networks. A local area network (LAN) connects two or more communicating devices within a short distance (e.g., 2,000 ft), so that every user device on the network has the potential to communicate with any other device. LANs are usually intraorganizational, privately owned, internally administered, and not subject to
regulation by the FCC. LANs do not cross public rights-of-way and do not require the communications hardware and software that are necessary to link computer systems to existing communications networks. A LAN allows a large number of its intelligent devices to share corporate resources (such as storage devices, printers, programs, and data files), and it integrates a wide range of functions into a single system. Many LANs are physically connected as a star, with every device connected to a hub or switch.

Metropolitan Area Networks. A metropolitan area network (MAN) is a network that interconnects users with computer resources in a geographic area or region larger than that covered by a local area network (even a large LAN) but smaller than the area covered by a wide area network (WAN). The term is applied to the interconnection of networks in a city into a single larger network (which may then also offer efficient connection to a wide area network). It is also used to mean the interconnection of several local area networks by bridging them with backbone lines, which are larger transmission lines that carry data gathered from smaller lines that interconnect with them. The latter usage is also sometimes referred to as a campus network. A typical use of MANs to provide shared access to a wide area network is shown in Figure TG4.7.

Home Networks. Home networks are the computer-networking infrastructure installed at home. The components of a home network are very similar to those used in an office network, but the scale is much smaller. By connecting their home computers into a network, users can:

- Share a single printer or expensive equipment between computers
- Share a single Internet connection among all the computers in the home
- Access shared files such as photographs, MP3s, spreadsheets, and word-processing documents on any computer connected to the network
- Play games that allow multiple users at different computers
- Send the output of a device such as a DVD player or Webcam to the home’s other computer(s)

Wide Area Networks. Wide area networks (WANs) are long-haul, broadband, generally public-access networks covering wide geographic areas that cross rights-of-way where communications media are provided by common carriers. WANs include regional networks such as telephone companies or international networks such as global communications service providers. They usually have very-large-capacity circuits with many communications processors to use these circuits efficiently. WANs may combine switched and dedicated lines, microwave, and satellite communications.