
Chapter 9

Asynchronous Sequential Logic

9 . 1 INTRODUCTION

A sequential circuit h specified by a time sequence of inputs. outpu ts. and inte rnal states. In
synchronous sequential circuits. the change of internal state occurs in response to the syn­
chronized clock pulses. Asynchronous sequential circu its do not use clock pulses. The cha nge
of interna l state occurs when there is a change in the input variables. The memory elements in
synchronous sequential circuits are clocked flip-flops . The memory elements in asynchronous
sequential circuits are either unclocked flip-flops or time-delay elements. The memory cepe­
biliry of a time-delay device depends on the finite amount o f time it lakes for the signal 10
propaga te through d igital gales. An asynchronous sequential circuit qu ite often resembles a
combinational circuit with feedback.

The des ign of asynchronous sequential circu its is more difficult than that of synchronous cir­
cu its because of the timing prob lems involved in the feedback path . In a prope rly designed
synchronous syste m. timing problems are el iminated by triggering al l flip-flo ps with the pulse
edge . The change from one state to the next occurs during the short time of the pulse transi­
tion. Since the asynchro nous circuit does not use a clock. the state of the syste m is allowed to
change immediately after the input changes. Care must be taken to ensure that each new state
keeps the circuit in a stab le condition even though a feedbac k path exists.

Asynchronous sequential circuits are useful in a variety of applications. They are used when
speed of operation is important. especially in those cases where the digital sys tem must reo
spend quickl y withou t having to wait for a clock pulse. They are more economical to use in
small indepe ndent syste ms tha t require only a few components, as it may not be practical to
go to the expense of providing a ci rcuit for generating clock pulses. Asynchronou s circui ts are
useful in applicat ions where the input sig nals to the system may change at any time . inde­
pendently of an internal clock. The communication between two units. each having its ow n
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416 Chapter 9 Asynchro nous Sequential Logic

independent clock, must bedo ne with asy nchro nous ci rcuits . Digital desi gners often prod uce
a mixed system in which some pan of the synchro nous system has thecharacteristics of an asyn­
chronous ci rcuit Knowledge of asynchro nous sequential logic behav ior is helpful in verifying
that the total digi tal system is ope rating in the proper manner.

Figure 9.1 shows the block diagra m of an asy nchronous seque ntial circuit that consists of
a combinational circuit and de lay ele ments connected to form feedback loops. Th ere are n
input variables. m output variables. and k: internal states. The de lay elements can be visualized
as providing short-term memory for the seq uential ci rcuit. In a gate-type circu it, the pro paga ­
tion delay that exis ts in the combinational circuit pat h from inpu t to output provides sufficient
delay alo ng the feedback loop so that no specific delay elements are actually inserted into thc
feedback path. The present-state and next-state variables in asynchron ou s seq uential circu its
arc customarily ca lled secondary variables and excitation variables, respectively. The exci ta­
lion variables should not beco nfused with the exci tab le table used in the de sign of clocked se­
quential circ uits.
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FI(i,URE 9.1
Block diagram of an async hrono us sequen tial circuit
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When an input variable changes in value, the y secondary varia bles do not change instan­
taneousty. It lakes a certain amount of time for the signal 10 propagate from the input term i­
nals, through the combinational circuit. to the Yexcitation variables. which generate new values
for the next state. These values propagate through the delay elements and become the new
present state for the seco ndary variables. Note the distinction between the v's and the Y's. In
the steady-state condition, they are the same, but during transition they are not. For a given value
of input variables. the system is stable if the circuit reaches a steady-state condition with Yi = Y;
for i = 1. 2, . . . • k. Otherwise. the circu it is in a conunuous transition and is said to be unsta­
ble. It is importa nt 10 realize thai a transition from one stable state to another occurs only in re­
spouse to a change in an inputvariable. Thi s is in con trast to synchronous systems. in which
slate transitions occur in response to the application of a clock pulse.

To ensure proper opera tion, asynchronou s sequential circuits must beallowed to attain a sta­
ble state before the input is changed to a new value. Because of delays in the wires and the gate
circuits, it is impossible to have two or more input variables change at exactly the same instant
of time without an uncertainty as to which one changes first. Therefore , simultaneous changes of
two or more variables are usually prohibited. This restriction means that only one input variable
can change at anyone time and the time between two input changes must be longer than the time
it lakes the circuit to reach a stable state. Such oper ation. defined es fundamental mode. assumes
thai the input signals change one at a time and only when the circuit is in a stable condition.

9 .2 ANALYSIS PROCEDURE

The analysis of asynchronous sequential circuits consists of obtaining a table or a diagram that
desc ribes the sequence of internal states and outputs as a function of changes in the Input vari­
ables .A logic diagram manifests the behavior of an asynchronous sequential circuit if it has one
or more feedback loops or if it includes unclocked flip-flops . In this sect ion. we will investi­
gate the behavior of asynchronous sequential circu its that have feedback paths without em­
ploying fl ip-flops. Unclocke d Flip-flop s are ca lled latches, and their use in asynchronous
sequentia l circu its will be explained in the next section.

The analysis procedure will be presented by means of three specific examples. The first ex­
ample introduces the transi tion table, the second define s the flow table , and the third investi­
gates the stability of asynch ronous sequential circ uits.

Transition Table
An exa mple of an asynchronous sequential circuit with only gates is shown in Fig. 9.2. The di­
agram clearly shows two feedback loops from the OR gate outputs back 10 the AND gate in­
puts. The circuit consists of one input variable x and two internal states. The internal states
have two excitation variab les, Y, and Y2. and two secondary variables, Yl and )'2. The delay as­
sociated with each feedback loop is obtained from the propagation delay between each Y input
and its corresponding youtput. Each logic gate in the path introduces a propagation delay of
about 2 to IOns. The wires that conduct elec trical signals introduce approximately a I-ns delay
for each foot of wire. Thus, no addit ional external delay elements are necessary when the com­
binational circuit and the wires in the feedback path provide sufficient de lay.
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FIGURE 9.2
Example of an asynchronous seq uential circuit

The analysis of the circuit starts with a consideration of the excitation variab les as outputs
and the secondary variables as inputs. We then derive the Boolean expressions for the excita­
tion variables as a function of the input and secondary variables. These expressions. readi ly ob­
tained from the logic diagram. are

Yl = XY I + x'n
Y2 = xYI + .t 'n

The next step is to plot the Y1 and Y2 functions in a map. as shown in Fig. 9.3(a ) and (b). The
encoded binary values of the )' variables are used for labe ling the rows. and the input .r vari­
able is used to designate the columns. This co nfiguration results in a slightly different three­
variable map from the one used in previous chapters . However, it is still a valid map. and such
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(a) Map for
Y l - XYI + X'Y2

(b ) Map for (e) Transition table
Y2= xy '1+ X'y:

fiGURE 9.3
Maps and transition table for the circuit of Fig . 9.2
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a configuration is. more convenient in dealing with asynchronous seque ntial circuits. !\OIe that.
unlike what was done in previous chapters. the varia bles belonging to the appropriate squares
are not marked along the sides of the map.

Tbe transition table sbcwn in Fig. 9.3(c) is obta ined from the maps by combining the binary
values in corres ponding squares, The transition table shows the value of Y = f lY.!inside each
square.The fin! bit of Y is ob tained from the value of f l. and the second bit is obtained from
the value of Yl in the same square position. For a stare to bestable, the secondary variables must
match the excitation variables (i.e .• the value of Y must be the same as that of Y = YI)',2 ) ' Those
entries in the transi tion table where Y = Y are circ led to indica te a stable condition. An uncir­
cled entry represents an unstable state.

Now consider the effect of a change in the input variab le. The square for .r = 0 and y = 00
in the transition table shows that f = 00 . Since f represents the next value of y. this is a sta­
ble condi tion, If .r change s from 0 to I while y = 00 . the circuit changes the value of Yto 01.
This represe nts a temporary unstable condition, becau se Y is not equal 10 the present value of
j-, What happens next is that as soon as the signal propagates to make Y = 01 , the feedback
path in the circuit causes a change in y to 01. Thi s change is manifested in the transition table
by a transition from the first row (y = 00) to the seco nd row, where y = 01. Now that y = Y,
the circuit reaches a stable con dition with an input of .r = I. In general. if a change in the
input takes the circ uit to an unstable Slate. the value of y will change (while that of .r remain..
the same) until it reaches a Mable (circled ) state. Using this type of analysis for the remaining
square s of the trans ition table. we find that the circuit repeats the sequence of states 00 , 01. I I.
10 when the input repeatedly alternate s between 0 and I.

Note the difference between a synchrorccs and an asynchronous sequential circuit. In a syn­
chronous system. me present state is totally specified by the flip-flop values and dues not change
if the input changes while the clock pulse is inactive, In an asynchronous circuit. the internal
state can change immediately after a change in the input, Because of this rapid change, il is some­
times convenient to combine the internal state ....ith the input value together and call it the 10101

state of the circuit. The circuit whose transit ion table is shown in Fig. 9.3(c) has four stable total
!itate~)u,:!.t = 000.01 1. 110. and 101-and four unstable total states-OO I. OIO. II I. and 100.

The transition table of asynchronous sequential ci rcuit.. is similar to the state table used for
synchronous circuits. If we regard the secondary var iables as the present state and the exci­
tation variables as the next state . we obtain the state table sho w n in Table 9.1. Th is table pro­
vides the same information as the transition tab le. There is one restriction that applies to the

Table 9 .1
State Table for the Circuit of Fig, 9.1

Neat State
Present
State K· 0 K = 1

0 0 0 0 0 1
0 I I I 0 I
I 0 0 0 I 0
I I I I I 0
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asynchronous case. but not the synchronous case : In the asynchronous transition table. there
usually is at least one next-state entry that is the same as the present-state value in each row.
Otherwise. ali the total states in that row will be unstable.

The procedure for obtaining a transition table from the circu it diagram of an asynchronous
sequential circuit is as follows:

1. Determine all feedback loops in the circu it.

2. Designate the output of eac h feedback loop with variable Y; and its corresponding input
with jy for i = 1. 2•... • k, where k is the number of feedback loops in the circuit.

3. Derive the Boolean functions of all Y's as a function of the external inputs and the .'"'!C>.

4. Plot each Yfunction in a map. using the y variables for the rows and the external inputs
for the columns.

S. Combine all the maps into one table showing the value of Y = Y1Y2 ••• Yi inside each
square.

6. Circle those values of Y in each square that are equal to the value of .'" = .'"l~ · · · .'"i in the
same row.

Once the transition table is available. the behavior of the circuit can be ana lyzed by observing
the stale transition as a funct ion of changes in the input variables.

Flow Table

During the design of asynchronous sequential circuits. it is more convenient to name the states
by letter symbols without making specific reference to their binary values. Such a table is
called aflow table and is similar to a transition table. except that the internal states are sym­
bolized with letters rather than binary number s. The flow table also includes the output values
of the circuit for each stable state.

Examples of flow tables are shown in Fig. 9.4. The one in Fig. 9.4(a) has four states. des­
ignated by the letters a. b. c. and d. It reduces to the transition table of Fig. 9.3(c ) if we assign

x
y 0 I

" 0 b

b c 0
, 0 d

d a 0
(a) Four states with

one input

fIGUR£ 9.4
Examples of flow tables

XlX1
00 01 11 10

" 0 0 0 0 0 0 b .O

b " . 0 " . 0 0 1 0 0

(b) Two states with two
inputs and one output
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the following binary values to the stares: a = 00. b = 0 I. c = II . and d = 10. The table of
Fig. 9.4(a) is called a primiti ve now table because it has only one stable state in each row.
Figure 9.4(b ) shows a now table with more than one stable ..tale in the same row. It has two
states. a andb: two inputs. '\" I and xs and one output. z. The binary value of the output vari­
able is indicated inside the square next 10 the state symbol and i..separated from the state sym­
bol by a comma. From the flow table. we observe the follow ing behavior of the circuit: If
'\" I = O. the circuit is in state a. If XI goes to I while x~ is O. the circuit goes to state b. With
inputs x lx 2 = II . the circuit may beeither in state a or in stale b. If it is in state a. the output
is O. and if it is in state b. the output is I. State b hi. maintained if the inputs change from 10 to
I I. The circuit stays in state a if the inputs change from 0 1to I I. Remember that in fundamental
mode two input variables cannot change simultaneously: therefore. we do not allow a change
of inputs from 00 to 11.

In order to obtain the circuit described by a now table . it is necessary to assign a distinct bi­
nary value to each state. Such an assignment converts the flow table into a transition table from
which we can deri ve the logic diagram. This is illustrated in Fig. 9.5 for the flow table of
Fig. 9.4(b). We assign binary 0 to state a and binary I to state b. The result is the transition table
of Fig. 9.5(a). The output map shown in Fig. 9.5(b) is obtained directly from the output values
in the now table. The excitation function Yand the output function z are simplified by means
of the two maps. The logic diagram of the circuit is shown in rig . 9.5(c).

XIX2r 00 0 1 II 10

0 0 0 0 1

1 0 0 0 0
(a) Transitio n tabl e:

y • .l:1.l: ' l '" .l:LV

XIX ls 0:1 01 II 10

0 0 0 0 0

1 0 0 1 0

(b) :\tap for output
: -.l: IXl'·

,
<, - t-+ --,- - - -{;;:;;7,;;\
<, - +-....-r>~---i ,'s'V

,
L- -'

y

(c) logic di a~am

FIGURE 9 .5
Derivation of • drtult specified by the now table of FJg. 9.-4(b)
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This example demonstrates the procedure for obtaining the log ic diagram from a given flow
table . Doin g that, how ever. is not always so simple. Thereare several difficulties associated \lrri th
thebinary stat e assign ment andwith theoutput assigned to the unstable states . Theseprob lems
are discussed in detail next.

Race Conditions

A race condition is said to exi st in an asynchronous seq uential circuit when (\\'0 or more bi­
nary state varia bles change value in response to a change in an input variable. Whe n unequal
de lays are encountered. a race condition may cause the stale variables to change in an unpre­
dictable manner. For example. if the state variables must change from 00 to II . the difference
in delays may cause the first variable to change sooner lhan the second, with the result that the
state variables change in seq uence from 00 to 10 and the n 10 II . If the second variable changes
sooner than the first. the Slate variables will change from 00 toOl and then to 11. Thus. the order
by which the state variables change may not beknow n in advance. If the final stable state that
the circuit reaches doe s not depend on the order in wh ich the state variables change. the race
is called a noncritical race. If it is possible to end up in two or more di fferent stable stares. de­
pending on the orde r in whic h the sta te varia bles change. the n the race is a critical race . For
prope r operation. criti cal races must be avoided.

The two examples in Fig . 9 .6 illustrate noncritical races. We sian with the total stable sta te
JIY2x "" (XX) and change the input from 0 10 I. The slate variables must then change from 00
to I I. which defines a race condition. The tran sitions listed under each table sho w three pos­
sible ways that the state variables may change. Either they can change simultan eou sly from 00
to I I. or they may change in sequence from 00 to 01 and then to I I. or they may change in \C ­

quence from 00 to 10 and then to II . In all cases. the final stable sta le is the same. so the race
is noncritical. In (a). the final total state is YIY2x "" III . and in (b). it is all .

,
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I I 01
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(I) Possible trlnsiliom;

00 - 11
00 _01 - 11
00 -10 - 11

(b) Possible trlUlsilions:

00 - 11 - 01
00 -01
00 -10 -11 - 01

moURE 9.6
Examples of noo crttial races
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(a] Pcssihlc transition s:

00 -- 11
00 __ 01

00 -- 10

(b) Possible transitio ns:

00 --11
00 - 01-11
00 __ 10

FIGURE 9 .7
Examples of critical races

The transition tables of Fig. 9.7 illustrate critica l races . Here again. we start with the tota l
stable state YIY2X = 000 and change the input from 0 to I . The state variables must then change
from 00 to 11. If they change simultaneously. the fina l total stab le state is I l l . In the transi­
tion table of part (a), if, becau se of unequal propagation delay . Yzchanges to 1 before Y1doe s,
then the circuit goes to the total stable state 01\ and remains there . If. however, Y1 changes
first. the internal state becomes 10 and the circuit will remain in the stable total stale 101.
Hence, the race is critical because the circu it goes to different stab le states, depending on the
order in which the state variables change. The transition table of Fig. 9 .7(b) illustrates another
critical race, in which two possible transitions result in one final total state, but the third pos­
sible transition goes to a different total state.

Races may be avoided by making a proper binary assignment to the state variables. The
state variables must be assigned binary numbers in such a way that only one state variable can
change at any one time when a state transition occurs in the flow table. The subject of race-free
state assignmen t is discussed in Section 9.6.

Races can be avoided by directing the circuit through intermediate unstable states with a
unique state-variable change . When a circuit goes thro ugh a unique sequence of unstable states,
it is said to have a cycle. Fig. 9.8 illustrates the occu rrence of cycles. Again, we start with
}' IY2 = 00 and change the input from 0 to I . The transition table of part (a) gives a unique se­
quence that terminates in a total stable state JO J. The table in (b) shows that eve n though the
state variables change from 00 to 11. the cycle provides a unique transition from 00 to 0 1 and
then to I I. Care must be taken when using a cycle that terminates with a stable state. If a cycle
doe s nor terminate with a stable state, the c ircuit will keep go ing from one unstable state to an­
other, making the entire circuit unstable. Th is phenomenon is demonstrated in Fig. 9.8(c) and
also in the next example.
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(a ) Slate transition:
00_ 01_ 11_ 10

FIe.URE 9 .8
Examples of cycles

(b) Stale transition:

00- 01- 11

(c) Unstable

r Ol- l 1- 1O-

Stability Considerations

Because of the feedback connection that exists in asynchronous sequential circuits, care must
be taken to ensure that the circuit does not become unstable. An unstable condition will cause
the circuit to oscillate between unstable states. The transition-table method of analysis can be
useful in detecting the occurrence of instability.

Consider, for example , the circuit of Fig. 9.9(a). The excitation function is

r = (Xly) 'X2 = (xl + Y')X 2 = xlx2 + X2.V'

<,
(a) Logic diagram

X IX :
y 00 01 11 10

0 0 1 1 0
1 0 0) 0 0

(b) Transilion tabl e

FIGURE 9 .9
Example of an un stable circuit
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The transition (able for the circuit is shown in Fig. 9.9(b). Those values of Ywhich are equal to
). are circled and represent stable states. Uncircled entries ind icate unstable conditions. Note
that column I I has no stable stales. This means that with input X IX2 fixed at I I. the values of Y
and y are never the same. If y = O. then Y = I. which causes a transition to the second row of
the table. with y = 1 and Y =O. This in tum causes a transition back to the first row. with the
result that the state variable alternates betwee n 0 and I indefinitely, as long as the input is II .

The insta bility co ndition can be detec ted directly fro m the logic d iagram . Let
Xl = I , Xl = I. and y = 1. Then the ou tput of the NAND gate is equal to 0 , and the output
of the AND gate is equal to 0, making Yequal to O. with the result that Y #- y. Now if y = O.
the output of the NAND gate is 1 and the output of the AND gate is 1. making Y eq ual 10 I.
with the result tha t Y #- y. If it is assumed that each gate has a propagation delay of 5 ns (in­
cluding transmission over the wires ). we will find that Ywill be 0 for 10 ns and I for the next
10 ns. Th is will result in a square- wave waveform with a period of 20 ns. The freque ncy of os­
ci llation is the reciprocal of the period and is equal to 50 MHz. Unle ss one is designi ng a
square-wave generator. the instability that may occur in asynchronous sequential circuits is
undesirable and must be avoided.

9 .3 CIRCUITS WITH LATCHES

Historically. asynchronou s circuits were known and used before synchronous circuit s were de­
veloped. The first practical digital circuits were constructed with relays . which are more adapt­
able to asynchronous operations. For this reason . the traditional method of asynchronous circuit
co nfiguration has been with components that are connected to form one or more feed back
loop s. When digital circuits are co nstructed with electronic compone nts. it is convenie nt to
emp loy the SR latch (introduced in Sect ion 5.3) as a memory element. The use of SR latches
in asynchronous sequential ci rcuits prod uces an orderly pattern in the logic diagrams. with the
memory e lements clearly visible . In this section. we analyze the operation of the SR latch.
using the technique introduced in the previous section. We then show a procedure for imple­
menting asynchronous seq uential circuits using SR latches.

5R Latch

The SR latch is a digital circuit with two inputs 5 and R and two cross-coupled NOR gates or
two cross-coupled NAND gates. The cross-co upled NOR gate circuit is shown in Fig. 9.10. This
circuit and its trut h table are taken from Fig. 5.3. In orde r to analyze the circ uit by the transi­
tion-table method. it is first redra.....n in Fig. 9. IO(c) to see the feedback: path from the output
of gate I to the input of gate 2. The output Q is equivalent to lhe excitation variable Yand the
secondary variable y, The Boolean function for the output is

Y = [(5 + r) ' + RI' ~ (5 + y )R' = SR' + R'y

Plotting Yas in Fig. 9. IO(d). we obtain the transitio n table for tbe circuit.
We can now inve stigat e the behavior of the SR latch from the tran sition table. The state

with S R = 10 is a stable stale because Y = Y = I ; likewise. the state with SR = 0 1 is a sta ­
ble state. because Y = Y = O. With S R = 10. the output Q = Y = I and the latch is said
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R
Q

s R Q Q'

I 0 I 0
0 0 I 0 (After SR - 10)
0 I 0 I
0 0 0 I (Aher SR - 01)

S
Q' I I 0 0

(a ) Cross-coupled circui t (b ) Trutb table
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,-{'f!;/ >o----r-- y • Q
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(e) Circuu shO\\i ng feedback

FIGURE 9 .10
SR latch with NOR g ates

SR
y 00 01 II 10

0 0 0 0 I

I 8 0 0 8
Y - SR' '1- R'y
Y - S +R'y 'fohcn SR : O

(d ) Trilnsition ta ble

to be set. Changing 5 to 0 leaves the circui t in the set state . With SR "" OJ . the output
Q "" Y = 0 and the latch is said 10 be reset. A ch ange of R back to 0 lea ves the circuit in
the reset stare. These conditions are also listed in the trut h table. The circuit exhibits some
difficu lty when be th Sand R are eq ual 10 I . From the tru th table . we see that both Q and Q'
are equa l to O. a condition that viola tes the req uirement that these IWO outputs be the co m­
plement of each other. Moreover, from the transition table. we note thai going from 5R ::: 1t
to SR = 00 produ ce" an unpredictable result. If 5 goes to 0 fir st. the output remains at O.
bu t if R goe s to 0 first. the output goes to I. In norm al operation. we must make sure that
ls are not applied 10 both the 5 and R inputs simultaneo usly. Thi s condition can be ex­
pressed by the Boolean function 5 R = O. which states that the ANDing of 5 and R must al­
ways result in a O.

Coming back to the excitation function. we note that when we OR the Boolean expression
5R' with 5R. the result is the single variable S:

S R' + SR = S( R' + R ) = S

From this. we infer tha t SR' = S when SR = O. The refore. the excitation function deri ved
previous ly, namely.

y = 5R' + R'y
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can be expressed in Fig. 9.1O(d) as the reduce d excitation fu nction

y =S + R'y when SR =0

To analyze a circuit with an SR latc h. we must first check that the Boo lean condition S R "" 0
holds at all times . We then use the reduced excitation func tion 10 analyze the circui t. However,
if it is found that both S and R can be equal to 1 at the same time. then it is necessary to usc
the original excitation func tio n.

The analysis of the SR latch with :'Il'ASD gates is carried out in Fig. 9.I I . The NAND latch
operates wi th both inputs nonnaJly at I. unless the sta te of the latch has to be changed . The ap­
plication of 0 to R causes the out put Q to go to O. thus putting the latch in the rese t state. After
the R input returns to I, a change of S to 0 causes a change to the set state. Th e condition to be
avoided here is tha t both Sand R not be 0 simultaneously. Thi s cond ition is satisfied when
S ' R ' ~ O. The exci tation function for the ci rcuit in Fig . 9.1ICc) is

Y - [S(Ry)']' = S' + Ry

Comparing this with the exci tation function of the NOR latch. we note that S has been rep laced
with S' and R' with R. Hence, the input variables for the NAND latch require the comple­
mented values of those used in the NOR latch . For this reason. the NAND latch is sometimes
referred to as an S'R' latch (o r S- R latc h).

5
Q

S R Q Q'

1 0 0 1
I 1 0 1 IAfter SR • 10)
0 1 I 0
1 1 1 0 IAfterSR - 01)

R
Q' 0 0 I 1

la) Cross-coup led circun Ib)Truth table

(c) Circui t $howing feedback

FIGURE 9.11
SR latch with NAND gates

SR
Y 00 01 II 10

0 1 I G G
1 0) 0) 0) 0

Cd) Translboa table
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Analysis Example

Asynchronous sequential circuits can be constructed with the use of 5R latches with or with­
out external feedback paths . Of course . there is always a feedback loop within the latch itself
Th e analysis of a circ uit with latches will be demonstrated by means of a specific example
from which it will be poss ible to generalize the proced ural steps necessary to analyze other. sim­
ilar ci rcuits.

Th e circu it sho wn in Fig. 9 .12 has two 5R latches with outputs Y. and Y2 . There are two in­
pUI S. X I and X2. and two external feedback loops giving rise to the seco ndary varia bles. J l and
Y2' Note that this circ uit rese mbles a conventional seq uential circuit wit h latches behaving like
flip-Oops without clock pulses. The analysis of the ci rcuit requ ires that we firs t obtain the
Boolean function.. fo r the 5 and R inputs in each latch :

5t = XI >':!

Rl = x jx2
52 = .tt_t2

R2 = xiy!

We then check whether the condition SR = 0 is satisfied to ensure proper operation of the circuit :

51 Rt = XI.\i xlxi = 0

S2 R2 = XtX2X2Yl =0

5,

Yl
R,

---+- - - - y,

"-L':::======t
FIGURE 9 .12
Exam ple of a circuit with SR latches

5,
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"'1"'2
" , 00 01 11 10

00 @J @ 01 @J

01 @ @ 11 11

11 00 @ @ 10

10 00 @ 11 ®
FIGURE 9.1 3
Transition t ab le for the circ uit of Fig . 9.12

The result is 0 becau se xIx! - X2 X2 =O.
The next step is to derive the transition tab le of the circuit. Remember that the transition table

specifies the value of Yas a funct ion of y and .r. The exci ta tion functions are derived from the
relation Y = S + R'y (see Figu re 9 . I Hd» and are

Y\ = 5 , + RjYI = x IY2 + ( XI + X2 ))'\ = XIJ'2 + .ttY, + XV"

Y2 = 52 + R2>~ = x ,x2 + (X2 + )'ih~ = XlX2 + X2Y2 + YiY2

We now deve lop a compos ite map for Y = Y, Y2. The )' variables are assigned to the rows in the
map. and the x variables are assigned to the columns . as shown in Fig. 9.1), The Boolean func ­
tions Y, and Y2. as just expressed. are used to plot the composite ma p for Y. Theentries of Yin
each row that have the same value as that given to }' arecirc led and represent stable states . in­
ves tigati ng the transition table. we deduce that the circuit is stable. There is a cri tical race con­
dition when the circuit is initially in total state )'1Y2XIX2 = 1101( Y1Y2 = 11) and X2 changes
from I to O ( Y\ Y2 = (0). If Y\ changes to 0 before Y2• the circuit goes to total state 0 100 instead
of 0000. However, with approx imat ely eq ual delays in the gates and latches. this undesirabl e
situation is not likely to occur.

Theprocedure for analyzing an asy nchronous seq uential circuit with 5R latche s can be sum­
marized as follows:

I. Label eac h latch output with Y; and its exte rnal feed back pa th (if any) with Yi for
i = 1. 2, ... . k.

2. Derive the Boolean functions for the 5; and Ri inputs in each latch.

3. Check whether S R =- 0 for each NOR latch or whether 5 ' R' = 0 for eac h NAND latch.
If either of these conditions is nOI satisfied. there is a possibility that the circuit may not
operate properly.

4. Eva luate Y = 5 + R'y for eac h NOR latch or Y = 5' + Ry (or each NAND latch .

S. Ccosrucra map. with the i s repm;enti ng the lOYr'Sand the ..t inp..u~ the colwnns.

6. Plot the value of Y = Y,Y2•· . Yt in the map.
7. Circle all stable Slates such that Y = y. 11K: res ulti ng map is thenthe transition table .
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latch beltatlon Table

The transit ion table of the SR latch is useful for analysis andfor defining tbe operation of the
latch. It specifies the excitation variable Y when the secondary variable y and the inputs S and
Rare known . During the impleme ntation process. the transi tion table of the circuit is available
andwe wish to find the values ofSand R. For this reason. we need a table that lists the required
input s S and R for each of the possible transition s from y to Y. Such a list is called an ~:ccitatjon

table.
The excitati on table of the SR latch is shown in Fig. 9 . 1 ~(b) . The first two columns list the

four possible transitions from y to Y. Th e next ( '0110 colu mns spec ify the req uired input values
that will result in the specified transition. For example. in order to provide a tran sition from
J = 0 to Y = I. it is necessary to ensure that input S "" I and input R = O. Th is is shown in
the second row of the transition table .

The required inpu t conditions fo r each of the four tran sitio ns in the exc itation table can be
deri ved directly from the larch transition table of Fig . 9 .IO<d) after removing the unstable con­
dition S R = I I. For e xample. the transition table shows that in order to change from J ... 0 to
Y = O. SR can beeitherOOorO I . Thi s means that S must be I and R may beeither 0 or I. There­
fore. the first row in the excitation table show s S =0 and R = X. where X is a do n't-care
condition signifying ei ther a 0 or a I.

Impleme ntat ion Example

A sequential circu it with SR larches is implemented through a procedure for obtaining tM logi c
diagram from a given transition table. The procedure requires that we determine the Boolean
functions for the S and R inputs of each latch. The logic diagram is then obtained by dra wing
the SR latches and the logic gates that implement the S andR functions . To demonstrate the pro­
cedure. we will repe at the implementation example o f Fig. 9 .5. The' output circuit remains the
same and will nor be repeated again.

The transition table from Fig. 9.5(a ) is duplicated in Fig. 9.1~a). From the infonnation
given in the transition tab le and from the latch excitation table conditions in Fig . 9.I~b). we
can obtain the map" for the Sand R inputs of the latch. as shown in Fig . 9. I~C) and Cd). For
example. the square in the second row and third column ( )'X IXl = II I ) in Fig. 9.I~a) re­
quires a transit ion from y = I to Y = I. The excitation table specifies S = X. R = 0 for uus
cha nge. Therefore. the corresponding square in the S map is marked with an X and the o ne in
the R map with a O. All other squares are filled with values in a similar manner. The maps are
then used to derive the simplified Boolean functions

""d R =.t j

Th e logic diagram consis ts of an SR latch and the gate s required to implement the S and R
Boolean funct ions . The circuit is as shown in Fig. 9.14<e) when a l'OR latch is used . With a
NAND latch. we mu..t use the complemented value s for S andR:

and R .. ;"1

This circuit is shown in Fig. 9.14(0.
Thegeneral procedure for implementing a circuit with SR latches from a given transition table

can now be summarized as follow s:
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XIX 2
Y 00 01 11 10

0 0 0 0 1

1 0 0 CD CD
(a) Transition table

Y "' X 1X ' 2 + XV '

y y 5 R

0 0 0 X
0 1 1 0
1 0 0 1
1 1 X 1

(b) Latch excita tion tab le

X lX 2

Y 00 01 11 10

0 0 0 0 ~1:~
1 0 0 X ;Ix;!

X1X2

Y 00 01 11 10

0 ~it t~l X 0

1 111~: -~lB 0 0

(d) Map for R '" x ' )

R

R

( f) Circuit with NAND latch(e) Circuit with NO R latch

FIGURE 9 .14
Derivation of a latch circuit from a t ramitlon table

1. Given a transition table that specifies the exci tation function Y = Y1Y2• • •ft. derive a
pair of maps for 5 i and Ri for each i = I. 2• . .. • k, This is done by using the co nditio ns
specified in the latch excitation table of Fig. 9.14(b).

2. Derive the simplified Boolean functions for each 5 j and Ri• Care must be taken not to
make 51and RI equal to 1 in the same mintenn square.

3. Draw the logic diagram. using k latches together with the gates required to generate the 5
and R Boolean functions. For NOR latches. use the 5 and R Boolean functions obtained in
step 2. For NAND latches. use the complemented values ot those obtained in step 2.

Another useful example of latch implementation is found in Section 9.7.
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De bounce Circuit

Input binary information in a digital system can be generated manually by means of mechan­
ical switches. One position of the switch provides a voltage equivalent to logic I. and the other
position provides a second voltage equivelent ro logic O. Mechanical switches are also used to
start. stop. or reset the digital system. In testing digital circuits in the laboratory. the input sig­
nals will normally come from switches. A common characteristic of a mechanical switch is
that when the arm is thrown from one position to the other. the switch contact vibrates or
bounces several times before coming to a final rest. In a typical switch. me contact bounce
may take several milliseconds to die out, causing the signal to oscillate between I and 0 be­
cause the switch contact is vibrating.

A debounce circuit is a circuit which removes the series of pulses mat result from a contact
bounce and produces a single smooth transition of the binary signal from 0 to I or from 1 to
O. One such circuit consists of a single-pole. double-throw switch connected to an SR latch. as
shown in Fig. 9.15. The center contact is connected to ground that provides a signal equiva­
lent to logic O. When one of the two contacts. A or B. is not connected to ground through the
switch. it behaves like a logic- I signal. A resistor is sometimes connected from each contact
to a fixed voltage to provide a firm logic-l signal. When the switch is thrown from position A
to position B and back. the outputs of the latch produce a single pulse as shown. negative for
Q and positive for Q'. The switch is usually a push button whose contact rests in position A.
When the push button is depressed. it goes to position B. and when released. it returns to po­
sition A.

The operation of me debc unce circuit is as follows: When the switch rests in position A. we
have the condition 5 :::: O. R = ) and Q = I. Q' = O. (See Fig. 9.I I(b l.) When the switch is
moved to position B. the ground connection causes R to go to O. while 5 becomes a 1 because
contact A is open. This condition in turn causes output Q to go to 0 and Q' [ 0 go to I . After the
switch makes an initial contact with B. it bounces several times. but for proper operation. we
must assume that it does no! bounce back far enough to reach point A. The output of the latch
will be unaffected by the contact bounce because Q' remains I (and Q remains 0) whether R
is equal to 0 (contact with ground) or equal [0 I (no contact with ground). When the switch re­
turns to position A. 5 becomes 0 and Q returns to 1. The output again will exhibit a smooth tran­
sition. even if there is a contact bounce in position A.

s
Q
~A

r: )
~R , Q'-e-

Ground A _ 8 . A _

FIGURE 9 .15
Debounce circuit
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9.4 DESIGN PROCEDUR E

The design of an asynchronou s sequential circuit starts from the statement of the problem and
culminates in a logic diagram . There are a number of design steps that must be carried out in
order to minimize the complexity of the circuit and to produce a stable circuit without critical
races. Briefly, the design steps are as follows: A primitive flow table is obtained from the de­
sign specifications. The flow table is then reduced to a minimum number of states. Next, the
states are given a binary assignment from which we obtain the transition table. Finally, from
the transition table, we derive the logic diagram as a combinational circuit with feedback or as
a circui t with SR latches.

The design process will be demonstrated by going through a specific example. Once this ex­
ample is mastered. it will be easier to understand the design steps that are enumerated at the
end of this section. Some of the steps require the application of formal procedures. and these
are discussed in greater detail in the sections that follow.

Design Example

It is necessary to design a gated latch circuit with two inputs G (gate) and D (data) and one out­
put Q. Binary information present at the D input is transferred to the Qoutput when G is equal
to I. The Q output will follow the D input as long as G = 1. When G goes to 0, the information
that was present at the D input at the time the transition occurred is retained at the Qoutput. The
gated latch is a memory element that accepts the value of D when G = I and retains this value
after G goes to 0. Once G = 0, a change in D does not change the value of the output Q.

Primitive Flow Table

As defined previously. a primiti ve flow table is a flow table with only one stable total state in
each row. Remember that a total stale consists of the internal state combined with the input. The
derivation of the primitive flow table can be facilitated if we first form a table with all possi­
ble total states in the system. This is shown in Table 9.2 for the gated latch. Each row in the
table specifies a total state, which consists of a letter designation for the internal state and a

Table 9 .2
Gated-latch Total States

Inputs Output

Stat e 0 G Q Comments

a 0 1 0 D =Q because G = I
b 1 1 1 D = Q becauseG = I
c 0 0 0 After stale a or d
d 1 0 0 After state c
e 1 0 1 After state b orf
f 0 0 1 After stale ~
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possible input combination for D and G. The output Q is also shown for each total state. We
start with the IWO total states that have G = I . From the design specifications. we know that
Q :::: Oif DG :::: 0 1 and Q:::: 1 if DG :::: II . becauseDmust be equal to Q when G :::: I. We
assign these conditions to states a and b. When G goes to O. the output depends on the last
value of D. Thus. if the transition of DG is from 0 I to 00 to 10. then Q must remain 0 because
D is0 at the time of the transition from I to 0 in G. If the transition of DG is from I I to 10 to
00, then Q must remain I. This infonnation results in six different total states, as shown in the
table. NOIe thai simultaneous transitions of two input variables, such as from 0 1 to 10 or from
II to 00, are not allowed in fundamental-mode operation.

The primitive flow table for the gated latch is shown in Fig. 9.16. It has one row for each
state and one column for each input combination. First. we fill in one square in each row be­
longing to the stable state in that row. These entries are determined from Table 9.2. For exam­
ple. Slate Q is stable and the output is 0 when the input is 0 I. This infonnation is entered into
the flow table in the first row and second column. Similarly. the other five stable stales to­
gether with their output are entered into the corresponding input columns.

Next. we note that since both inputs are nor allowed to change simultaneously. we can enter
dash marks in each row that differs in two or more variables from the input variables associ­
ated with the stable state. For example, the first row in the flow table shows a stable state with
an input of 01. Since only one input can change at any given time. it can change to 00 or 11.
but not to 10. Therefore. we enter two dashes in the 10 column of row Q. This will eventually
result in a don' t-care condition for the next state and output in this square. Following the same
procedure, we fill in a second square in each row of the primitive flow table.

Next, it is necessary to find values for two more squares in each row. Thecomments listed
in Table 9.2 may help in deriving the necessary infonn ation. For example. state C' is associated
with input 00 and is reached after a change in input from state Q or d.Tberefore. an unstable state

00
Inputs DG
01 11 10

FI(i,URE. 9 .16
Primitive flow table

b

c•:;;
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,

!
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c is shown in column 00 and rows a and d in lhe flow lable. The output is. marked with a da..h
10 indicate a don 't-care condition. The interpretation of this situation is tha i if the circuit is in
Mablestate a and the input changes from 011000. the circuit first goes to an unstable ne xt state
c. which changes the present-slate value from a to c. causing a trans ition to the third row and
first col umn of the table. The unstable state values for the other square s are determined in a
similar manner. All outputs associat ed with unstabl e states are marked with a dash 10 indicate
don 't -care conditions. The assignment of actual values to the outputs is discussed further . after
the design example is completed .

Reduction of the Primitive Flow Table

The primitive flow table has only one stable ...tare in each row. The tab le can be reduced 10 a
smaller number of rows if two or more stable states are placed in the same row. The grouping of
stable states from separate rows into one com mon row is called merging. Merging a number of
stable states in the same row means that the binary state variable ultimately assigned to the merged
row will not change when the input variable changes . This is beca use. in a primitive flow table.
the stale variable changes every time the input change s, but in a reduced flow table, a change of
input will not cause a change in the state variab le if the next stable state is in the same row.

A formal procedure for reduc ing a flow table is given in Section 9.5. In order to complete
the design example in the current section without going through the fonnal procedure. we will
apply the merging process by using a simplified version of the merging rules. Two or more rows
in the primitive flow table can be merged into one row if there are noncon flicting stales and
o utputs in each of the col umns. Whene ve r o ne state sy mbol and do n't -care entries are e n­
countered in the same column, the state is listed in the merged row. Moreover. if the stale is
circ led in one of the rows. it is also circled in the merged row. The output value is included with
each stable slate in the merged row. Becau se the merged stales have the same output. the state
cannot be distinguished on the basis of the output.

We now apply these rules to the primitive flow table of Fig. 9.16. To see how this is do ne.
the primitive flow table is separated into two parts of three rows each . as shown in Fig. 9.17(0).
Each part shows three stable states that can be merged because there are no conflicting entries
in each of the fou r columns. The first column shows state c in all the rows and 0 or a dash for
the output. Since a da...h represents a don ' t-care condition, it can beassociated with any state or
outp ut. The two da shes in the first column can be taken to be 0 output to make all three rows
identical to a stable state c with a 0 output. Th e second column shows that the dashes can beas­
signed to correspond to a stable state a with a 0 output. Note that if a state is circled in one of
the rows, it is also circ led in the merged row. Similarly. the third column can be merged into an
unstable state b with a don' t-care output, and the fourth column can bemerged into stable state
d and a 0 output. Thus, the three rows a, c. and d can be merged into one row with three stable
states and one unstable stale, as shown in the first row of Fig. 9.17(b). 1be second row of the
reduced table results from the mergi ng of rows b, e, andfof the peim iaveflow table. In this ex­
amp le. there are two ways that the reduced tab le can bedrawn. Fint., the letter symbo ls for the
states can be retained 10 show the relationship between the reduced and primitive flow tables.
Alternatively. because the t'A-'0 tables have the same output. we can assign a common letter sym­
bolto all of the stable states of the merged rows. Thu s, states c andd are replaced by state a,and
states r andfare replaced by stale b. Both alternatives are shown in Fig. 9 .17(b) .
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DG
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a , ,- 0 ° ' ,- - , -

c 0 ,0 ' ,- - - d, -
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•
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(b) Reduced table (two alte rnatives)

FIGURE 9 ,17
Redu ction of the primitive flow table

Transit ion Table and Logic Diagram

In order to obtain the circuit described by the reduced flow table, it is necessary to assign
a distinct binary value to each state. This assignment converts the flow table into a transi­
tion table. In the general case, a binary state assignment must be made to ensure that the cir­
cuit will be free of critical races. The state-ass ignment problem in asynchronous sequential
circuits and ways to solve it are discussed in Section 9.6. Fortunately, there can be no crit­
ical races in a two-row flow table; therefore, we can finish the design of the gated latch
prior to studying that section. Assigning 0 to sta te a and I to state b in the reduced flow table
of Fig. 9.17(b), we obtain the transition table of Fig. 9.18(a). The transition table is, in ef­
fect, a map for the excitation variable Y. The simplified Boolean function for Y is then ob­
tained from the map as

Y = DC + C'y

There are two don' t-care outputs in the final reduced flow table. If we assign values to the our­
put as shown in Fig. 9.18(b), it is possible to make output Q identical to the map of the exci­
tation function Y. Alternatively, i f we replace the don' t-care by I when J = I and DC ::: 01,
the map reduces to Q ::: Y. If we assign the other possible values to the don't -care outputs. we
can make output Q equal to y. In either case, the logic diagram of the gated latch is as shown
in Fig. 9.19.
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FIGURE 9. 18
Transition table and output map for gated latch
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FIGURE 9 .19
Gated-latch logic diagram

The diagram can also be implemented by an SR latch. Using the procedure outlined in
Section 9.3, we first obtain the Boolean functions for S and R, as shown in Fig. 9.20(a). The
logicdiagram with NAND gates (see Fig. 5.4) is shown in Fig. 9.20(b). Note that the gated latch
is a level-sensitive D-latch, introduced in Section 5.3 and Fig. 5.6.

Assigning Outputs to Unstable States

The stable states in a flow table have specific output values associated with them. The un­
stable states have unspecified output entries designated by a dash. The output values for the
unstable states must be chosen so that no momentary false outputs occur when the circuit
switches between stable states. This means that if an output variable is not supposed to
change as the result of a transition. then an unstable state that is a transient state between
two stable states must have the same output value as the stable slates. Consider. for exam­
ple, the flow table of Fig. 9.21(a). A transition from stable stale a 10 stable state b goes
through the unstable state b. If the output assigned to the unstable state b is a I. then a mo­
mentary short pulse willappear on the output as the circuit shifts from an output of 0 in state
a to an output of I for the unstable b and back to 0 when the circuit reaches stable slate b.
Thus, the output corresponding to unstable stale b must be specified as 0 to avoid a mo­
mentary false output.
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fiGURE 9 .20
Circuit with SR latch
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fiGURE 9,21
Assign ing output values to unstable states

(b) OUIPUI assignment

If an output variable is 10 change value as a result of a change in state. tben this variable is as­
signed a don ' t-care condition. For exem ple.tbe transition from stable state b 10stable state c in
Fig. 9.21(a) changes the output from 0 10 1. If a 0 is entered as the output "aloe for the unstable
state c, then the chan ge in the outpu t variable will not take place unti llhe end o f the transition. If
a 1 is entered. the change will take place at the stan of the transition, Since it makes no difference
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when the change in output occurs, we place a don't-care entry for the output associa ted with un­
stable state c. Fig. 9.21(b) shows the output assignment for the flow table, demonstrating the four
possible combinations of changes in output that can occur. The procedure for making the assign­
ment to outputs associated with unstable states can be summarized as follows:

1. Assign a 0 to an output variable associ ated with an unstable state which is a transient state
betw een two stab le sta tes that have a 0 in the corresponding output variable.

2. Assign a I to an output variable associ ated with an unstab le state which is a transie nt state
betw een two stable states that have a I in the corresponding output variable .

3. Assign a don ' t-care condition to an output varia ble associated with an unstab le state
which is a tran sient state between two stable states that have diffe rent value s (0 and I,
or I and 0) in the corresponding output variable .

Summary of Design Procedure

The design of asynchronous sequential circuits ca n be carried o ut by using the procedure il ­
lustrated in the prev ious example. Some of the design steps need further elaboration and are
explained in upcomin g sections. The procedural steps are as follo ws:

t. Obtain a primiti ve flow table from the given de sign specifications. This is the mos t
difficult pan of the design , because it is necessary to use intuition and expe rience to
arri ve at the correc t interpretation of the probl em specifications.

2. Reduce the flow table by merging rows in the primitive flow tab le. A forma l procedure
for merging rows in the flow table is give n in Section 9.5.

3, Assign binary state variables to each row of the reduced flow table to obtain the trans i­
tion tab le. The state-ass ignment procedure that el iminate s any possible critical race s is
given in Sec tion 9.6 .

4, Assign output value s to the dashes associ ated with the unstable states to obtain the out­
put maps. Thi s procedure was explained previously.

S, Simplify the Boolean functions of the excitation and output variables and draw the logic
diagram, as shown in Section 9.2. The logic diagram can be drawn with SR latches, as
shown in Secti on 9 .3 and also at the end of Secti on 9.7.

9 . 5 REDUCTION OF STATE AND FLOW TABLES

The procedure for redu cing the number of internal states in an asynchronous sequential circ uit
resembles the procedur e that is used for synchronous circuits. An algorithm for the state re­
duction of a completely specified state table was given in Secti on 5 .7. We will review this al­
gorithm and apply it to a state-reduction method that uses an implica tion table. The algorithm
and [he implication table will then bemodified to cove r the state reduction of incompletely spec­
ified state table s. The modified algorithm will be used to explain the procedure for reducing
the flow table of asynchronous seq uential circuits.
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Tab le 9. 3
Stote Table ta Demamtrate Equivalent States

Next State Out put
Prese nt
State x = 0 x = I ... = 0 x = I

a c b 0 I
b d a 0 I
c a d I 0
d b d I 0

Implica tion Table and Implied State.

The state-reduction procedure for completely specified state tables is based on an algorithm that
combines two slates in a slate table into one. as long as they can be shown to be equivalent.
Two states are equ ivalent if. for each possible input. they give exactly the same output and go
to the same next states or to equ ivalent next states"Table 6.6 shows an example of equ ivalen t
states that have the same next states and outputs for each combination of inputs. There are oc­
casions when a pair of states do not have the same next states. but. nonetheless. go 10equ iva­
lent next states. Consider. for example. the state table shown in Table 9.3. The present states a
and b have the same output for the same input. Their next states are c and d for .r = 0 and b
and a for .r = I . If we can show that the pair of states (c. d) are equivalent, then the parr of states
(a , b) will also beequivalent, beca use they will have the same or equivalent next sta tes. When
this relationship exists. we say that (a. b) imply (c, d) in the sense that if a and b are equiva­
lent then r and d have to be equivalent. Similarly, from the last two rows of Table 9.3 . we find
that the pair of stales (c, d) implies the pair of states (a, b). The characteristic of equivalent states
is that if (a . b) imply (c, d) and (c , d) imply (a , b), then both pairs of states are eq uivalent: that
is, a and b are equivalent, and so are c and d. As a consequence. the four rows of Table 9.3 can
be reduced to two TOW S by combining a and b into one state and c and d into a second state.

The check ing of each pair of states for possible equivalence in a table with a large number
of states ca n be done systematically by means of an implicatio n table, which is a chan that
consists of squares. one for every possible pair of states, that provide spaces for listing any
possible implied states. By judicious use of the table, it is possible to determine all pairs of equiv­
alent states. The Slate table of Table 9.4 will be used to illustrate this procedure. The implica­
tion table is shown in Fig. 9.22. On the left side along the vertical are listed all the states defined
in the state table except the first. and across the bottom horizontally are listed all the states ex­
cept the last. The result is a display of all possible combinations of two stares. with a square
placed in the intersection of a row and a column where the two states can be tested for equ iv­
alence. Two states having different outputs for the same input are not eq uivalent.

Two states Ihat are nOI equivalent are marked with a cross [X] in the corresponding square.
whereas their equivalence is recorded with a check mark ( \'). Some of the squares have entries
of implied states that must be investigated further to determine whether they are equivalent. The
step-by-step proced ure of filling in the squares is as follows: First. we place a cross in any
square corresponding to a pair of states whose outputs are not equal for every input. In this case,
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Table 9 .4
State Table to Be Reduced

Next State Output
Present

St a t e x = 0 x = 1 x = 0 x = 1

a d b 0 0
b e a 0 0
c , f 0 1
d a d 1 0
e a d 1 0
f c b 0 0, a e 1 0

b

r

d

e

f

,

~

d , eJ

x x

x x x

x x x /

C, d x c, e x x x x. , b

x x x d , e J d , e J x l

FIGURE 9.22
Implication table

b c d , r

state c has a different output than any other slate, so a cross is placed in the two squares of row
c and the four squares of column c. There are nine other squares in this catego ry in the impli­
cation table.

Next, we enter in the remaining squares the pairs of states that are implied by the pair of states
repre senting the squares. We do that starting from the top square in the left co lumn and going
down and then proceeding with the next column to the right. From the state table , we see that
pair (a, b) implies (d, e), so (d, e) is recorded in the square defined by column a and row b. We
proceed in this manner until the entire table is completed. Note that states (d. e) are eq uivalent
because they go to the same next state and have the same output. Therefore, a check mark is
recorded in the square defined by column d and row e, indicating that the two states are equiv­
alent and independent of any impl ied pair.



442 Chapter 9 Asynchronous Sequential l ogic

The next step is to make success ive passes throug h the table to determine .... hethe r any ad­
dit ional squares should be marked with a cross. A square in the table is crossed OUI if it con­
rains atleast one implied pair thai is not equivalent . For example. the ~uare defined b)"a and
f is marked with a cross next 10 C". d because the pair rc, tf) defines a square thai contain.. a
cross. Thi s procedure is repeated until no additi onal squares can be crossed 001. Finally. all
the squares that have no crosses are recorded with check mark s.Tbese squares defme pairs of
equivalent states. In this example. the equivalent Mates are

(a. b ) (d. t) (d. g) (to. go)

We now combine pairs of states into larger groups of equi valent stales. The libt three pairs
can be combined into a set of rbree equivalent states (d. e, g) becau se each one of the states in
the group is equivalent to the other two. The final partition of the states consists of the equi v­
alent states found from the implication table. together w ith all the remaining states in the state
table thai are not equivalent to any other state. Th is group consi sts of

(a, b) (e ) (d. e. g ) (j)

Thus. Table 9.4 can be reduced from seven slates to four. one for each member of the preced­
ing partit ion. The reduce d state table is obtained by replacing state b by a and slates e and g
by d and is sbown in Table 9.5,

Me rg ing of the Flow Table

There are occasions when the state table for a sequential circuit is incompletely specified" This
happens when certain combinations of inputs or inpu t sequences never occur because of ex­
temal or internal con straints, In such a case. the next sta tes and output" thai should have oc­
curred if all inputs were possible are never attained and are regarded as don 'Hare co nditions .
Although synchronous sequential circuits may sometimes be represented by incompletely spec­
ified state tables. our interest here is with a.synchronous sequential circuits. for w hich the prim ­
itive flow table h always incompletely specified.

Incompletely spec ified states can be combined to reduce the number of state.. in the flow

table. Such stares cannot becalled equi valen t because the formal de finition of equiv alence reo
quire !'> tha t all OUIPUIS and next ..rates be specified for all inputs. Instead. two incompletely
specified slates that can be co mbined are said to be C"ompatible , Two Mates are compatible if.

Table 9 .5
Reductd Stott TobIt

Next State Output
Present
State ... = 0 x = 1 ... = 0 , = 1

a d a 0 0, d f 0 I
d a d I 0
f c a 0 0
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Flow and implication tables

(or each possible input. they have the same output whenever it is speci fied and their next states
are compatible whe never they are specified. A ll don ' t-care conditions marked with dashes have
no effect in the search (or compatible states . as they represent unspecified conditions .

The process that must beapplied in order to find a suitable gro up of co mpa tibles (or the pur-
pose of merging a flow tab le can be di vided into three steps:

1. Determine all com patible pairs by using the implication table.

2. Find the maximal compatibles with the use of a merge r diagram.

3. Find a minimal collection of compatibles that covers all the states and is closed.

The minimal collection of compatibles is then used to merge the row s of the flow tab le. We will
now proceed to show and ex plain the three procedural steps. using the primitive flow ta ble
from the design example in the pre vious section.

Co mpati ble Pairs

The procedure for finding compatible pairs is illustrated in Fig. 9.23. Theprimitive flow table in (a)
is the same as Fig. 9.16. The entries in each square represent the next state andoutput Thedashes
represent the unspec ified states or outputs. The implication table is used to fmdcompatible States.
j ust as it is used to find equivalent stales in the co mplete ly specified case. Theonly difference is that,
when co mparing rows, we are at libe rty to adjust the dashes to fit any des ired condi tion .

Two states are co mpatible if, in every column of the co rres ponding rows in the flow table.
there are ide ntical or compatib le sta tes and if there is no conflict in the outp ut val ues. For ex­
ample. row s a and b in the flow table are found to be compatible. but rows a endjwill be com­
patible only if c and j'are co mpatible . However, rows c and j'are not compatible, because they
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have different outputs in the first column. This information is recorded in the implication table .
A check mark designates a square whose pair of states arecompatible . Those states which are
norco mpatible are marked with a cross. The remaining squares are recorded with the implied
pairs that need further investigation.

Oncethe initial imp lication table has been filled, it is scanned again to crossout the squares
whose impl ied states are not compatible. The remaining squares that contain chec k marksde­
fine the compatible pairs. In the example of Fig. 9 .23. the compatible pairs are

(a . b ) (a. c) (a. <!) (b. c) (b.1l (c. <!) (c .1l

Maximal Compatibles

Having found all the compatible pairs. the next step is to find larger sets of states that are com­
patible. The maximal compatible is a group of compatibles that contains all the possible com­
binations of compatible states. The maximal compatible can beobtainedfrom a merger diagram.
as shown in Fig. 9.24. The merger diagram is a graph in which each state is represented by a
dot placed along the circumference of a circle. Lines are drawn between any two correspon­
ding dots that fonn a compatible pair. All possible co mpatibles can beobtained from the merg­
er diagram by observing the geometrical patterns in which states areconnected to each other.
An isolated dot represents a state that is not compatible with any other state. A line represents
a compatible pair. A triangle constitutes a compatible with three states . An a-state compatible
is represented in the merger diagram by an a-sided polygon with all its diagonals connected.

The merger diagram of Fig. 9.24{a) is obtained from the list of compatible pain:derived from
the implication table of Fig. 9.23. There are seven stra ight lines connecting the dots. one for
each compatible pair . The lines fonn a geometrical pattern consisting of two triangles con­
necting (a. c. d) and (b. ~.j) anda line (a. b). The maximal co mpatibles are

(a. b) (a. c. <!) (b. c.1l

•

,j-- - --t---'I;-----:"'.

,

d

(a ) Maximal rompaliblc:
(d. b) (d . C. d) (b.t."

FI(j,URE9 .24
Merger diagram s

g

•

,
(b) Maximal eompatible:

(II , b,t."(b , c.lt) (c. d) (I)
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Figure 9.24(b) shows the merger diagram of an eight-state flow table. The geometrical pat­
terns are a rectangle with its two diagonal s connected to form the four-state compatible (a . b.
e. f) . a triangle (b. c. h). a line (c. dl. and a single state g that is not compatib le with any other
state. The maximal compatibles are

(a, b, ' ,f) (b, c. h)( c', d) (g)

The maximal compatible set can be used to merge th.e flow table by assigning one row in the
reduced table 10each member of the set. However. quite often the maximal compatibles do not
necessarily constitute the set of compatibles that is minimal. In many cases. it is possible 10find
a smaller collec tion of compatib les that will satisfy the condition for merging rows.

Closed-Covering Conditio n

The condit ion that must be satisfi ed for merging rows is that the set of chosen compatibles
must cover all the states and must be closed. The set will cover all the states if it includes all
the states of th.e original state table. The closure condition is satisfied if there are no implied
states or if the implied states are included with.inthe set. A closed set of compatibles that cov­
ers all the states is called a closed covering. The closed-covering condition will be explained
by means of two example s.

Consider th.e maximal compatib les from Fig. 9.24(a). If we remove (a. b). we are left with
a set of two compat ibles:

(a. c, d) (b. e.f)

All six states from the flow table in Fig. 9.23 are included in th.is set. Thus. the set satisfies the
covering condition. There are no implied states for (a. c); (a. d) ; (c. d) : (b. e); (b, f) ; and (e, f),
as is seen from the implication table of Fig. 9.23(b), so the closure condition is also satisfied.
Therefore, the primitive flow table can be merged into two rows, one for each of the compat­
ibles. The detailed construction of the reduced table for this particular example was done in th.e
previous section and is shown in Fig. 9. I7(b).

The second example is from a primitive flow table (not shown) whose implication table is
given in Fig. 9.25(a). The compatible pairs derived from the implica tion table are

(a. b) (a . d) (b, c) (c, d) (c, e) (d. e)

From the merger diagram of Fig. 9.25(b). we determin e the maximal compatibles:

(a, b) (a. d) (b. c) (c , d, e)

If we choose the two compatibles

(a, b) (c. d. e)

then the set will cover all five states of the original table. The closure condition can bechecked
by means of a closure table, as shown in Fig. 9.25(c). The implied pairs listed for each com­
patible are taken directly from the implication table. The implied pair of states for (a, b) is (b,
c) . But (b, c) is not included in the chosen set of (a , b) (c. d. e). so this set of compatibles is not
closed. A set of compatibles that will satisfy the closed-eovering condition is

(a, d) (b. c) (c. d. e)
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(b. c)

(c) Closure table

FIGURE 9 .25
Choosing a set of compatibles

The set is covered because it contains all five states. Note that the same stale can be repeated
more than once. The closure condition is satisfied because the implied states are (b. c) (d. e)
and (a , dl . which are included in the set. The original flow table (not shown here) can be re­
duced from five rows 10 three rows by merging rows a and d. b and c, and c. d. and e. Note also
that an alternative satisfactory choice of closed-covered compatibles would be (a, b) (b. c)
(d. e). In general, there may be more than one possible way of merging rows when reducing a
primitive flow table.

9 . 6 RACE -FREE STATE ASSIGNMENT

Once a reduced flow table has been derived for an asynchronous sequential circuit. the next step
in the design is to assign binary variables 10each stable state. This assignment results in the
transformation of the flow table into its equivalent transition table. The primary objective in
choosing a proper binary state assignment is the prevention of critical races. The problem of
critical races was discussed in Section 9.2 in conjunction with Fig. 9.7.
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Crit ical races can be avoided by making a binary state ass ignment in such a way that only
one variable changes at any given time when a state transition occurs in the flow tab le. To ac­
complish this objective, it is nece ssary that states betw een which transitions occ ur be given ad­
jacent assignments. Two binary value s are said to be adjacent if they differ in only one variable.
For example. 010 and a l l are adjacent because they diffe r only in the third bit .

In order to ensure that a transit ion table has no critical races, it is necessary to test each pas·
sible transi tion between two stable states and verify that the binary state variables change one
at a time. Th is is a tedious proce ss, especially when there are many row s and columns in the
table. To simplify matters. we will explain the procedure of binary sta te assignment by goi ng
through examp les with only three and four row s in the flow table . These examples will demon­
strate the general procedure that must be followed to ensure a race-free state assignment. The
procedure can then be applied to flow table s with any number of row s and columns.

Three-Row Flow·Table Example

The assignment of a single binary variable to a flow table with two rows does not impose critical
race problems . A flow table with three rows require s an assignment of two binary variables. The as­
signment of binary values to the stable slates may cause critical races if it is not done properly. Con­
sider, for example, the reduced flow table of Fig. 9.26{a). The outputs have been omitted from the
table for simplicity. Inspection of row a reveals that there is a transition from state a to state b in col­
umn 0 1 and from state a to state c in column 11. This information is transferred into a transition di­
agram, as shown in Fig. 9.26(b). The directed lines from a to b and from a to c represent the two
transitions just mentio ned. Similarly, the transitions from the other two rows are represented by di­
rectedlines in the diagram, which isa pictorial representation of all required transitions between rows.

To avoid critical races, we must find a binary state assignme nt such that only one binary vari­
able changes during each state transition. An attempt to find such an assignment is shown in
the transition diagram . State a is assigned binary 00, and state c is assigned binary 11. Thi s as­
signme nt will ca use a critical race during the tra nsition from a to c becau se there are two
changes in the binary state variables and the transition from a to c ma y occur directly or pass
through b. Note that the tran sition from c to a also causes a race condition. bUI it is noncritical
because the transition does not pass throu gh other states.

8 b c 8
" (0 (0 c

a (0 (0 (0

b - 01

c - 11

" - 001000

b

,

(a) F10w table (b) Transition diagram

FI" URE 9 .26
Three-row flow-table example
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(a) Flow table

FIGURE 9.27
Flow tabl e with an extra row

(b) Transition diagram

A race-free assignment can be obtained if we add an extra row to the flow table. The use of
a fourth row does not increase the number of binary state variables, but it allows the formation
of cycles between two stable states. Consider the modified flow table in Fig. 9.27. The first three
rows represent the same conditions as the original three-row table. The fourth row, labeled d.
is assigned the binary value 10. which is adjacent to both a and c. The transition from a to c
must now go through d. with the resuh that the binary variables change from a = 00. to
d = 10, to c = I I, thus avoiding a critical race. This is accomplished by changing row a. col­
umn 11. to d and row d, column I I, to c. Similarly, the transi tion from c to a is shown to go
through unstab le state d even though column 00 repre sents a noncritical race .

The transition table corresponding to the flow table with the indicated binary state assign ­
ment is shown in Fig. 9.28. The two dashes in row d represe nt unspecified states that ca n be
considered don't-care conditions. However, care must be taken not to assign 10 to these squares,
in order to avoid the possibility of an unwanted stable state being established in the fourth row.

00 01 11 10

c '" 11

® 01 10 @
00 6) 0) 11

10 G (0 C0
00 - 11 -

FIGURE 9.28
Transition ta ble
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FIGURE 9 .29
Four-row flow-tab le example

This example demonstrates the use of an extra row in the flow table for the purpose of
achieving a race-free assignment. The ex tra row is not assigned to any specific stable stale, but
instead is used to convert a critical race into a cycle that goes through adjacent transitions be­
tween two stable states. Sometimes, just one extra row may not be sufficient to prevent criti­
cal races, and it may be necessary to add two or more ext ra rows in the flow table. This
possibility is demonstrated in the next example .

Four-Row Flow-Table Example

A flow table with four rows requires a minimum of two state variables. Although a race-free
assignment is sometimes possible with only two binary state variables, in many cases the re­
quirement of extra rows to avoid critical races willdicta te the use of threebinary state variables.
Consider, for example, the flow table and its corresponding transition diagram shown in Fig. 9.29.
If there were no transi tions in the diagonal direction (from b to d or from c to a), it would be
possible to find an adjace nt assignment for the remaining four transitions. With one or two di­
agona l transitions, there is no way of assigning two binary variables that satisfy the adjacency
requirement. Therefore, at least three binary state variables are needed.

Figure 9.30 shows a state assignment map that is suitable for any four-row flow table.
States a, b. c. and d are the orig inal states. and e.I, and g are extra state s. States placed in
adjacent squares in the map will have adjacent ass ignments. State b is assigned binary 00 1
and is adjace nt to the other three original states. The transition from Q to d must be directed
through the extra stale e to produce a cycle so that only one binary variable changes at a time.
Similarly, the transition from c to Q is directed through g. and the transition from d to c
goe s through f. By using the assignment given by the map. the (our-row table can be ex­
panded 10 a seven-row table that is free of critical races. as shown in Fig. 9.3 1. Note that
alth ough the flow table has seven rows. there are only four sta ble states . The uncircled
states in the three ex tra rows are there merely to provide a race-free tran sition between the
stable states.
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FIGURE 9 .31
Sta te assignment to modified flow table

This example demonstrates a possible way of selecti ng extra rows in a flow table in order
to achieve a race-free assignment.A stare-essignmenrmap similarto the oneused in Fig.9.30(a)
can be helpful in most case s. Sometimes we can take advantage of unspec ified entries in the
flow table . Instead of adding rows to the table. we may be able 10 eliminate critical races by
directing some of the state transitions through the don't-cere entries . The actual ass ignment
is done by trial and error. unti l a satisfactory assignme nt is found thai resolves all critical
races.
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Multiple-Row Method

The method for making race-free stale assignments by adding extra rows in the flow table, as
demonstrated in the previous two examples. is sometimes referred to as the shared-row method.
A second method. called the multiple-rowmethod. is not as efficient, but is easier to apply. In mul­
tiple-row assignment. each state in the original now table is replaced by two or more combinations
of slate variables. The state-assignment map of Fig. 9.32(a) shows a multiple-row assignment that
can beused with any four-row now table.There are two binary state variables for each stable state,
each variable being thelogical complement of the other. For example, the original slate a is replaced
with two equivalent states a \ = <XJO and a 2 = I l l. The output values, not shown here. must be
the same in 0 \ and 0 2' Note that a l is adjacent to bl. C2' and d ., and 0 2 is adjace nt to c r- b2• and
d2, and. similarly. each state is adjace nt to three slates with different letter designations. The be­
havior of thecircuit is the same whether the internal state is a I 01"0 2, and so on for the other states.

Figure 9.32(b) shows the multiple -row ass ignment for the original flow table of Fig. 9.29(a).
The expanded table is formed by replacing each row of the original table with two rows. For
example, row b is replaced by rows bl and b2. and stable state b is entered in columns 00 and 11
in both rows hi and b2. After all the stable states have been entered , the unstable states are
filled in by reference to the assignment specified in the map of pan (a) . In choosing the next
state for a given present state, a state that is adjacent to the present state is selected from the
map . In the origina l table, the next states ofb are a and d for inputs 10 and 0 I. respectively. In
the expanded table . the next slates of b l are a I and d2, because these are the states adjacent to
b\ . Similarly. the next states of~ are 0 2 and db because they are adjacent to b2.

00 01 11 10

,
., b, <, d,

<, d, ., b,

b , 6) d, 6)
b, 6) d, 6)
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G) ., b, G)
<, 8 8 <,

<, 8 8 <,
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Yl YJ
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(a) Binary assignment (b) F10w table

FIGURE 9 ,3 2
Multiple-row assignment
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In the mult iple-row ass ignment, the change from one stable state 10 another will always
cause a change of only one binary state variable. Each stable stale has IWObinary assignments
with exactly the same output. AI any given time, only one of the assignments is in use. For ex ­
ample, if we sian with state a I and input 01 and then change the input to 11. 0 1. 00 . and back
10 0 1, the seque nce of internal states will be a l. d l , C! . and a2. Although the circuit starts in stale
a I and termin ates in state a2. as far as the input-output relationship is concerned. the two stares
a I and e a are equivalent to stale a of the original flow table.

9 . 7 HAZARDS

In designing asynchro nous sequential circuits, care must be taken to conform with certain re­
strictions and precautions 10 ensure that the circ uits operate proper ly. The circui t must beop­
erated in funda mental mode with only one input changing at any time and must be free of
cri tical races. In addit ion , there is one more phenomenon. called a hazard, thai may cause the
circuit to malfunction . Hazards are unwanted switching transients thai may appear at the out­
pUI of a circ uit because different paths exhibit different propagation delays. Hazard s occur in
combinational circuits, where they may cause a temporary false output value. When they occur
in asynchronous sequential circuits. hazards may result in a transiti on 10 a wrong stable stare.
It is there fore necessary 10 check for possible hazard s and determine whether they can cau se
improper operations. If so, then steps must be taken to eliminate their effect.

Hazards In Combinational Circuits

A hazard is a condition in which a change in a single variable produces a momentary change
in output when no change in output should occur. The circuit of Fig. 9 .33(a) depicts the oc­
currence of a hazard. Assume that all three inpu ts are initially equal to I . This causes the out­
put of gate I 10 be I , that of gate 2 to be O. and that of the circuit 10 be 1. Now consider a
change in x 2 from I to O. Then the output of gale I changes 10 0 and that of gate 2 changes to
I, leaving the output at I. However, the output may momentari ly go 10 0 if the propagation delay
through the inverter is taken into consideration. The delay in the inverter may cause the OUI­
put of gate I to change to 0 before the output of gale 2 changes to I . In that case. both inputs

"

(a) Al'<D-QR circuit

fiGURE 9.:n
Circuits with hazards

y

(b) NAND circuit

y
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of gate 3 are mom entari ly eq ual to O. ca using the ou tput to go to 0 for the short time during
which the input signal from X2 is delayed while it is pro pagating through the Inverter circuit.

Thecircuit of Fig. 9.33(b) is a NA.'\'D implementation of the Boolean function in Fig. 9.33<b).
and it has a hazard for the same reason . Beca use gates I and 2 are NA..'\ID gates. their outputs
are the complement of the outputs o f the correspo nding AND gates. When X2 changes from I
to O. both inputs of gate 3 may beequal to I. causing the output to prod uce a momentary change
to 0 when it should have stayed at I.

The two circuits shown in Fig. 9.33 implemem the Boolean function in sum-of-produc ts form :

Y "" X jX2 + xix )

Thi s type of implementation may cause the output to go to 0 when it should remain a I. If, how­
eve r, the circuit is implemented instead in product-of-sums fonn (see Section 3.5). name ly.

Y - ( Xl + Xi )(X2 + X))

then the output may momentarily go to I when it shou ld remain O. Th e first case is referred to
as static J-haza rd and the seco nd case as static tl-hazard. A third type of hazard , known as
dynam ic hazard, causes the output to change thre e or more times when it should change fro m
I to 0 or from 0 to 1. Figure 9,34 illu strates the three type s of hazard s. When a circ uit is im­
plemented in sum-of-products fonn withAND-OR gates o r with NAND gates . the removal of
static l-h azard guarantees that no static O-hazards or dynamic hazard s will occ ur.

A hazard can bedetected by inspection of the map of the part icular circuit. To illustrate. con­
sider the map in Fig . 9 .35(a). which is a plot of the (unction implemented in Fig. 9 .33 . The
change in X2 from I 100 moves the circuit from mimenn I I I to mimerm 101. lbe hazard exi sts
because the change in input results in a differe nt prod uct term cove ring the two minrerms.

:1f
Ca) Sialic t ·hazard (b) Sialico-haurd (c) D ynamic baurd

FIGURE9 .34
Types of hazard s

",",
10110100,

I

I I I ~"'i.~ I I

o
"

10110100,
I&1'tj~!~

I ~\ii ~!;,.)Jess

o
"

FIGURE 9 .3 5
Maps illustrating a hazard and its removal
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FIC.URE 9 .36
Hazard-free circuit

Minterm 111 is covered by the product term implemented in gate I of Fig. 9.3 3. and minterm
101 is covered by the product term implemented in gate 2. Whenever the circuit must move from
one product term to another. there is a possibility of a momen tary interval when neither term
is equal to l , giving rise to an undesirable 0 output.

The remedy for eliminating a hazard is to enclose the two mmterms in question with anothe r
product term that overlaps both groupings . Thi s situation is shown in the map of Fig. 9.35(b).
where the two minterm s that cause the hazard are combined into one product term. The haz­
ard-free circuit obtained by such a configuration is shown in Fig. 9.36. The extra gate in the
circuit generates the product term XIX ) . In general, hazard s in combinational circuits can be re­
moved by cove ring any two minterms that may produce a hazard with a product term common
to both. The removal of hazards requires the addition of redundant gates to the circuit.

Hazards In Sequential Circuits

In normal combinational-circuit design assoc iated with synchronous sequential circui ts. baz­
ard s are of no concern, since momentary erroneo us signals are not general ly trou bleso me .
However. if a momentary incorrect signal is fed back in an async hronous sequential circ uit. it
may cause the circuit to go to the wrong stable state. Th is situation is illustra ted in Fig . 9 .37.
If the circuit is in total stable state )' x l x2 = II t and input X2 changes from I to u. the next total
stable stale should be 110. However. because of the hazard. output Y may go to 0 momentarily.
If this false signal feeds back into gate 2 before the output of the inverter goes to I. the output
of gale 2 will remain at 0 and the circuit will switch to the incorrect total stable stale 0 10. This
malfunction can be eliminated by add ing an extra gate , as is done in Fig. 9 .36.

Imple mentat ion with SR Latches

Another way to avoid static hazards in asynchronous sequential circuits is 10 implement the cir­
cu it with SR latches. A momen tary 0 signal applied to the S or R inputs of a NOR latch will have
no effect on the state of the circuit. Similarly. a mom entary I signal app lied to the S and R in­
puts of a NAN D latch will have no effect on the state of the latch . In Fig . 9 .33(b), we observed
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(b) Transitiontable (c) Map for Y

FIGURE 9 ,)7
Hazard In a n asynchro no us sequ e ntia l circuit

that a two-level sum-of-products expression implemented withNA~'D gate s may have a static
I-hazard if both inputs of gate 3 go to I, changing the output from I to 0 momen tarily. But if
gale 3 is part of a latch , the momentary I signal will have no effect on the output, becau se a
third input to the gate will come fro m the complemented side of the latch that will be eq ual to
oand thus maintain the out put at I. To clarify wha t was just said, consider a NAND SR latch
with the following Boolean function s for S and R:

S = AB + C D

R = A'C

Since this is a NAN D latch, we must apply the complemented values to the inputs:

5 - (AB + CD)' - (AB)'(CD)'
R ~ (A'C)'

This implementation is show n in Fig. 9.38(a) . S is generated with IWO NAND gates and one
AN D gate. The Boolean funct ion for o utput Q is

Q ~ (Q'S)' ~ IQ' (AB)'(CD)'l '

Thi s function is generated in Fig. 9.38(b) with two levels of NAND galeS.lfoutput Q is equal
to I. then Q' is equal to O. If two of the three inputs go momenwily to I, the NAND gate as­
soc iated with output Q will remain at I because Q' is maintained ill O.

Figure 9.38(b) shows a typical circuit that can be used to consuuct asynchronous sequen­
tial ci rcu its. The two NAND gates forming the latch normally haveIWo inputs. However, if the
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c
A '==~~-----==10---+---- Q'

A - - -!hijp;;
8 - - i"C'''V

('1

cA '==jj#~-----==1~---+---- Q '

('1

FIGURE 9.38
Latch implementat ion

5 or R func tion s contain two or more product terms when ex pressed as a sum of produ cts , then
the corresponding NAND gate of the SR latch will have three or more inpu ts . Thu s. the two
term s in the original sum-of-prod ucts expression for5 are AD and CD. and eac h is imp leme nted
wi th a NAND gate whose output is applied to the input of the NAND latch . In thi s way, each
slate variab le requires a two- leve l circuit of NAND gate s. The first leve l cons ists of NM 'D gales
that implement eac h product term in the origin al Bool ean expression of S and R. The second
leve l form s the cross -coupled connectio n of the SR latch with inputs that come from the out­
puts of each NAND gate in the first level.

Essential Hazards

Thus far , we have co nsidered what are known as static and dynamic hazards . Another type of
hazard that may occur in asy nchronous sequential circuits is ca lled an essential hazard. Th is
type of hazard is caused by uneq ual delays along two or more paths that originate from the sam e
input. An excessive delay through an inve rter circuit in compariso n to the del ay associ ated
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with the feedback path may cause such a hazard. Essential haza rds cannot be corrected by
adding redund ant gates as in static hazards. The problem thai they impose can be corrected by
adjusting the amoun t of delay in the affec ted path. To avoid essential hazards. each feedback
loop must be handled with individual care to ensure that the delay in the feedback path is long
enough compare d with delays of other signals that originate from the input terminals. Thi s
problem tends to be specialized, as it depend s on the particu lar circuit used and the size of the
dela ys that are encountered in its vario us paths.

9. 8 DESIGN EXA MPLE

We are now in a position to examine a complete design example of an asynchronous sequen­
tial circuit. Thi s example may serve as a refe rence for the design of other, similar circuits. We
will demonstrate the method of design by followi ng the recommended procedural steps listed
at the end of Section 9.4 and repeated next. After stating the design specifications.

1. Deri ve a primit ive flow table.

2. Reduce the flow table by merging the rows.

3. Make a race-free binary state assignment.

4. Obtain the transition table and output map.

5. Obtain the logic diagram , using SR latches.

Design Specifications

It is necessary to design a negative-edge- triggered T flip-flop. The circuit has two inputs, T (tog­
gle) and C (clock) , and one output, Q.The output state is complemented i f T = 1 and the clock
C changes from I 100 (negative-edge triggering). Otherwise, under any other input condition,
the output Qrem ains unchan ged . Although this ci rcuit can beused as a flip-flop in clocked se­
que ntial circuits , the internal design of the flip-fl op (as is the case with all other flip-flops) is
an asynchronous problem.

Primitive Flow Table

Th e derivation of the primitive flow table can be facili tated if we n est derive a table that
lists all possible total states in the circuit. Thi s tab le is sho wn in Table 9.6 . We start with
the inpu t cond ition TC = I I and assign to it sta te a. Th e ci rcuit goes to stale b and the out­
put Q is complemented from °to I when C changes fro m I to 0 while T remains a 1. An ­
othe r cha nge in the output occu rs when the circuit goes fro m state c to sta te d. In thi s case,
T = I. C changes from I to 0 , and the output Q is comple men ted from 1 to O. The other
four states in the tabl e do not change the output, because T is equal to O. If Q is initially
0 , it stays at 0 , and if it is initiall y at I, it stays at I, even though the c lock input changes .
Th is ana lysis ide ntifies six total sta tes. Note that simultaneous transition s of tw o input
vari ables, such as that fro m 0 1 to 10, ace not incl uded, as they violate the conditio n for fun ­
da mental-mode operation.
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Table 9 .6
Specificotlon of Toto l Sta te.s

Inputs Output

State T C Q Comments

a I I o Initial outp ut is 0
b I o I After state a
c I I I Initial output is I
J I o o After state c, o o o After state d orf
I o I o After state e or 0

g o o I After state b or h
h o I I After state g or c

00

TC
01 II 10

FIGURE 9.39
Primitive flow table

a

b

d

,

I

s

h

- ,- 1 ,- @,. b , -

g , - - ,- c , - 0 ,1

- ,- h ,- 0 ,1 d , -

c , - -, - , , - @ ,o

0 ,0 1 ,- - - d , -

' ,- CD,O , , - - , -

G), I h , - - - b , -

g, - @,1 c , - - ,-

The primit ive flow table is shown in Fig. 9.39. The infonnation for the table can be ob­
tained d irectly from the cond ition s listed in Table 9.6. First. in each row, we fill in one square
belonging to the stable state in that row, as listed in the table. Then we enter dashes in those
squares whose input differs by two variables from the input correspond ing to the Mable state.
Finally, we identify the unstable conditions by utilizing the information listed under the com­
ments in Table 9 .6.
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b

c

d

,

f

,
h

a . c x

x b , dx

b .dx X a, C X

b . d X
e , g x t , h x /b , dx

J e ,gx t ,h X / /a, C X a , C X

t, h x / b ,dx
e, g X X e, g X
b , d x t ,« X

t, h x
/

j d ,ex e , g X
X /1a , C X c ,f x t.h x

FIGURE 9 .40
Im plicat io n table

Merging of the Flow Table

b c d e f g

The rows in the primiti ve flow table are merged by first obtaining all compatible pairs of states.
This is done by means of the implication table shown in Fig. 9.40. The squares that contain
check mark s define the co mpatible pairs:

~n~~~~~~~~~n~n~~

The maximal compatibles are obtained fro m the merger diagram shown in Fig. 9.41. The
geometrical patterns that are recognized in the diagram consist of two triang les and two straight
lines. The maximal compatible set is

(a,n (b, g, h) (c, h) (d, "n
In this particular example, the minimal collec tion of compatibles is also the max imal comper­
ible set. Note that the closed condition is satisfied because the set includes aU the original eight
states listed in the primitive flow table, although states h and!are repeated 1be covering con-­
dition is also satisfied, because al l the compatible pairs have no implied stares, as can be seen
from the implication tab le.

The reduced flow table is show n in Fig. 9 .42. The tableshownin part (a) mthe figure re­
tains the origi nal state symbols, but merges thecorresponding rows. For eumpIe. 5WeS a and
f are com patible and are merged into one row that mains the ariginalletter ymboIs or the
states. Similarly, the other three com patible sets of states are used to merge theflow rabIe into
four rows , retai ning the eight ori ginal letter symbols. lbe 0Iher altenwive ror drawing the
merged flow table is show n in part (b) of the figure. Here, we assign a common letter symbol
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•

,

b

d

c

00

, .- <D o0 0 ' .-
0 .1 0 .1 '. - 0 1

, . 1 0 .1 0 ' d . -

0 .0 (]j.o -.- 0 .0

d .- 0 00 00 ·-

0. 10 1 ' .- 0. 1

b .- 0 ' 0 ' d.-

0 00. 0 -.- 0. 0

FIGURE 9 .41
Merger diag ram

e. f

b.g. h

C, "
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FIGURE 9.42
Red uced flow table

TC
01 11

(. )

10

,

-
b

c

d

00

TC
01 11

(0)

10

to all the stable states in each merged row. Thus, the symbol/is replaced by a. g and h are re­
placed by b. and similarly for the other two rows. The second alternative shows clearly a four­
state flow table with only four leiter symbols for the states.

State Assignment and Transition Table

The next step in the design is to find a race-free binary assignment for the four stable states in
the reduced flow table. In order to find a suitable adjacent assignment. we draw the transition
diagram. as shown in Fig. 9.43. For this example . it is possible to obtain a suitable adjacent as­
signment without the need of ex tra states. because there are no diagonal lines in the transition
diagram.



a '= 00

d ~ 10

fiGURE 9 .43
Transition diagram
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b '= 01

C'"' 11

00
TC

01 11 10 00
TC

01 11 10

a » 00

b = 01

C = 11

d = 10

10 ® @ 01

@ @ II @
01 ® ® 10

® ® 00 ®
(a) Transit ion table

Y1Y1

00

01

II

10

0 0 0 X

1 1 1 1

1 1 1 X

0 0 0 0

(b) Output map Q - Y2

fiGURE 9 .44
Transition table and output map

Substituting the binary assignment indicated in the tran sitio n diagram into the reduced flow
tab le, we obtai n the transi tion table shown in Fig. 9.44. The output map is oblained from the
reduced flow table. The das hes in the output section are assigned values according 10 the rules
esta blished in Sect ion 9 .4 .

logic Diagram

The circ uit to bedesigned has two state variables, Y.andYlo andODe output. Q.The output map
in Fig . 9.44 shows tha t Q is equal to the state variable Y2-1be impkmentation ofthe circuit re­
quires two SR latches, one for each state variable. 1be maps for inpuIs S and R oflbr: two latches
are shown in Fig. 9.45. The maps are obtained from the informatiOll given in the transition
tab le by using the conditions spec ified in the latch excitation IabJc5bown in Fig.. 9 .14(b). The
simplified Boolean functions are listed under each map.
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(a) Sj = Y2TC +y'2 rC'

w 0 0 0

0 0 r~ 0

0 X ~: X

fl X 0 X

01

11

10

00

TC
01 II 10

TC

00 01 11 10
M

00 X

01 X

11 0

10 0 0 0

(b) RI -Yl rC'+y'l TC

0 0 0 r!
X X X ~
X X X 0

0 0 0 0

X X X 0

0 0 0 0 I
0 0 0 " I

X X X /!/~'
li,I"

y,y,

00

01

11

10

00

TC
01 11

(C) S2 - Y'1TC'

10
M

00

01

11

10

00

TC

01 11

(d ) R1- Yl TC

10

FIGURE 9 .45
Maps for latch Inputs

The logic diagram of me circuit is shown in Fig. 9.46. Here we use two NAND latches with
two or three inputs in each gate. This implementation is according to me pattern established in
Section 9.7 in conjunction with Fig. 9.38(b). The Sand R input functions requ ire six NAND
gates for their implementation.

The examp le just presented illustrates the complexity involved in designing asynchronous
sequential circuits. It was necessary to go through 10 diagrams in order to obtain the final cir­
cuit diagram. Although most digital circuits are synchronous, there are occas ions when one
has to deal with asynchronous behavior. The basic properti es presented in this chapter are es­
sential to a full understanding of the internal behavior of digital circuits.
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FIGURE 9.46
l ogic diagram of negat lve-edge-triggered Tflip-flop

PROBLEMS

Answers to problems marked with e appear at the end ofme book.

9 .1 (a) Explain the difference:between asynchronous and synchrooous scqumtial cin:uils.
(b) Define fundamental-mode: operation.
(c) Explain the: differenc e: between stable: and unstable stares.
(d) What is the difference between an internal state and a wu.I stale?

9 .2* Derive the transition table for the asynchronous sequential circuitshown in Fig. P9.2. Dc:tc:mlinc: the
sequence of internal states YlY2for !he following sequc:ncc ofinpJIs x,x2: 00. 10. 11,01. II . 10.00.
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Y,

Y,

FIGURE P9 .2

9 .3 An asynchronous sequential circuit is described by the excitation function

Y = XIX2+ (Xt + Xl»'
and the output function

Z=J
(a) Draw the logic diagram of the circuit.
(b) Derive the transition table and output map.
(c) Obtain a two-state flow table.
(d)· Describe in words the behavior of the circuit.

9 .4 An asynchronous sequential circui t has two internal states and one output. The two excitation
functions and one output function describing the circuit are, respectively.

Y1 = x lx2 + XI)' 2 + Xl}'1

Y2 = x2 + X\Yt)'2 + xiYt

Z = x 2 + )' 1

(a) Draw the logic diagram of the circuit.
(b) Derive the transition table and output map.
(c)· Obtain a flow table for the circuit.

9 .S Convert the flow table of Fig. P9.5 into a transition table by assigning the following binary val­
ues [0 the states: a = 00, b = I I. and c = 0 1.
(a) Assign values to the extra fourth state to avoid critical races.
(b) Assign outputs to the don' t-care states to avoid momentary false outputs .
(c )· Derive the logic diagram of the c ircuit.

9 .6 Investigate the transition table of Fig. 1'9.6, and determine all race conditions and whether they
are critical or noncritical. Determine also whether there are any cycles.

9 .7 Analyze the SR latch with control ShOWDin Fig. 5.5. Obtain the transition table. and show that
the circuit is unstable when all three inputs are equal 10 I.

9 .8 Modify the diagram of Fig. 5.5(a) 10 convert it into a JK type of latch by inserting two feedback
connections from the outputs to the inputs. Show that the circuit is unstable when J '" K '" I
while the control input C remains in the I state.
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FIGURE P9.S

b
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00 01 II 10

FIGURE P9.6
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9 .9 For the asynchronous sequential circuit shown in Fig. 1'9.9,
(a ) derive the Boolean functions for the outputs of the two SR larches Y1and Y2' Note mat the S

input of the second latch is xIJi.
(b) derive the transition table and OUlpUl map of the c ircuit.

r --iC:><>--,..-- - - - - - - - - - ,
Y,

" - -f::><>-- - - - - - - - - - - - --'

FIC.URE P9.9
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9 .10* Implement the circuit defined in Problem 9.3 with a NOR SR latch. Repeal with a :"OAXD SR
latch.

9 .11 Implement the circuit defined in Problem 9.4 with NA~'D SR latches.

9 .12 Obtain a primitive flow table for a circuit with two inputs, Xl and X2. and two outputs. ':: \ and '::2,
that satisfy the following four conditions:
(a) When X I.t2 ::: 00, the output is l1l2 :: 00.
(b) When x l ::: I and x 2 changes fromn ro I, the outpul is l l l 2 = 01 .

(c ) When X2 = I and X l changes from 0 10 I, the output is ll:::2 = 10.
(d) Otherwise, the output does not change.

9 .13· Atraffic light is installed at aj unctionof a railroad anda road. The light iscontrolled by {\\"Oswitch­
es in the rails placed I mile apart on either side of tile junction. As....'itch is turned on ....hen the train
is over it and is turnedoff otherwise. The traffic light changes fromgreen (logic 0) to red (logic 1)
when the beginning of the train is I mile from the junction. The light changesback to green when
the endof the train is I mile away from the junction. Assume that the length of the trainis less than
2 miles.
(a) Obtain a primitive flow table for the circuit.
(b) Show thar the flow table can be reduced 10 four rows.

9.14 It is necessary to design an asynchronous sequential circuit with two inputs. Xl and X 2' and one
output. z. Initially, both inputs and output are equal 100. When Xl or X 2 becomes I. ::: becomes 1.
When the second input also becomes I, the output changes 10 O. The output stays at 0 until the
circuit goes back to the initial state.
(a) Obtain II primitive flow table for the circuit. and show that it can be reduced to the flo\\ table

shown in Fig. 1'9.14.
(b) Complete the design of the circuit.

00 01 11 10

FIGURE P9.14

b

0 ,00 1 ' ,- 0 1

.,- @,o @ ,o @,o

9.15 Assign output values to the don't-care states in the flow tables of Fig. 1'9.15 in such a way as 10

avoid transient output pulses.

9.16 Using the implication-table method, show that the stale table listed in Table 5.7 cannot be re­
duced any further,

9 .17 Reduce the number of states in the state table listed in Problem 5.12. Use an implication table.

9 .18· Merge each of lhe primitive flow tables shown in Fig. P9.18. Proceed as follows:
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(a) Find all companb le pain by means of an implication table.
(b) Find lhe maximal co mpatibles by means of a mefJ!:er diagram,
Ic) Find a rnimmaJ set of compatibles that covers all the~ and is closed.

9 .19 la) Dbtain a binat), slate: assignmenl for the reduced now table st.o.o. n in Fig. 1'9.19 ..-\\{" d em­
il:al race co nditions.

Ib ) Obtain Ih~ I~ic diag ram of !he circun, using l"Al"D latc hes and !al~s.

9 .20'" Find a critical race-free slat~ ass ignme nt for lhe red uced now table: shu.... n in Fig . 1'9.1:0.

00 01 11 10

FIGURE P9.19
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9 .21 Co nsider the reduced flow table shown in Fig. P9.l l .
fa) Obta in the transition diagram. and show that three state variables are needed for a race-free

binary slate assignment.
(b) Obtain the expanded flow table, using the multiple -row method of assig nment a, speci fied

in Fig. 9.32(a).

00 01 11

FIGURE P9.21

a

c

d

(0 c (0 d

a (0 c 8
(0 (0 (0 "
0 b u 0

9.22* Find a circuitthat has no Static hazards and implements the Boo lean function

F( A, 8 . C, D) = ~( O, 2, 6. 7, 8. 10. 12)

9 ,23· Draw the logic diagram of the produc t-of-sums express ion

Y = (Xl + .1.'2)(.1.': + xJ)

Shuw that there is a static If-hazard when xl and .1.'3 are equal to 0 and x 2 goes from 0 to I . Find
a way to remove the hazard by adding one more OR gate .

9 ,24 The Boolean functions for the inputs of an SR latch are

S = .t\ x~x~ + xlx:,tJ

R '" Xl ,t ~ + X~.t l

Obtain the circui t diagram, using a minimum number of NAI'IlD gates.

9 .25 Complete the design of the circuit specified in Problem 9.13.
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