Asynchronous sequential circuits (cont.)
design of, 415–416
flow table, 420–422
fundamental mode, 417
hazards, 452–457
in combinational circuits, 452–454
defined, 452
detection of, 453
essential, 456–457
implementation with SR latches, 454–456
remedy for eliminating, 454
in sequential circuits, 454
implementation example, 430–431
laboratory experiment, 553
 latch excitation table, 430
logic diagram, 436–437
primitive flow table, 433–435
reduction of, 435–436
race conditions, 422–424
race-free state assignment, 446–452
four-row flow-table example, 449–450
multiple-row method, 450–452
three-row flow-table example, 447–449
reduction of state and flow tables, 439–446
closed-covering condition, 445–446
compatible pairs, 443–444
implication table and implied states, 440–442
maximal compatibles, 444–445
merging of the flow table, 442–443
SR latch, 425–427, 430–431
analysis example, 428–429
transition table, 430
stability, 424–425
transition table, 417–420, 436–437
unstable states:
assigning outputs to, 437–439
Asynchronous sequential logic, 415–470

B
Base, 3–4
BCD 841, 21–22
BCD adder, 140–142
block diagram, 141
BCD addition, 19–20
BCD (binary-coded decimal) code, 18–19
BCD ripple counters, 256–258
logic diagram, 257
state diagram, 256
Behavioral modeling, 168–170, 207–210
Bidirectional shift register, 251, 537, 537–538
with parallel load, 537–538
Binary adder, 133–134
Binary adder-subtractor, 129–139
binary adder, 133–134
binary subtractor, 136–138
carry propagation, 134–136
full adder, 131–133
half adder, 130–131
overflow, 138–139
Binary and decimal numbers (laboratory experiment), 516
BCD count, 517–518
binary count, 516–517
counts, 518
oscilloscope display, 517
output pattern, 517–518
Binary cell, 25
Binary codes, 1, 17–25
American Standard Code for Information Interchange (ASCII), 23–25
BCD 841, 21–22
BCD addition, 19–20
BCD (binary-coded decimal) code, 18–19
decimal arithmetic, 20–21
error-detecting code, 25
Excess-3 code, 21–22
Gray code, 22–23
n-bit binary code, 17–18
2421 code, 21–22
weighted codes, 21
Binary countdown counters, 255
Binary counter with parallel load, 262–265
Clear input, 262–264
CLK input, 264
Count input, 264
Load input, 264
Binary counters:
defined, 253
with parallel load, 534–535
Binary decision box, algorithmic state machines (ASMs), 350
Binary digits, 1
Binary logic, 28–31
defined, 29
logic gates, 30–31
Binary multiplier, 142–143
c control state diagram for, 376
HDL description of, 382–389
datapath unit, 382
next-state logic of the controller, 382
laboratory experiment, 549–553
block diagram, 549–550
checking, 552–553
c ontrol of registers, 550–552
datapath design, 552
design of control circuit, 552
multiplication example, 552
parallel multiplier, behavioral description of, 388–390
testing, 384–388
Binary numbers, 3–5
conversion to octal numbers, 9
signed, 14–17
sum of, 5
unsigned, 14
Binary operator, 36
Binary ripple counters, 253–256
binary count sequence, 255
defined, 253
four-bit, 254
Binary storage and registers, 25–28
Binary storage cell, 291–292
Binary subtractor, 136–138
Binary systems, 3–4
Bipolar IC transistors, 477
Bipolar junction transistor (BJT), 473
Bipolar transistors:
base-emitter graphical characteristic, 479
caracteristics of, 477–481
collector and base currents, 478
dc current gain, 479
graphical collector-emitter characteristics, 479
pulled down output, 479
pulled output, 479
saturation region, 479
Bits, 1, 4, 285
Bitwise operators, 338
Block statement, 112
Blocking assignments, 209–210, 337
Boole, George, 38
Boolean algebra, 28, 38
associative law, 37
axiomatic definition of, 38–39
basic theorems, 41–43
binary operator, 36
canonical forms, 48–55
c onversion between, 52–53
closure, 37
commutative law, 37
defined, 36, 44
distributive law, 37
duality, 41
field, 37–38
identity element, 37
inverse, 37
and logic gates, 30–31, 36–39
manipulation of, 46–47
maxterms, 48–50
product of, 52
Index

Control unit, 345-346
Controllers, 335
Count operation registers, 334
Counters:
 binary countdown counters, 255
 defined, 242, 253
divide-by-N counter, 265
HDL for, 269-276
Johnston, 268-269
laboratory experiment, 533-535
 binary counter with parallel load, 534-535
 decimal counter, 534
 ripple counter, 534
 synchronous counter, 534
 ring, 267-268
 ripple, 253-258
 BCD, 256-258
 binary, 253-256
 symbols, 572-574
 synchronous, 258-264
 with unused states, 265-266
Critical race, 422-423
 avoiding, 447
 examples of, 423
Crosspoint, 300
Cycle time, memory, 289
Cycles, 423-424
Cyclic behavior, 207, 343
 edge-sensitive, 344

D

D flip-flops:
 advantage of designing with, 228
 analysis of clocked sequential circuits with, 204-206
 analysis with, 200-201
 characteristic equation, 194
 characteristic table, 193-194
 as example of a sequential machine, 210-212
D latch (transparent latch), 187-188
Darlington pair, 490-491
Data selector, 154
Dataflow modeling, 165-167
DataIn, 288
DataOut, 288
Datapath unit, 345-346
Data-processing path, 345-346
De current gain, 479
Debounce circuit, 431
Decade counter, 256
Decimal adder, 139-142
BCD adder, 140-142
Decimal arithmetic, 20-21

Decimal counter, 534
Declaration, 110
Decoders, 146-149, 566
 combinational logic implementation, 149
 n-to-m-line decoders, 146
 three-to-eight-line, 146
 truth table for, 147
 two-to-four-line, with enable input, 147-148
Delay control operator, 208
DeMorgan’s theorem, 43, 47-48
Demultiplexer:
 defined, 148
 with enable input, 147-148
Dependency notation, 564-566

Design:
 asynchronous sequential circuits, 433-439, 457-463
 logic diagram, 461-463
 merging of the flow table, 459-460
 primitive flow table, 457-458
 specifications, 457
 state assignment, 460-461
 transition table, 460-461
 combinational circuits, 523
 with complex programmable logic device (CPLD), 315
 with D flip-flops, 228
 digital systems, 345
 electronic design automation (EDA), 65
 with field-programmable gate array (FPGA), 315
 multiplexers, 390-401
 testing the ones counter, 400-401
 one-hot design (one flip-flop per state), 380-382
 with programmable array logic (PAL), 309, 311
 race-free, 401-403
 software race conditions, 403
 register transfer example, 352-361
 algorithmic-based behavioral description, 362
 behavioral descriptions, 361
 control logic, 360-361
 controller and datapath hardware design, 357-358
 datapath unit, 352
 HDL description of, 361-370
 register transfer representation, 358
 RTL description, 361-365
 sequence of operations, 356
 state table, 358-360
 structural description, 361, 366-370
 system chart, 353-355
 testing the design description, 365-366
 timing sequence, 355-356
 at register transfer level (RTL), 161, 334-414
 synchronous sequential logic, 161
 top-down, 161
Design entry, 107
Design procedure, synchronous sequential logic, 225-234
Digital age, 1
Digital computers, 1-3
 general-purpose, 2

Digital integrated circuits, 471-510
 bipolar transistors:
 base-emitter graphical characteristic, 479
 characteristics of, 477-481
 collector and base currents, 478
dc current gain, 479
 graphical collector-emitter characteristics, 479
 pulled down output, 479
 pulled out output, 479
 saturation region, 479
types of, 477
CMOS transmission gate circuits, 501-504
 basic circuit of, 501
 bilateral switch, 501-502
 connection to inverter, 501-502
 exclusive-OR gate, construction of, 502-503
gated D latch, construction of, 503-504
 master-slave D flip-flop, construction of, 504-505
 multiplexer construction, 503
 complementary MOS (CMOS) circuits, 498-501
 characteristics of, 500-501
CMOS digital logic family, 501
CMOS transmission gate circuits, 501-504
 examples of, 498-500
 fabrication process, 501
 graphic symbols, 500
 inverter, 498
two-input NOR gate, 500
 diodes, 479-480

DTL digital logic family:
 analysis of, 482-483
 fan-out, 483
NAND gate, 482
power dissipation of a DTL gate, 483
emitter-coupled logic (ECL), 493–495
basic circuit, 493
defined, 493
external wired connection of two OR outputs, 495
graphic symbol, 495
internal temperature- and voltage-compensated bias circuit, 493
internal wired connection of two OR outputs, 495
propagation delay, 494–495
metal-oxide semiconductor (MOS), 495–498
advantage of, 497
basic structure of, 495
channel, 495
depletion mode, 496
diffused channel, 496
drain, 495
enhancement mode, 496
gate, 495
graphic symbols, 496
n-channel MOS, 496–497
p-channel MOS, 496–497
source, 495–496
types of, 496
RTL digital logic family: analysis of, 481
fan-out, 481–482
NOR gate, 481
switch-level modeling, 505–508
transmission gate, 506–507
transistor–transistor logic, 484–493
advanced low-power Schottky TTL gate, 485
characteristics (table), 484
fast TTL family, 485
high-speed TTL gate, 484–485
low-power Schottky TTL, 485
low-power TTL gate, 484
open-collector output gate, 485–488
original, 484
propagation delay, 484
Schottky TTL gate, 484–485, 489–491
standard, 484
three-state gate, 491–493
totem-pole output, 488–489
Digital logic circuits, 27–28
Digital logic gates, 57–62
exclusive-OR gate, 59
extension to multiple inputs, 59–61
integrated circuits, 63–65
computer-aided design, 64–65
digital logic families, 63–64
levels of integration, 63
laboratory experiment, 519–520
NAND circuit, 520
propagation delay, 519–520
truth tables, 519
universal NAND gate, 520
waveforms, 519
NAND function, 59
positive and negative logic, 61
Digital logic trainers, 511–512
Digital systems, 1–3
defined, 2, 334
logic design of, 345
relationship between control logic and data-processing operations in, 345–346
Digital versatile disk (DVD), 2
Diminished radix, 10
Diminished radix complement, 10
Diodes, 479–480
symbol and characteristic, 480
Direct (dedicated) interconnect lines, 317
Direct inputs, flip-flops, 194–195
Direct reset input, flip-flops, 194
Distributed RAM, 317
Distributive law, 37
Divide-by-N counter, 265
Don't-care conditions, 86–88
DRAM, See Dynamic RAM (DRAM)
DTL digital logic family: analysis of, 482–483
fan-out, 483
NAND gate, 482
power dissipation of a DTL gate, 483
DTL (diode–transistor logic), 471
Duality, 41
Dual-trace oscilloscope, 512
Dynamic hazard, 453
Dynamic memory, refreshing, 291
Dynamic RAM (DRAM), 291
address coding of, 295
E
ECL (emitter-coupled logic), 471
Edge-sensitive cyclic behavior, 344
Edge-triggered D flip-flop, 189–191, 531
graphic symbol for, 191
hold time, 191
master, 189–190
setup time, 191
slave, 189–190
with three SR latches, 190–191
with two D latches and an inverter, 189–190
Eletrically erasable PROM (EEPROM/E2PROM), 304
Electronic design automation (EDA), 65
Emitter-coupled logic (ECL), 493–495
basic circuit, 493
defined, 493
external wired connection of two OR outputs, 495
graphic symbol, 495
internal temperature- and voltage-compensated bias circuit, 493
internal wired connection of two OR outputs, 495
propagation delay, 494–495
Enable input, 288
Encoders, 150–152
octal-to-binary, truth table for, 150
priority, 151–152
endmodule (keyword), 109
Erasable PROM (EPROM), 304
Error detection scheme, parity bit as, 296
Error detection/correction, 296–299
Hamming code, 296–298, 299
single-error correction, double-error detection, 298–299
Error-correcting code, 296
Error-detecting code, 25
Essential hazards, 456–457
Event control operator, 208
Excess-3 code, 21–22
Excitation equations, flip-flops, 200
Excitation table, 229
Exclusive-NOR function (XNOR), 57
Exclusive-OR gate, 59
Exclusive-OR symbol (©), 55
Exclusive-OR (XOR) function, 57, 101–102, 104
F
Fan-in, 64
Fan-out, 64, 473–474
Fast TTL family, 485
Fault simulation, 108
Feedback shift register, 537
Feedback-free continuous assignment, 403
Field, 37–38
Field-effect transistor (FET), 473, 495
Field-programmable gate array (FPGA), 65, 284, 311, 315, 343
design with, 315
logic block, 315
Xilinx FPGAs, 316
Xilinx Spartan II FPGAs, 323–327
Xilinx Spartan XL FPGAs, 322–323
Xilinx Virtex FPGAs, 327–329
Karnaugh map (K-map), 70–71, 343
Keywords, 108–109
Kilo (k), 4

L
Laboratory experiments, 511–558
adders and subtractors
(experiment 7), 527
adder–subtractor (four-bit), 528–529
full adder, 527
half adder, 527
magnitude comparator, 529–530
parallel adder, 528
asynchronous sequential circuits
(experiment 18), 553
binary and decimal numbers
(experiment 1), 516
BCD count, 517–518
binary count, 516–517
counts, 518
oscilloscope display, 517
output pattern, 517–518
binary multiplier (experiment 17),
549–553
block diagram, 549–550
checking, 552–553
circuit design, 550–552
data path design, 552
design of control circuit, 552
multiplication example, 552
Boolean function simplification
(experiment 3), 520–522
Boolean functions in sum-of-
min terms form, 522
complement, 522
gate ICs, 521
logic diagram, 521–522
clock-pulse generator (experiment 15),
545–547
circuit operation, 545–546
clock-pulse generator operation,
546–547
IC timer, 545
code converters (experiment 5),
524–526
Gray code to equivalent binary, 524
nine's complementer, 525
seven-segment display, 525–526
combinational circuits (experiment 4),
522–524
decoder and truth table block
diagram, 523–524
decoder implementation, 523–524
design example, 523
majority logic, 523
parity generator, 523
counters (experiment 10), 533–535
binary counter with parallel load,
534–535
decimal counter, 534
ripple counter, 534
synchronous counter, 534
digital logic gates (experiment 2),
519–520
NAND circuit, 520
propagation delay, 519–520
truth tables, 519
universal NAND gate, 520
waveforms, 519
digital logic trainers, 511–512
dual-trace oscilloscope, 512
flip-flops (experiment 8), 530–532
D latch, 530
docile-triggered flip-flop, 531
IC flip-flops, 531–532
master-slave flip-flop, 530
SR latch, 530
gate ICs needed for, 512
graphic symbols, 515
IC type 7493 ripple counter, 512
operation of, 512–515
integrated circuits required, 515
lamp handball (experiment 15), 541–545
circuit analysis, 544
counting the number of losses, 544
IC type 74194, 542
Lamp Ping-Pong™, 545
logic diagram, 542–544
playing the game, 544
logic breadboard suitable for
performing, 511
medium-scale integration (MSI)
circuits, 512
memory unit (experiment 14), 539–541
IC RAM, 539–540
memory expansion, 541
ROM simulator, 541
testing the RAM, 540–541
multiplexer design (experiment 6),
526–527
specifications, 527
parallel adder and accumulator
(experiment 16), 547–549
block diagram, 547
carry circuit, 548
checking the circuit, 548
circuit operation, 549
control of register, 547
detailed diagram of circuit, 548
sequential circuits (experiment 9),
532–533
counter design, 533
counter design, 533
counter design, 533
state diagram, 533
up-down counter with enable, 533
serial addition (experiment 12),
538–539
serial adder, 539
serial adder–subtractor, 539
testing the adder, 539
shift registers (experiment 11), 535–538
bidirectional shift register, 537
bidirectional shift register with
parallel load, 537–538
feedback shift register, 537
IC shift register, 535–536
ring counter, 537
small-scale integration (SSI)
circuits, 512
Verilog HDL simulation experiments
and rapid prototyping with
FPGAs, 553
experiment 1, 554
experiment 2, 554–555
experiment 4, 555–556
experiment 5, 556
experiment 7, 556
experiment 8, 556
experiment 9, 557
experiment 10, 557
experiment 11, 557
experiment 13, 557–558
experiment 14, 558
experiment 16, 558
experiment 17, 558
Lamp handball (laboratory experiment),
541–545
circuit analysis, 544
counting the number of losses, 544
IC type 74194, 542
Lamp Ping-Pong™, 545
logic diagram, 542–544
playing the game, 544
Latches, 184–188
D latch (transparent latch), 187–188
reset state, 185
sensitivity of, 184
set state, 185
large-scale integration (LSI) devices, 63
Index 603
Latch-free design, 403–404
Literals, 46
Load operation, registers, 244, 334
Logic circuits, See Digital systems
Logic diagram: obtaining output Boolean functions
from, 124
of three-bit binary counter, 234
Logic gates, 30–31
Logic operations, digital systems, 336
Logic operators, Verilog 2001 HDL, 339
Logic operators, for binary words, 338
Logic simulation, 107
Logic simulators, 122
Logic synthesis, 343–345
advantages to designer, 345
assign statement, 343
tools, 343
Logical operators, Verilog 2001 HDL, 339
Loop statements, 340–341
Low-power Schottky TTL, 485
Low-power TTL gate, 484
Magnetic disk, 290–291
Magnitude comparator, 143–145, 529–530
four-bit, 145
Mask programming, 303
Master–slave flip-flop, 530
Maximal compatibles, 444–445
Mealy FSM (Mealy machine), 206
Mealy model, 206–207
Mealy_Zero_Detector, 215–216
Medium-scale integration (MSI)
circuits, 512
Medium-scale integration (MSI)
devices, 63
Mega (M), 4
Mem, 288
Memory:
access time, 289
address, 286
architecture of, 285
communication between the environment and, 285
cycle time, 289
integrated circuit RAM units, 291
programmable logic device (PLD), 284
random-access (RAM), 284
sequential-access, 289
types of, 290–291
Memory cell, 291–292
Memory chip, control inputs to, 288
Memory cycle timing inputs to
waveforms, 289–290
Memory decoding, 291–295
address multiplexing, 294–295
coincident decoding, 293–294
internal construction, 291–292
Memory depth, 288
Memory description in HDL, 288–289
Memory enable, 287, 289
Memory system, mode of access of, 290
Memory timing, 289
Memory units, 284–287
block diagram, 285–286
capacity of, 285
defined, 284–285
laboratory experiment, 539–541
IC RAM, 539–540
memory expansion, 541
ROM simulator, 541
testing the RAM, 540–541
operation of, 288
reliability of, 296
volatile, 291
words, 285, 287
memword, 288
Merger diagram, 444
Metal-oxide semiconductor (MOS):
advantage of, 497
basic structure of, 495
channel, 495
depletion mode, 496
diffused channel, 496
drain, 495
enhancement mode, 496
gate, 495
graphic symbols, 496
n-channel MOS, 496–497
p-channel MOS, 496–497
source, 495–496
types of, 496
Metal-oxide-semiconductor field-effect
transistor (MOSFET), 473
Module, 207
module ... endmodule (keyword pair), 109
Module declaration, 108–110
Modules, 108–110, 217
Modulo-N counter, 265
Moore FSM (Moore machine), 206
Moore model, 206–207
MOS, See Metal-oxide semiconductor (MOS)
Multilevel NAND circuits, 92–93
Multiple-row method, 450–452
Multiplexers, 152–158, 313
Boolean function implementation,
154–156
data selector, 154
defined, 152
design example, 393–400
testing the ones counter, 400–401
design with, 390–401
laboratory experiment, 526–527
four-to-one-line, 153
graphics symbols for, 567
implementing a Boolean function
with, 156
implementing a four-input function
with, 157
input conditions, 393
quadruple two-to-one-line, 155
three-state gates, 156–158
two-to-one-line, 152–153, 153
NAND gate, 89–90
n-bit binary code, 17–18
Negation (–) operator, 338
negedge (keyword), 209
Nets, 164
Noise, defined, 476
Noise margin, 64, 476–477
Nonblocking assignments, 209–210, 337–338
Noncritical race, 422
Nondegenerate forms, 97
Nonvolatile memory, 291
NOR gate, 93–96
NOT operation, 29
npn type, bipolar transistor, 477–478
silicon transistor parameters, 479
n-to-m-line decoders, 146
Number-base conversions, 5–7
Octal number system, 4
Octal numbers, conversion to
hexadecimal, 9
Octal-to-binary encoder, truth table for,
150
Odd function, 102–104
One-hot assignment, 224–225
One-hot design, 380–382
Open Verilog International (OVI), 108
Open-collector output gate, 485–488
AND-OR-INVERT function, 487
applications, 486
forming a common bus line, 487–488
NAND gate, 485
wired-AND, 487
Index

Register transfer level (RTL) (cont.)
- continuous assignments, 337
- control logic, 376–382
design at, 334–414
digital system represented at, 334
in HDL, 336–345
HDL operators, 338–340
logic synthesis, 343–345
loop statements, 340–341
 latch-free design, 403–404
multiplexers, design with, 390–401
notation, 334–335
procedural assignments, 337–338
race-free design, 401–403
sequential binary multiplier, 370–376
Register transfer operations, 334, 336
Registers, 26, 242–253, 334, See also
Register transfer level (RTL)
defined, 242, 335
four-bit data-storage register, 244
HDL for, 269–276
- ripple counter, 274–276
- shift register, 269–273
- synchronous counter, 273–274
loading, 244
with parallel load, 244–245
shift registers, 245–253
defined, 245
serial addition, 248–250
serial input, 246
serial output, 246
serial transfer, 246–248
simple, 245–246
universal, 250–253
types of, 242–243
updating, 244
Relational operators, Verilog 2001
HDL for, 339
repeat loop, 340
Reset state, latches, 185
Ring counters, 267–268, 537
Ripple counters, 253–258, 534
BCD, 256–258
binary, 253–256
defined, 253, 256
HDL for, 274–276
ROM (read-only memory),
See Read-only memory (ROM)
RTL digital logic family:
analysis of, 481
fan-out, 481–482
NOR gate, 481
RTL (resistor-transistor logic), 471
S
Schematic capture, 65
Schematic entry, 65
Schottky transistor, defined, 489
Schottky TTL gate, 484–485, 489–491
symbol for Schottky
transistors/diodes, 490
Scratchpad memories, 321
Sensitivity list, 208
Sequence detector:
- maps for, 228
- state diagram for, 227
- state table for, 228
Sequential binary multiplier, 370–376
ASMD chart, 373–376
register configuration, 372–373
Sequential circuits, 182–184, 415–470
asynchronous, 183
block diagram, 182
hazards in, 454
laboratory experiment, 532–533
counter design, 533
state diagram, 533
up–down counter with enable, 533
synchronous, 183
Sequential (or simple) programmable
digital logic device (SPLD), 311, 313
Sequential programmable devices,
311–329
complex programmable digital logic
device (CPLD), 311, 313–315
design with, 315
configurable logic block (CLB), 317
distributed RAM, 317
enhancements, 320–321
field-programmable gate array
(FPGA), 65, 284, 311, 315
design with, 315
logic block, 315
Xilinx FPGAAs, 316
Xilinx Spartan II FPGAAs, 323–327
Xilinx Spartan XL FPGAAs, 322–323
Xilinx Virtex FPGAAs, 327–329
interconnect resources, 317–318
I/O block (IOB), 320
sequential (or simple) programmable
digital logic device (SPLD), 311, 313
Xilinx:
- basic architecture, 316–317
- FPGAAs, 316
Sequential-access memory, 290
Serial adder, 248, 539
second form of, 250
state table for, 250
Serial addition, 248–250
laboratory experiment, 538–539
serial adder, 539
serial adder–subtractor, 539
testing the adder, 539
Serial bit stream, 227
Serial input, 246
Serial output, 246
Serial transfer, 246–248
Set, 36
Set state, latches, 185
Shannon, C. E., 38
Shared-row method, 451
Shift operation, registers, 334
Shift operations, digital systems, 336
Shift operators, Verilog 2001
HDL for, 339
Shift register, HDL for, 269–273
Shift registers, 245–253, 321
bidirectional, 251
clear control, 251
clock input, 251
defined, 245
laboratory experiment, 535–538
bidirectional shift register, 537–538
bidirectional shift register with
parallel load, 537–538
feedback shift register, 537
IC shift register, 535–536
ing counter, 537
parallel-load control, 251
serial addition, 248–250
serial input, 246
serial output, 246
serial transfer, 246–248
shift-left control, 251
shift-right control, 251
simple, 245–246
unidirectional, 251
universal, 250–253
Shift-left control, shift registers, 251
Shift-right control, shift registers, 251
Signed binary numbers, 14–17
arithmetic addition, 16
arithmetic subtraction, 17
Signed-complement system, 14
Signed-magnitude convention, 14
Simple shift registers, 245–246
Simple Circuit_prop_delay, 111–112
Single-error correction, double-error
detection, 298–299
Single-pass behavior, 207
Small-scale integration (SSI) circuits, 512
Small-scale integration (SSI) devices, 63
Software race conditions, 403
Spartan chips, 320–321
Spartan device families, comparison
chart, 324
Spartan devices, 317
Spartan II FPGAAs, 323–327
device attributes (table), 324
Spartan XL FPGAAs, 322–323
architecture of, 323
device attributes (table), 323
Index

Two-valued Boolean algebra, 39–41
Two-variable map, 71–72

U
UDPs, See User-defined primitives (UDPs)
Unidirectional shift registers, 251
Universal NAND gate, 520
Universal shift registers, 250–253
 four-bit, 252
Unknown value, 159
Unsigned binary numbers, 14
Unstable circuits, 424–425
Unused states, 224
 counters with, 265–266
Updating a register, 244
User-defined primitives (UDPs), 114–116

V
Vectors, 160
Verilog HDL, 108, 159, 207, 209, 315
 memory description in, 288
 operators, 165, 338–340
 switch-level modeling, 505–508
 transmission gate, 506–507
Very large-scale integration (VLSI) devices, 63–65
VHDL, 108, 315
Virtex FPGAs, 327–329
Volatile memory units, 291

W
Waveforms, 519
Weighted codes, 21
 while loop, 340–342
Wired logic, 96

Word length, 288
Word locations, 290
Words, 285, 287
Write input, 285
Write operation, 284

X
Xilinx:
 basic architecture, 316–317
 FPGAs, 316
 Spartan II FPGAs, 323–327
 Spartan XL FPGAs, 322–323
 Virtex FPGAs, 327–329
 XNOR function, 57
 XOR function, 57