
Download free eBooks at bookboon.com

Go Faster!

134

Merged Columns

9 Merged Columns

9.1 Introduction

Now I want to turn to yet another very important reinement to the basic TR model, merged columns. In the previous

chapter, I discussed condensed columns, which can be characterized as a way of sharing ield values across records—but

the records in question all had to come from the same ile. Merged columns, by contrast, can be characterized as a way

of sharing ield values across records, where the records in question might or might not all come from the same ile.1 I’ll

consider two examples, the irst involving just one ile, the second involving two.

Note: Columns can be merged without necessarily having to be either sorted or condensed, but the general idea of merged

columns makes much more sense if the columns in question are both. In what follows, I’ll assume that merged columns

are indeed always both, barring explicit statements to the contrary. In practice, in fact, it’s hard to imagine a column being

merged without being both sorted and condensed as well.

9.2 The Bill-of-Materials Example

Essentially, the basic idea underlying merged columns is that distinct ields at the ile level can map to the same Field

Values Table column at the TR level (just so long as the ields in question are of the same data type, of course). For example,

consider the bill-of-materials relation MMQ depicted in Fig. 9.1. hat relation is meant to be interpreted as follows:

he indicated “major” part (MAJOR_P#) includes the indicated “minor” part (MINOR_P#) in the indicated quantity

(QTY); that is, the minor part is a component of the major part, and it takes the speciied quantity of the minor part to

make the major part. For example, it takes four P6’s (among other things) to make one P3. he attribute combination

{MAJOR_P#,MINOR_P#} is the sole key; attributes MAJOR_P# and MINOR_P# are both deined on type P#, and attribute

QTY is deined on type INTEGER.

Fig. 9.1: The bill-of-materials relation MMQ

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

135

Merged Columns

In what follows, I’ll irst consider what happens in this example without merged columns, and then take a look at how

the situation changes if we apply the merged-column reinement. Fig. 9.2, then, shows a possible ile corresponding to

the relation of Fig. 9.1. Note that I’ve deliberately shuled the record ordering around, purely to make later parts of the

discussion a little more interesting. (If we stick to the “obvious” ordering as suggested by Fig. 9.1, it turns out that too

many coincidences occur in, for example, the Record Reconstruction Table, coincidences that suggest the existence of

certain intrinsic relationships that don’t in fact exist.) Fig. 9.3 shows the corresponding uncondensed Field Values Table,

and Fig. 9.4 shows a corresponding Record Reconstruction Table, based on the following permutations:

•	 MAJOR_P# - MINOR_P# - QTY : 7, 2, 4, 9, 3, 5, 1, 6, 8

•	 MINOR_P# - MAJOR_P# - QTY : 7, 2, 9, 4, 3, 1, 5, 6, 8

•	 QTY - MAJOR_P# - MINOR_P# : 4, 7, 9, 1, 8, 2, 6, 5, 3

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Go Faster!

136

Merged Columns

Note: In the irst two permutations, attribute QTY is irrelevant, because the two leading attributes constitute a key. In the

third permutation, the choice of MAJOR_P# - then - MINOR_P# over MINOR_P# - then - MAJOR_P# is arbitrary on

my part. Exercise 13: Conirm for yourself that Figs. 9.3 and 9.4 are correct.

Fig. 9.2: File corresponding to the bill-of-materials relation of Fig. 9.1

Fig. 9.3: Uncondensed Field Values Table corresponding to the ile of Fig. 9.2

Fig. 9.4: Record Reconstruction Table corresponding to the ile of Fig. 9.2

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

137

Merged Columns

Fig. 9.5 now shows a condensed version of the Field Values Table from Fig. 9.3, and Fig. 9.6 shows a corresponding

expanded Record Reconstruction Table. Again, I recommend strongly that you conirm for yourself that these tables are

correct (Exercise 14). Perhaps I should remind you that:

Fig. 9.5: Condensed version of the Field Values Table from Fig. 9.3

Fig. 9.6: Expanded version of the Record Reconstruction Table from Fig. 9.4

•	 In the case of the Field Values Table (Fig. 9.5), the numbers in brackets represent row ranges. For example,

the row range [4:6] in cell [3,2] indicates that the corresponding ield value—namely, part number P4—

appears in rows 4, 5, and 6 of the corresponding uncondensed Field Values Table (all in column 2, of

course).

•	 In the case of the Record Reconstruction Table (Fig. 9.6), the two numbers in each cell are both pointers

(row numbers); the irst refers to a row of the Field Values Table, the second refers to a row of the Record

Reconstruction Table itself. For example, cell [7,2] contains the entry 4■8. he 4 means the relevant ield

value—namely, part number P5—is to be found in cell [4,2] of the Field Values Table. he 8 means the next

cell to be inspected in the Record Reconstruction Table is cell [8,3].

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

138

Merged Columns

Now (at last) we can start our examination of merged columns. Going right back to the user-level relation MMQ, it’s clear

that attributes MAJOR_P# and MINOR_P# are of the same data type (they’re both of type P#, in fact), and hence that

ields MAJOR_P# and MINOR_P# of the corresponding ile are of the same data type, too. hey can therefore be mapped

to the same column of the Field Values Table. Fig. 9.7 shows what happens. Note the following points:

Fig. 9.7: Field Values Table of Fig. 9.5 after merging the irst two columns

•	 Columns MAJOR_P# and MINOR_P# have been merged into a single column. In the igure, I’ve labeled the

resulting column, not very elegantly, “MAJOR_P# + MINOR_P#.”

•	 he merged column contains all of the ield values—part numbers, to be speciic—that previously appeared

in either column MAJOR_P# or column MINOR_P# in the table before merging. Duplicates have been

eliminated.2

•	 Each cell in the merged column thus contains a single part number, together with two row ranges: he irst

indicates which rows of the uncondensed Field Values Table (see Fig. 9.3) the corresponding part number

appears in as a major part number; the second indicates which rows of that uncondensed Field Values Table

the corresponding part number appears in as a minor part number.

•	 Note that those row ranges are basically the same as they were in the previous version of the Field Values

Table, except for occasional appearances of the special empty row range “[:].” he empty range is used

when the indicated part number doesn’t appear at all in the corresponding column of the uncondensed Field

Values Table; for example, P1 never appears as a minor part number.

I remark in passing, without going into details, that certain further reinements can usefully be applied to the

Field Values Table if empty ranges are either particularly common or particularly rare. he reinements in

question have the efect of saving storage space and speeding up searches (in the “common” case), or simplifying

the task of inding the entries with empty ranges (in the “rare” case). For more details, see reference [63].

•	 In the merged table, the merged column is column 1 and the QTY column is column 2 (ater all, the table

does now have just two columns, not three). Column 2, the QTY column, is the same as it was in Fig. 9.5.

Note: From this point forward, I’ll use the term “merged table” to mean any Field Values Table that includes

at least one merged column.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

139

Merged Columns

Fig. 9.8 shows the corresponding Record Reconstruction Table. Note the following points:

Fig. 9.8: Expanded Record Reconstruction Table corresponding to the merged Field Values Table of Fig. 9.7

•	 he Record Reconstruction Table still has three columns. However, columns 1 and 2 of that table now both

correspond to column 1 (the merged column) of the Field Values Table; column 1 refers to the irst row

range in that merged column and column 2 to the second. Column 3 of the Record Reconstruction Table

now refers to column 2 of the Field Values Table. hese facts will obviously have to be taken into account

when doing record or ile reconstruction using the Record Reconstruction Table (see below).

•	 he algorithm for building the Record Reconstruction Table remains essentially unchanged. However, the

table itself that results from executing that algorithm is not unchanged. To be speciic, if you compare Figs.

9.8 and 9.6, you’ll see that the last entry in column 1 and all of the entries in column 2 have changed, in

that the irst of the two row numbers—the one that refers to the Field Values Table—has increased by one in

every case. his change is a result of the appearance of the aforementioned empty ranges in the merged Field

Values Table.

Another strong recommendation (again you’ve probably already guessed this one): Try using the Record Reconstruction

Table of Fig. 9.8, together with the Field Values Table of Fig. 9.7, to reconstruct a corresponding ile. If you work down

column 1 of the Record Reconstruction Table, you should wind up with a ile that’s a direct image of relation MMQ as

shown in Fig. 9.1 (this is Exercise 15).

I’ll inish up this section with a brief discussion of certain signiicant implications of the merged-columns idea. First,

it obviously saves space. Suppose for the sake of the example that part numbers and quantities require four bytes each,

while row numbers require two bytes each. Suppose too, realistically enough, that each row range is represented by a

begin point only.3 hen the unmerged Field Values Table of Fig. 9.5 would occupy a total of 90 bytes, while that of Fig.

9.7 would occupy a total of 78 bytes—a 13.3 percent reduction.

he next point is much more important. It has to do with join operations. Suppose we want to join relation MMQ to itself,

matching minor part numbers in “the irst copy” (as it were) of the relation with major part numbers in “the second copy.”

Such a join is very likely in practice, by the way; it’s needed, for example, in computing the result of the well-known part

explosion query “Get all components, at all levels, of some given part.” Well, we can tell in a single pass over the merged

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

140

Merged Columns

Field Values Table just which tuples join to which! For example, row 3 of that table (which contains the part number P3)

shows a minor part number row range of [2:3] and a major one of [7:8]. It follows immediately that the second and third

tuples in “the irst copy” of relation MMQ both join to both the seventh and eighth tuples in “the second copy.” And, of

course, similar remarks apply to all of the other rows of that merged Field Values Table. In efect, therefore, we can do a

sort/merge join without doing the sort and without doing the merge, either!4

Note: Lest I be accused of some hypocrisy, or at least inconsistency, in the way I’ve worded the previous paragraph, let me

now try to state matters more precisely. Of course, there’s no such thing as the “second” tuple, or the “third” tuple, or the

“ith” tuple for any value of i, in any relation; the tuples of a relation aren’t ordered. hus, when I spoke of (for example)

“the second tuple” of “the irst copy” of relation MMQ, I was adopting a shorthand, and a pretty sloppy shorthand at that.

What I really meant by such talk was as follows:

•	 Let F1 be the reconstructed ile obtained from the Field Values Table of Fig. 9.7 by processing column

MAJOR_P# of the Record Reconstruction Table of Fig. 9.8 in top-to-bottom sequence. hen “the irst copy”

of relation MMQ is that ile F1, and “the ith tuple” of that copy is that unique tuple of relation MMQ that

corresponds to the ith record in F1.

•	 Likewise, let F2 be the reconstructed ile obtained from the Field Values Table of Fig. 9.7 by processing

column MINOR_P# of the Record Reconstruction Table of Fig. 9.8 in top-to-bottom sequence. hen “the

second copy” of relation MMQ is that ile F2, and “the ith tuple” of that copy is that unique tuple of relation

MMQ that corresponds to the ith record in F2.

“The perfect start

of a successful,

international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be

www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Go Faster!

141

Merged Columns

he third and last point I want to mention is that merged columns can help improve update performance, especially for

INSERT operations. Recall from Chapter 8 that condensed columns imply that such operations might be able to use ield

values that already exist, efectively sharing those values with other records. Well, the same is even more likely with merged

columns, because the sharing can occur across distinct ields. By way of example, consider what happens if the user tries

to insert an MMQ tuple with major part number P4, minor part number P6, and quantity 3.

9.3 A Foreign Key Example

For my second example, I want to return to the suppliers and shipments relations as discussed in earlier chapters. I’ve

shown those two relations once again, side by side, in Fig. 9.9. Observe now that {S#} in the shipments relation SPJ is a

foreign key, referencing the candidate key {S#} of the suppliers relation S (meaning that every value of {S#} in SPJ appears

as a value of {S#} in S). Here’s a slightly simpliied deinition of the concept:

•	 A foreign key is a subset of the attributes of some relation R2 whose values are required to appear as values

of some subset of the attributes of some relation R1 (R1 and R2 not necessarily distinct). he attribute subset

in question in relation R1 must constitute a candidate key for that relation R1.

As I’m sure you know, joins over a foreign key and its corresponding candidate key are needed very frequently in relational

systems.

Fig. 9.9: The suppliers and shipments relations S and SPJ

Let’s assume the relations of Fig. 9.9 are mapped to iles with ield and record orderings that directly relect those suggested

by that igure. hen Figs. 9.10 and 9.11 show the corresponding Field Values Table and Record Reconstruction Table

for suppliers, and Figs. 9.12 and 9.13 do the same for shipments. (Exercise 16: As usual, I recommend you check all of

these tables carefully.) Note that I haven’t condensed the supplier numbers column in Fig. 9.10, because each supplier is

guaranteed to have a unique supplier number. By contrast, I have condensed the supplier names column, albeit to little efect.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

142

Merged Columns

Fig. 9.10: Field Values Table for suppliers

Fig. 9.11: Record Reconstruction Table for suppliers

Fig. 9.12: Field Values Table for shipments

Fig. 9.13: Record Reconstruction Table for shipments

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

143

Merged Columns

Now let’s combine the Field Values Tables of Figs. 9.10 and 9.12, merging the two supplier number columns together (the

merging is clearly legitimate, because a foreign key and its corresponding candidate key must necessarily be of the same

data type).5 Refer to Fig. 9.14. Note the following points:

Fig. 9.14: Merged Field Values Table for suppliers and shipments

•	 he merged table has seven columns, not eight. Column 1 is the merged column.6 Columns 2-4 correspond

to columns 2-4 of the suppliers Field Values Table; columns 5-7 correspond to columns 2-4 of the shipments

Field Values Table. hese facts will have to be taken into account when doing record or ile reconstruction

for shipments, but have no analogous implications for suppliers.

•	 he row ranges shown in column 1 indicate which rows of the uncondensed Field Values Table for shipments

the corresponding supplier number appears in—we obviously don’t need any analogous row ranges for

suppliers (why not?). Note that the supplier numbers S4 and S5 don’t appear in the shipments relation at all,

and therefore don’t appear in the shipments Field Values Table either (hence the empty row ranges for those

suppliers in the merged table of Fig. 9.14).

•	 he corresponding Record Reconstruction Tables remain unchanged and are as shown in Figs. 9.11 and

9.13, respectively—with the trivial exception that, strictly speaking, we ought to replace the column numbers

2, 3, 4 for the Record Reconstruction Table for shipments by the column numbers 5, 6, 7, respectively.

It should be clear that the advantages of merging columns in this example are analogous to those that applied in the bill-

of-materials example in the previous section. In particular, joining suppliers and shipments on supplier numbers—which

is a foreign-key-to-corresponding-candidate-key join, of course, and thus likely to be much needed in practice—now has

the potential to be extremely fast (see Chapter 10).

Let me close this section by noting that foreign-key-to-corresponding-candidate-key joins are, by deinition, many-to-one

joins speciically, because a given tuple in the relation with the foreign key is guaranteed to join to exactly one tuple in

the relation with the corresponding candidate key. (I discount the possibility that the foreign key might “be null” in some

tuple, in which case it wouldn’t join to any tuple at all. See the next chapter, Section 10.11.) By contrast, the join discussed

in the previous section (a join of relation MMQ with itself) was a many-to-many join. And, while this latter example

involved just a single relation, it should be clear that many-to-many joins between two distinct relations can also beneit

from the merged-columns idea. It should also be clear that all of the concepts discussed in this chapter so far extend to

three, four, ..., or any number of relations.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

144

Merged Columns

9.4 Another Kind of Merging

Toward the end of the previous chapter, I pointed out that column condensing was, among other things, a technique for

saving storage space, and I took a brief look at certain other space-saving techniques that could be applied in the context

of the TR model. Well, column merging too can be regarded among other things as a technique for saving storage space,

and in the present section I’d like to take a quick look at a diferent kind of column merging that might also be used to

save space.

he basic idea is that two distinct ields from the same ile might map to a single combined column in the Field Values

Table, even if they’re of diferent data types. For example, consider the suppliers relation of Fig. 9.9 once again. Assume

as before that the relation maps to a ile with ield and record orderings that directly relect those suggested by that

igure. hen, instead of mapping each ield of that ile to a Field Values Table column of its own as in Fig. 9.10, it would

be possible to map—for example—the STATUS and CITY ields to a combined column, as shown in Fig. 9.15. Note the

revised row ranges in particular.

Fig. 9.15: Field Values Table for suppliers with a combined STATUS / CITY column

Now, in this particular example, combining the STATUS and CITY columns in the Field Values Table as suggested in

the igure probably doesn’t save much space—at least, not in the Field Values Table, though it will certainly (and in fact

more signiicantly) save space in the Record Reconstruction Table. But if there aren’t very many distinct status values,

or distinct city names, or (perhaps most important) distinct status-value / city-name combinations, then combining the

columns has the potential to reduce space requirements signiicantly in the Field Values Table, too. However, there’s a

downside. Consider the problem of searching the Field Values Table for a particular status value or a particular city name.

In the case of the status value, the search is no more diicult (and probably no more time-consuming) with the combined

column than it was without it, because the combined column is still in status value order. But in the case of the city name,

the search certainly is more diicult; in efect, separate searches will have to be done for each possible combination of a

status value with the city name in question.

9.5 Concluding Remarks

In earlier chapters (Chapter 4 in particular), I noted that the TR model takes the concept of data independence much

further than earlier systems did. Indeed, there’s really no single thing, or combination of things, at all at the TR level that

corresponds directly to a user-level tuple. From the discussions in this chapter, we can now see that there isn’t necessarily

any single thing or combination of things at the TR level that corresponds directly to a user-level relation, either—two or

more user-level relations might all map to the same combination of constructs at the TR level. Analogous remarks apply

to user-level attributes as well.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

145

Merged Columns

Endnotes

1. I also pointed out in the previous chapter that column condensing can be regarded, in part, as a kind of

ield-level compression. he same is true of column merging also.

2. In fact, the merged column contains the set theory union of the two original condensed columns, and we

could thus reasonably call it (as reference [63] in fact does) a “union column.” I prefer my term because

it suggests, correctly, that there’s some connection between such columns and the sort/merge approach to

implementing join operations, as we’ll see shortly.

3. Instead of empty ranges, we would then have adjacent entries in a column of the Field Values Table with the

same begin point.

4. More accurately, the sort and the merge don’t have to be done at run time; instead, they’re done ahead of

time when the Field Values and Record Reconstruction Tables are built (basically at load time).

5. I remark in passing that attributes STATUS and QTY are of the same data type, too (they’re both of type

INTEGER), and so we could have merged the STATUS and QTY columns as well if we had wanted.

6. I’ve labeled that column just “S#”, but it’s really “S# values from relation S or relation SPJ or both.”

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education

 ▶ visit www.ligsuniversity.com to

 ind out more!

is currently enrolling in the

Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

