The great successful men of the world have used their imaginations. They think ahead and create their mental picture, and then go to work materializing that picture in all its details, filling in here, adding a little there, altering this bit and that bit, but steadily building, steadily building.

—Robert Collier

The entity-relationship (ER) data model allows us to describe the data involved in a real-world enterprise in terms of objects and their relationships and is widely used to develop an initial database design. In this chapter, we introduce the ER model and discuss how its features allow us to model a wide range of data faithfully.

The ER model is important primarily for its role in database design. It provides useful concepts that allow us to move from an informal description of what users want from their database to a more detailed, and precise, description that can be implemented in a DBMS. We begin with an overview of database design in Section 2.1 in order to motivate our discussion of the ER model. Within the larger context of the overall design process, the ER model is used in a phase called conceptual database design. We then introduce the ER model in Sections 2.2, 2.3, and 2.4. In Section 2.5, we discuss database design issues involving the ER model. We conclude with a brief discussion of conceptual database design for large enterprises.

We note that many variations of ER diagrams are in use, and no widely accepted standards prevail. The presentation in this chapter is representative of the family of ER models and includes a selection of the most popular features.

2.1 OVERVIEW OF DATABASE DESIGN

The database design process can be divided into six steps. The ER model is most relevant to the first three steps:

(1) Requirements Analysis: The very first step in designing a database application is to understand what data is to be stored in the database, what applications must be built on top of it, and what operations are most frequent and subject to performance requirements. In other words, we must find out what the users want from the database.
This is usually an informal process that involves discussions with user groups, a study of the current operating environment and how it is expected to change, analysis of any available documentation on existing applications that are expected to be replaced or complemented by the database, and so on. Several methodologies have been proposed for organizing and presenting the information gathered in this step, and some automated tools have been developed to support this process.

(2) Conceptual Database Design: The information gathered in the requirements analysis step is used to develop a high-level description of the data to be stored in the database, along with the constraints that are known to hold over this data. This step is often carried out using the ER model, or a similar high-level data model, and is discussed in the rest of this chapter.

(3) Logical Database Design: We must choose a DBMS to implement our database design, and convert the conceptual database design into a database schema in the data model of the chosen DBMS. We will only consider relational DBMSs, and therefore, the task in the logical design step is to convert an ER schema into a relational database schema. We discuss this step in detail in Chapter 3; the result is a conceptual schema, sometimes called the **logical schema**, in the relational data model.

2.1.1 Beyond the ER Model

ER modeling is sometimes regarded as a complete approach to designing a logical database schema. This is incorrect because the ER diagram is just an approximate description of the data, constructed through a very subjective evaluation of the information collected during requirements analysis. A more careful analysis can often refine the logical schema obtained at the end of Step 3. Once we have a good logical schema, we must consider performance criteria and design the physical schema. Finally, we must address security issues and ensure that users are able to access the data they need, but not data that we wish to hide from them. The remaining three steps of database design are briefly described below: ¹

¹This material can be omitted on a first reading of this chapter without loss of continuity.
(4) Schema Refinement: The fourth step in database design is to analyze the collection of relations in our relational database schema to identify potential problems, and to refine it. In contrast to the requirements analysis and conceptual design steps, which are essentially subjective, schema refinement can be guided by some elegant and powerful theory. We discuss the theory of normalizing relations—restructuring them to ensure some desirable properties—in Chapter 15.

(5) Physical Database Design: In this step we must consider typical expected workloads that our database must support and further refine the database design to ensure that it meets desired performance criteria. This step may simply involve building indexes on some tables and clustering some tables, or it may involve a substantial redesign of parts of the database schema obtained from the earlier design steps. We discuss physical design and database tuning in Chapter 16.

(6) Security Design: In this step, we identify different user groups and different roles played by various users (e.g., the development team for a product, the customer support representatives, the product manager). For each role and user group, we must identify the parts of the database that they must be able to access and the parts of the database that they should not be allowed to access, and take steps to ensure that they can access only the necessary parts. A DBMS provides several mechanisms to assist in this step, and we discuss this in Chapter 17.

In general, our division of the design process into steps should be seen as a classification of the kinds of steps involved in design. Realistically, although we might begin with the six step process outlined here, a complete database design will probably require a subsequent tuning phase in which all six kinds of design steps are interleaved and repeated until the design is satisfactory. Further, we have omitted the important steps of implementing the database design, and designing and implementing the application layers that run on top of the DBMS. In practice, of course, these additional steps can lead to a rethinking of the basic database design.

The concepts and techniques that underlie a relational DBMS are clearly useful to someone who wants to implement or maintain the internals of a database system. However, it is important to recognize that serious users and DBAs must also know how a DBMS works. A good understanding of database system internals is essential for a user who wishes to take full advantage of a DBMS and design a good database; this is especially true of physical design and database tuning.

2.2 ENTITIES, ATTRIBUTES, AND ENTITY SETS

An entity is an object in the real world that is distinguishable from other objects. Examples include the following: the Green Dragonzord toy, the toy department, the manager of the toy department, the home address of the manager of the toy depart-
The Entity-Relationship Model

It is often useful to identify a collection of similar entities. Such a collection is called an entity set. Note that entity sets need not be disjoint; the collection of toy department employees and the collection of appliance department employees may both contain employee John Doe (who happens to work in both departments). We could also define an entity set called Employees that contains both the toy and appliance department employee sets.

An entity is described using a set of attributes. All entities in a given entity set have the same attributes; this is essentially what we mean by similar. (This statement is an oversimplification, as we will see when we discuss inheritance hierarchies in Section 2.4.4, but it suffices for now and highlights the main idea.) Our choice of attributes reflects the level of detail at which we wish to represent information about entities. For example, the Employees entity set could use name, social security number (ssn), and parking lot (lot) as attributes. In this case we will store the name, social security number, and lot number for each employee. However, we will not store, say, an employee’s address (or gender or age).

For each attribute associated with an entity set, we must identify a domain of possible values. For example, the domain associated with the attribute name of Employees might be the set of 20-character strings.\(^2\) As another example, if the company rates employees on a scale of 1 to 10 and stores ratings in a field called rating, the associated domain consists of integers 1 through 10. Further, for each entity set, we choose a key. A key is a minimal set of attributes whose values uniquely identify an entity in the set. There could be more than one candidate key; if so, we designate one of them as the primary key. For now we will assume that each entity set contains at least one set of attributes that uniquely identifies an entity in the entity set; that is, the set of attributes contains a key. We will revisit this point in Section 2.4.3.

The Employees entity set with attributes ssn, name, and lot is shown in Figure 2.1. An entity set is represented by a rectangle, and an attribute is represented by an oval. Each attribute in the primary key is underlined. The domain information could be listed along with the attribute name, but we omit this to keep the figures compact. The key is ssn.

2.3 RELATIONSHIPS AND RELATIONSHIP SETS

A relationship is an association among two or more entities. For example, we may have the relationship that Attishoo works in the pharmacy department. As with entities, we may wish to collect a set of similar relationships into a relationship set.

\(^2\)To avoid confusion, we will assume that attribute names do not repeat across entity sets. This is not a real limitation because we can always use the entity set name to resolve ambiguities if the same attribute name is used in more than one entity set.
A relationship set can be thought of as a set of \(n \)-tuples:

\[
\{(e_1, \ldots, e_n) \mid e_1 \in E_1, \ldots, e_n \in E_n\}
\]

Each \(n \)-tuple denotes a relationship involving \(n \) entities \(e_1 \) through \(e_n \), where entity \(e_i \) is in entity set \(E_i \). In Figure 2.2 we show the relationship set \textit{Works_In}, in which each relationship indicates a department in which an employee works. Note that several relationship sets might involve the same entity sets. For example, we could also have a \textit{Manages} relationship set involving \textit{Employees} and \textit{Departments}.

A relationship can also have \textbf{descriptive attributes}. Descriptive attributes are used to record information about the relationship, rather than about any one of the participating entities; for example, we may wish to record that Attishoo works in the pharmacy department as of January 1991. This information is captured in Figure 2.2 by adding an attribute, \textit{since}, to \textit{Works_In}. A relationship must be uniquely identified by the participating entities, without reference to the descriptive attributes. In the \textit{Works_In} relationship set, for example, each \textit{Works_In} relationship must be uniquely identified by the combination of employee \textit{ssn} and department \textit{did}. Thus, for a given employee-department pair, we cannot have more than one associated \textit{since} value.

An \textbf{instance} of a relationship set is a set of relationships. Intuitively, an instance can be thought of as a ‘snapshot’ of the relationship set at some instant in time. An instance of the \textit{Works_In} relationship set is shown in Figure 2.3. Each \textit{Employees} entity is denoted by its \textit{ssn}, and each \textit{Departments} entity is denoted by its \textit{did}, for simplicity.
The Entity-Relationship Model

The *since* value is shown beside each relationship. (The ‘many-to-many’ and ‘total participation’ comments in the figure will be discussed later, when we discuss integrity constraints.)

As another example of an ER diagram, suppose that each department has offices in several locations and we want to record the locations at which each employee works. This relationship is ternary because we must record an association between an employee, a department, and a location. The ER diagram for this variant of Works_In, which we call Works_In2, is shown in Figure 2.4.

The entity sets that participate in a relationship set need not be distinct; sometimes a relationship might involve two entities in the same entity set. For example, consider the Reports_To relationship set that is shown in Figure 2.5. Since employees report to other employees, every relationship in Reports_To is of the form \((emp_1, emp_2),\)
where both emp_1 and emp_2 are entities in Employees. However, they play different roles: emp_1 reports to the managing employee emp_2, which is reflected in the role indicators $supervisor$ and $subordinate$ in Figure 2.5. If an entity set plays more than one role, the role indicator concatenated with an attribute name from the entity set gives us a unique name for each attribute in the relationship set. For example, the Reports-To relationship set has attributes corresponding to the ssn of the supervisor and the ssn of the subordinate, and the names of these attributes are $supervisor_ssn$ and $subordinate_ssn$.

![Figure 2.5](image.png)
Figure 2.5 The Reports-To Relationship Set

2.4 ADDITIONAL FEATURES OF THE ER MODEL

We now look at some of the constructs in the ER model that allow us to describe some subtle properties of the data. The expressiveness of the ER model is a big reason for its widespread use.

2.4.1 Key Constraints

Consider the Works_In relationship shown in Figure 2.2. An employee can work in several departments, and a department can have several employees, as illustrated in the Works_In instance shown in Figure 2.3. Employee 231-31-5368 has worked in Department 51 since 3/3/93 and in Department 56 since 2/2/92. Department 51 has two employees.

Now consider another relationship set called Manages between the Employees and Departments entity sets such that each department has at most one manager, although a single employee is allowed to manage more than one department. The restriction that each department has at most one manager is an example of a key constraint, and it implies that each Departments entity appears in at most one Manages relationship.
The Entity-Relationship Model

in any allowable instance of Manages. This restriction is indicated in the ER diagram of Figure 2.6 by using an arrow from Departments to Manages. Intuitively, the arrow states that given a Departments entity, we can uniquely determine the Manages relationship in which it appears.

![ER Diagram](image)

Figure 2.6 Key Constraint on Manages

An instance of the Manages relationship set is shown in Figure 2.7. While this is also a potential instance for the Works_In relationship set, the instance of Works_In shown in Figure 2.3 violates the key constraint on Manages.

![Instance Diagram](image)

Figure 2.7 An Instance of the Manages Relationship Set

A relationship set like Manages is sometimes said to be **one-to-many**, to indicate that one employee can be associated with many departments (in the capacity of a manager), whereas each department can be associated with at most one employee as its manager. In contrast, the Works_In relationship set, in which an employee is allowed to work in several departments and a department is allowed to have several employees, is said to be **many-to-many**.
If we add the restriction that each employee can manage at most one department to the Manages relationship set, which would be indicated by adding an arrow from Employees to Manages in Figure 2.6, we have a **one-to-one** relationship set.

Key Constraints for Ternary Relationships

We can extend this convention—and the underlying key constraint concept—to relationship sets involving three or more entity sets: If an entity set E has a key constraint in a relationship set R, each entity in an instance of E appears in at most one relationship in (a corresponding instance of) R. To indicate a key constraint on entity set E in relationship set R, we draw an arrow from E to R.

In Figure 2.8, we show a ternary relationship with key constraints. Each employee works in at most one department, and at a single location. An instance of the Works_In3 relationship set is shown in Figure 2.9. Notice that each department can be associated with several employees and locations, and each location can be associated with several departments and employees; however, each employee is associated with a single department and location.

Figure 2.8 A Ternary Relationship Set with Key Constraints

2.4.2 Participation Constraints

The key constraint on Manages tells us that a department has at most one manager. A natural question to ask is whether every department has a manager. Let us say that every department is required to have a manager. This requirement is an example of a **participation constraint**: the participation of the entity set Departments in the relationship set Manages is said to be **total**. A participation that is not total is said to be **partial**. As an example, the participation of the entity set Employees in Manages is partial, since not every employee gets to manage a department.
Revisiting the Works_In relationship set, it is natural to expect that each employee works in at least one department and that each department has at least one employee. This means that the participation of both Employees and Departments in Works_In is total. The ER diagram in Figure 2.10 shows both the Manages and Works_In relationship sets and all the given constraints. If the participation of an entity set in a relationship set is total, the two are connected by a thick line; independently, the presence of an arrow indicates a key constraint. The instances of Works_In and Manages shown in Figures 2.3 and 2.7 satisfy all the constraints in Figure 2.10.

2.4.3 Weak Entities

Thus far, we have assumed that the attributes associated with an entity set include a key. This assumption does not always hold. For example, suppose that employees can purchase insurance policies to cover their dependents. We wish to record information about policies, including who is covered by each policy, but this information is really our only interest in the dependents of an employee. If an employee quits, any policy owned by the employee is terminated and we want to delete all the relevant policy and dependent information from the database.

We might choose to identify a dependent by name alone in this situation, since it is reasonable to expect that the dependents of a given employee have different names. Thus the attributes of the Dependents entity set might be \(p\text{name} \) and \(\text{age} \). The attribute \(p\text{name} \) does not identify a dependent uniquely. Recall that the key for Employees is
Dependents is an example of a weak entity set. A weak entity can be identified uniquely only by considering some of its attributes in conjunction with the primary key of another entity, which is called the identifying owner.

The following restrictions must hold:

- The owner entity set and the weak entity set must participate in a one-to-many relationship set (one owner entity is associated with one or more weak entities, but each weak entity has a single owner). This relationship set is called the identifying relationship set of the weak entity set.

- The weak entity set must have total participation in the identifying relationship set.

For example, a Dependents entity can be identified uniquely only if we take the key of the owning Employees entity and the pname of the Dependents entity. The set of attributes of a weak entity set that uniquely identify a weak entity for a given owner entity is called a partial key of the weak entity set. In our example p-name is a partial key for Dependents.

The Dependents weak entity set and its relationship to Employees is shown in Figure 2.11. The total participation of Dependents in Policy is indicated by linking them.
The Entity-Relationship Model

with a dark line. The arrow from Dependents to Policy indicates that each Dependents entity appears in at most one (indeed, exactly one, because of the participation constraint) Policy relationship. To underscore the fact that Dependents is a weak entity and Policy is its identifying relationship, we draw both with dark lines. To indicate that \(p\text{name} \) is a partial key for Dependents, we underline it using a broken line. This means that there may well be two dependents with the same \(p\text{name} \) value.

![Figure 2.11 A Weak Entity Set](image)

2.4.4 Class Hierarchies

Sometimes it is natural to classify the entities in an entity set into subclasses. For example, we might want to talk about an Hourly_Emps entity set and a Contract_Emps entity set to distinguish the basis on which they are paid. We might have attributes \(hours_worked \) and \(hourly_wage \) defined for Hourly_Emps and an attribute \(contractid \) defined for Contract_Emps.

We want the semantics that every entity in one of these sets is also an Employees entity, and as such must have all of the attributes of Employees defined. Thus, the attributes defined for an Hourly_Emps entity are the attributes for Employees plus Hourly_Emps. We say that the attributes for the entity set Employees are inherited by the entity set Hourly_Emps, and that Hourly_Emps ISA (read is a) Employees. In addition—and in contrast to class hierarchies in programming languages such as C++—there is a constraint on queries over instances of these entity sets: A query that asks for all Employees entities must consider all Hourly_Emps and Contract_Emps entities as well. Figure 2.12 illustrates the class hierarchy.

The entity set Employees may also be classified using a different criterion. For example, we might identify a subset of employees as Senior_Emps. We can modify Figure 2.12 to reflect this change by adding a second ISA node as a child of Employees and making Senior_Emps a child of this node. Each of these entity sets might be classified further, creating a multilevel ISA hierarchy.

A class hierarchy can be viewed in one of two ways:
Employees is specialized into subclasses. Specialization is the process of identifying subsets of an entity set (the superclass) that share some distinguishing characteristic. Typically the superclass is defined first, the subclasses are defined next, and subclass-specific attributes and relationship sets are then added.

Hourly_Emps and Contract_Emps are generalized by Employees. As another example, two entity sets Motorboats and Cars may be generalized into an entity set Motor_Vehicles. Generalization consists of identifying some common characteristics of a collection of entity sets and creating a new entity set that contains entities possessing these common characteristics. Typically the subclasses are defined first, the superclass is defined next, and any relationship sets that involve the superclass are then defined.

We can specify two kinds of constraints with respect to ISA hierarchies, namely, overlap and covering constraints. Overlap constraints determine whether two subclasses are allowed to contain the same entity. For example, can Attishoo be both an Hourly_Emps entity and a Contract_Emps entity? Intuitively, no. Can he be both a Contract_Emps entity and a Senior_Emps entity? Intuitively, yes. We denote this by writing ‘Contract_Emps OVERLAPS Senior_Emps.’ In the absence of such a statement, we assume by default that entity sets are constrained to have no overlap.

Covering constraints determine whether the entities in the subclasses collectively include all entities in the superclass. For example, does every Employees entity have to belong to one of its subclasses? Intuitively, no. Does every Motor_Vehicles entity have to be either a Motorboats entity or a Cars entity? Intuitively, yes; a characteristic property of generalization hierarchies is that every instance of a superclass is an instance of a subclass. We denote this by writing ‘Motorboats AND Cars COVER
Motor_Vehicles.' In the absence of such a statement, we assume by default that there is no covering constraint; we can have motor vehicles that are not motorboats or cars.

There are two basic reasons for identifying subclasses (by specialization or generalization):

1. We might want to add descriptive attributes that make sense only for the entities in a subclass. For example, hourly_wages does not make sense for a Contract_Emps entity, whose pay is determined by an individual contract.

2. We might want to identify the set of entities that participate in some relationship. For example, we might wish to define the Manages relationship so that the participating entity sets are Senior_Emps and Departments, to ensure that only senior employees can be managers. As another example, Motorboats and Cars may have different descriptive attributes (say, tonnage and number of doors), but as Motor_Vehicles entities, they must be licensed. The licensing information can be captured by a Licensed_To relationship between Motor_Vehicles and an entity set called Owners.

2.4.5 Aggregation

As we have defined it thus far, a relationship set is an association between entity sets. Sometimes we have to model a relationship between a collection of entities and relationships. Suppose that we have an entity set called Projects and that each Projects entity is sponsored by one or more departments. The Sponsors relationship set captures this information. A department that sponsors a project might assign employees to monitor the sponsorship. Intuitively, Monitors should be a relationship set that associates a Sponsors relationship (rather than a Projects or Departments entity) with an Employees entity. However, we have defined relationships to associate two or more entities.

In order to define a relationship set such as Monitors, we introduce a new feature of the ER model, called aggregation. **Aggregation** allows us to indicate that a relationship set (identified through a dashed box) participates in another relationship set. This is illustrated in Figure 2.13, with a dashed box around Sponsors (and its participating entity sets) used to denote aggregation. This effectively allows us to treat Sponsors as an entity set for purposes of defining the Monitors relationship set.

When should we use aggregation? Intuitively, we use it when we need to express a relationship among relationships. But can’t we express relationships involving other relationships without using aggregation? In our example, why not make Sponsors a ternary relationship? The answer is that there are really two distinct relationships, Sponsors and Monitors, each possibly with attributes of its own. For instance, the
Monitors relationship has an attribute *until* that records the date until when the employee is appointed as the sponsorship monitor. Compare this attribute with the attribute *since* of Sponsors, which is the date when the sponsorship took effect. The use of aggregation versus a ternary relationship may also be guided by certain integrity constraints, as explained in Section 2.5.4.

2.5 CONCEPTUAL DATABASE DESIGN WITH THE ER MODEL

Developing an ER diagram presents several choices, including the following:

- Should a concept be modeled as an entity or an attribute?
- Should a concept be modeled as an entity or a relationship?
- What are the relationship sets and their participating entity sets? Should we use binary or ternary relationships?
- Should we use aggregation?

We now discuss the issues involved in making these choices.
2.5.1 Entity versus Attribute

While identifying the attributes of an entity set, it is sometimes not clear whether a property should be modeled as an attribute or as an entity set (and related to the first entity set using a relationship set). For example, consider adding address information to the Employees entity set. One option is to use an attribute \textit{address}. This option is appropriate if we need to record only one address per employee, and it suffices to think of an address as a string. An alternative is to create an entity set called Addresses and to record associations between employees and addresses using a relationship (say, Has_Address). This more complex alternative is necessary in two situations:

- We have to record more than one address for an employee.
- We want to capture the structure of an address in our ER diagram. For example, we might break down an address into city, state, country, and Zip code, in addition to a string for street information. By representing an address as an entity with these attributes, we can support queries such as “Find all employees with an address in Madison, WI.”

For another example of when to model a concept as an entity set rather than as an attribute, consider the relationship set (called Works_In2) shown in Figure 2.14.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{Works_In2.png}
\caption{The Works_In2 Relationship Set}
\end{figure}

It differs from the Works_In relationship set of Figure 2.2 only in that it has attributes \textit{from} and \textit{to}, instead of \textit{since}. Intuitively, it records the interval during which an employee works for a department. Now suppose that it is possible for an employee to work in a given department over more than one period.

This possibility is ruled out by the ER diagram’s semantics. The problem is that we want to record several values for the descriptive attributes for each instance of the Works_In2 relationship. (This situation is analogous to wanting to record several addresses for each employee.) We can address this problem by introducing an entity set called, say, Duration, with attributes \textit{from} and \textit{to}, as shown in Figure 2.15.
In some versions of the ER model, attributes are allowed to take on sets as values. Given this feature, we could make Duration an attribute of Works_In, rather than an entity set; associated with each Works_In relationship, we would have a set of intervals. This approach is perhaps more intuitive than modeling Duration as an entity set. Nonetheless, when such set-valued attributes are translated into the relational model, which does not support set-valued attributes, the resulting relational schema is very similar to what we get by regarding Duration as an entity set.

2.5.2 Entity versus Relationship

Consider the relationship set called Manages in Figure 2.6. Suppose that each department manager is given a discretionary budget ($dbudget$), as shown in Figure 2.16, in which we have also renamed the relationship set to Manages2.

There is at most one employee managing a department, but a given employee could manage several departments; we store the starting date and discretionary budget for each manager-department pair. This approach is natural if we assume that a manager receives a separate discretionary budget for each department that he or she manages.
But what if the discretionary budget is a sum that covers all departments managed by that employee? In this case each Manages2 relationship that involves a given employee will have the same value in the dbudget field. In general such redundancy could be significant and could cause a variety of problems. (We discuss redundancy and its attendant problems in Chapter 15.) Another problem with this design is that it is misleading.

We can address these problems by associating dbudget with the appointment of the employee as manager of a group of departments. In this approach, we model the appointment as an entity set, say Mgr-Appt, and use a ternary relationship, say Manages3, to relate a manager, an appointment, and a department. The details of an appointment (such as the discretionary budget) are not repeated for each department that is included in the appointment now, although there is still one Manages3 relationship instance per such department. Further, note that each department has at most one manager, as before, because of the key constraint. This approach is illustrated in Figure 2.17.

Figure 2.17 Entity Set versus Relationship

2.5.3 Binary versus Ternary Relationships *

Consider the ER diagram shown in Figure 2.18. It models a situation in which an employee can own several policies, each policy can be owned by several employees, and each dependent can be covered by several policies.

Suppose that we have the following additional requirements:

- A policy cannot be owned jointly by two or more employees.
- Every policy must be owned by some employee.
Dependents is a weak entity set, and each dependent entity is uniquely identified by taking `pname` in conjunction with the `policyid` of a policy entity (which, intuitively, covers the given dependent).

The first requirement suggests that we impose a key constraint on Policies with respect to Covers, but this constraint has the unintended side effect that a policy can cover only one dependent. The second requirement suggests that we impose a total participation constraint on Policies. This solution is acceptable if each policy covers at least one dependent. The third requirement forces us to introduce an identifying relationship that is binary (in our version of ER diagrams, although there are versions in which this is not the case).

Even ignoring the third point above, the best way to model this situation is to use two binary relationships, as shown in Figure 2.19.

This example really had two relationships involving Policies, and our attempt to use a single ternary relationship (Figure 2.18) was inappropriate. There are situations, however, where a relationship inherently associates more than two entities. We have seen such an example in Figure 2.4 and also Figures 2.15 and 2.17.

As a good example of a ternary relationship, consider entity sets Parts, Suppliers, and Departments, and a relationship set Contracts (with descriptive attribute `qty`) that involves all of them. A contract specifies that a supplier will supply (some quantity of) a part to a department. This relationship cannot be adequately captured by a collection of binary relationships (without the use of aggregation). With binary relationships, we can denote that a supplier ‘can supply’ certain parts, that a department ‘needs’ some...
parts, or that a department ‘deals with’ a certain supplier. No combination of these relationships expresses the meaning of a contract adequately, for at least two reasons:

- The facts that supplier S can supply part P, that department D needs part P, and that D will buy from S do not necessarily imply that department D indeed buys part P from supplier S!
- We cannot represent the \(qty \) attribute of a contract cleanly.

2.5.4 Aggregation versus Ternary Relationships *

As we noted in Section 2.4.5, the choice between using aggregation or a ternary relationship is mainly determined by the existence of a relationship that relates a relationship set to an entity set (or second relationship set). The choice may also be guided by certain integrity constraints that we want to express. For example, consider the ER diagram shown in Figure 2.13. According to this diagram, a project can be sponsored by any number of departments, a department can sponsor one or more projects, and each sponsorship is monitored by one or more employees. If we don’t need to record the \(until \) attribute of Monitors, then we might reasonably use a ternary relationship, say, Sponsors2, as shown in Figure 2.20.

Consider the constraint that each sponsorship (of a project by a department) be monitored by at most one employee. We cannot express this constraint in terms of the Sponsors2 relationship set. On the other hand, we can easily express the constraint by drawing an arrow from the aggregated relationship Sponsors to the relationship
Monitors in Figure 2.13. Thus, the presence of such a constraint serves as another reason for using aggregation rather than a ternary relationship set.

2.6 CONCEPTUAL DESIGN FOR LARGE ENTERPRISES *

We have thus far concentrated on the constructs available in the ER model for describing various application concepts and relationships. The process of conceptual design consists of more than just describing small fragments of the application in terms of ER diagrams. For a large enterprise, the design may require the efforts of more than one designer and span data and application code used by a number of user groups. Using a high-level, semantic data model such as ER diagrams for conceptual design in such an environment offers the additional advantage that the high-level design can be diagrammatically represented and is easily understood by the many people who must provide input to the design process.

An important aspect of the design process is the methodology used to structure the development of the overall design and to ensure that the design takes into account all user requirements and is consistent. The usual approach is that the requirements of various user groups are considered, any conflicting requirements are somehow resolved, and a single set of global requirements is generated at the end of the requirements analysis phase. Generating a single set of global requirements is a difficult task, but it allows the conceptual design phase to proceed with the development of a logical schema that spans all the data and applications throughout the enterprise.
An alternative approach is to develop separate conceptual schemas for different user groups and to then integrate these conceptual schemas. To integrate multiple conceptual schemas, we must establish correspondences between entities, relationships, and attributes, and we must resolve numerous kinds of conflicts (e.g., naming conflicts, domain mismatches, differences in measurement units). This task is difficult in its own right. In some situations schema integration cannot be avoided—for example, when one organization merges with another, existing databases may have to be integrated. Schema integration is also increasing in importance as users demand access to heterogeneous data sources, often maintained by different organizations.

2.7 POINTS TO REVIEW

- Database design has six steps: requirements analysis, conceptual database design, logical database design, schema refinement, physical database design, and security design. Conceptual design should produce a high-level description of the data, and the entity-relationship (ER) data model provides a graphical approach to this design phase. (Section 2.1)

- In the ER model, a real-world object is represented as an entity. An entity set is a collection of structurally identical entities. Entities are described using attributes. Each entity set has a distinguished set of attributes called a key that can be used to uniquely identify each entity. (Section 2.2)

- A relationship is an association between two or more entities. A relationship set is a collection of relationships that relate entities from the same entity sets. A relationship can also have descriptive attributes. (Section 2.3)

- A key constraint between an entity set S and a relationship set restricts instances of the relationship set by requiring that each entity of S participate in at most one relationship. A participation constraint between an entity set S and a relationship set restricts instances of the relationship set by requiring that each entity of S participate in at least one relationship. The identity and existence of a weak entity depends on the identity and existence of another (owner) entity. Class hierarchies organize structurally similar entities through inheritance into sub- and super-classes. Aggregation conceptually transforms a relationship set into an entity set such that the resulting construct can be related to other entity sets. (Section 2.4)

- Development of an ER diagram involves important modeling decisions. A thorough understanding of the problem being modeled is necessary to decide whether to use an attribute or an entity set, an entity or a relationship set, a binary or ternary relationship, or aggregation. (Section 2.5)

- Conceptual design for large enterprises is especially challenging because data from many sources, managed by many groups, is involved. (Section 2.6)
Chapter 2

EXERCISES

Exercise 2.1 Explain the following terms briefly: attribute, domain, entity, relationship, entity set, relationship set, one-to-many relationship, many-to-many relationship, participation constraint, overlap constraint, covering constraint, weak entity set, aggregation, and role indicator.

Exercise 2.2 A university database contains information about professors (identified by social security number, or SSN) and courses (identified by courseid). Professors teach courses; each of the following situations concerns the Teaches relationship set. For each situation, draw an ER diagram that describes it (assuming that no further constraints hold).

1. Professors can teach the same course in several semesters, and each offering must be recorded.
2. Professors can teach the same course in several semesters, and only the most recent such offering needs to be recorded. (Assume this condition applies in all subsequent questions.)
3. Every professor must teach some course.
4. Every professor teaches exactly one course (no more, no less).
5. Every professor teaches exactly one course (no more, no less), and every course must be taught by some professor.
6. Now suppose that certain courses can be taught by a team of professors jointly, but it is possible that no one professor in a team can teach the course. Model this situation, introducing additional entity sets and relationship sets if necessary.

Exercise 2.3 Consider the following information about a university database:

- Professors have an SSN, a name, an age, a rank, and a research specialty.
- Projects have a project number, a sponsor name (e.g., NSF), a starting date, an ending date, and a budget.
- Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S. or Ph.D.).
- Each project is managed by one professor (known as the project’s principal investigator).
- Each project is worked on by one or more professors (known as the project’s co-investigators).
- Professors can manage and/or work on multiple projects.
- Each project is worked on by one or more graduate students (known as the project’s research assistants).
- When graduate students work on a project, a professor must supervise their work on the project. Graduate students can work on multiple projects, in which case they will have a (potentially different) supervisor for each one.
- Departments have a department number, a department name, and a main office.
- Departments have a professor (known as the chairman) who runs the department.
- Professors work in one or more departments, and for each department that they work in, a time percentage is associated with their job.
Graduate students have one major department in which they are working on their degree.

Each graduate student has another, more senior graduate student (known as a student advisor) who advises him or her on what courses to take.

Design and draw an ER diagram that captures the information about the university. Use only the basic ER model here, that is, entities, relationships, and attributes. Be sure to indicate any key and participation constraints.

Exercise 2.4 A company database needs to store information about employees (identified by ssn, with salary and phone as attributes); departments (identified by dno, with dname and budget as attributes); and children of employees (with name and age as attributes). Employees work in departments; each department is managed by an employee; a child must be identified uniquely by name when the parent (who is an employee; assume that only one parent works for the company) is known. We are not interested in information about a child once the parent leaves the company.

Draw an ER diagram that captures this information.

Exercise 2.5 Notown Records has decided to store information about musicians who perform on its albums (as well as other company data) in a database. The company has wisely chosen to hire you as a database designer (at your usual consulting fee of $2,500/day).

Each musician that records at Notown has an SSN, a name, an address, and a phone number. Poorly paid musicians often share the same address, and no address has more than one phone.

Each instrument that is used in songs recorded at Notown has a name (e.g., guitar, synthesizer, flute) and a musical key (e.g., C, B-flat, E-flat).

Each album that is recorded on the Notown label has a title, a copyright date, a format (e.g., CD or MC), and an album identifier.

Each song recorded at Notown has a title and an author.

Each musician may play several instruments, and a given instrument may be played by several musicians.

Each album has a number of songs on it, but no song may appear on more than one album.

Each song is performed by one or more musicians, and a musician may perform a number of songs.

Each album has exactly one musician who acts as its producer. A musician may produce several albums, of course.

Design a conceptual schema for Notown and draw an ER diagram for your schema. The following information describes the situation that the Notown database must model. Be sure to indicate all key and cardinality constraints and any assumptions that you make. Identify any constraints that you are unable to capture in the ER diagram and briefly explain why you could not express them.
Exercise 2.6 Computer Sciences Department frequent fliers have been complaining to Dane County Airport officials about the poor organization at the airport. As a result, the officials have decided that all information related to the airport should be organized using a DBMS, and you’ve been hired to design the database. Your first task is to organize the information about all the airplanes that are stationed and maintained at the airport. The relevant information is as follows:

- Every airplane has a registration number, and each airplane is of a specific model.
- The airport accommodates a number of airplane models, and each model is identified by a model number (e.g., DC-10) and has a capacity and a weight.
- A number of technicians work at the airport. You need to store the name, SSN, address, phone number, and salary of each technician.
- Each technician is an expert on one or more plane model(s), and his or her expertise may overlap with that of other technicians. This information about technicians must also be recorded.
- Traffic controllers must have an annual medical examination. For each traffic controller, you must store the date of the most recent exam.
- All airport employees (including technicians) belong to a union. You must store the union membership number of each employee. You can assume that each employee is uniquely identified by the social security number.
- The airport has a number of tests that are used periodically to ensure that airplanes are still airworthy. Each test has a Federal Aviation Administration (FAA) test number, a name, and a maximum possible score.
- The FAA requires the airport to keep track of each time that a given airplane is tested by a given technician using a given test. For each testing event, the information needed is the date, the number of hours the technician spent doing the test, and the score that the airplane received on the test.

1. Draw an ER diagram for the airport database. Be sure to indicate the various attributes of each entity and relationship set; also specify the key and participation constraints for each relationship set. Specify any necessary overlap and covering constraints as well (in English).

2. The FAA passes a regulation that tests on a plane must be conducted by a technician who is an expert on that model. How would you express this constraint in the ER diagram? If you cannot express it, explain briefly.

Exercise 2.7 The Prescriptions-R-X chain of pharmacies has offered to give you a free lifetime supply of medicines if you design its database. Given the rising cost of health care, you agree. Here’s the information that you gather:

- Patients are identified by an SSN, and their names, addresses, and ages must be recorded.
- Doctors are identified by an SSN. For each doctor, the name, specialty, and years of experience must be recorded.
- Each pharmaceutical company is identified by name and has a phone number.
For each drug, the trade name and formula must be recorded. Each drug is sold by a given pharmaceutical company, and the trade name identifies a drug uniquely from among the products of that company. If a pharmaceutical company is deleted, you need not keep track of its products any longer.

Each pharmacy has a name, address, and phone number.

Every patient has a primary physician. Every doctor has at least one patient.

Each pharmacy sells several drugs and has a price for each. A drug could be sold at several pharmacies, and the price could vary from one pharmacy to another.

Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for several patients, and a patient could obtain prescriptions from several doctors. Each prescription has a date and a quantity associated with it. You can assume that if a doctor prescribes the same drug for the same patient more than once, only the last such prescription needs to be stored.

Pharmaceutical companies have long-term contracts with pharmacies. A pharmaceutical company can contract with several pharmacies, and a pharmacy can contract with several pharmaceutical companies. For each contract, you have to store a start date, an end date, and the text of the contract.

Pharmacies appoint a supervisor for each contract. There must always be a supervisor for each contract, but the contract supervisor can change over the lifetime of the contract.

1. Draw an ER diagram that captures the above information. Identify any constraints that are not captured by the ER diagram.

2. How would your design change if each drug must be sold at a fixed price by all pharmacies?

3. How would your design change if the design requirements change as follows: If a doctor prescribes the same drug for the same patient more than once, several such prescriptions may have to be stored.

Exercise 2.8 Although you always wanted to be an artist, you ended up being an expert on databases because you love to cook data and you somehow confused ‘database’ with ‘data baste.’ Your old love is still there, however, so you set up a database company, ArtBase, that builds a product for art galleries. The core of this product is a database with a schema that captures all the information that galleries need to maintain. Galleries keep information about artists, their names (which are unique), birthplaces, age, and style of art. For each piece of artwork, the artist, the year it was made, its unique title, its type of art (e.g., painting, lithograph, sculpture, photograph), and its price must be stored. Pieces of artwork are also classified into groups of various kinds, for example, portraits, still lifes, works by Picasso, or works of the 19th century; a given piece may belong to more than one group. Each group is identified by a name (like those above) that describes the group. Finally, galleries keep information about customers. For each customer, galleries keep their unique name, address, total amount of dollars they have spent in the gallery (very important!), and the artists and groups of art that each customer tends to like.

Draw the ER diagram for the database.
BIBLIOGRAPHIC NOTES

Several books provide a good treatment of conceptual design; these include [52] (which also contains a survey of commercial database design tools) and [641].

The ER model was proposed by Chen [145], and extensions have been proposed in a number of subsequent papers. Generalization and aggregation were introduced in [604]. [330] and [514] contain good surveys of semantic data models. Dynamic and temporal aspects of semantic data models are discussed in [658].

[642] discusses a design methodology based on developing an ER diagram and then translating to the relational model. Markowitz considers referential integrity in the context of ER to relational mapping and discusses the support provided in some commercial systems (as of that date) in [446, 447].

The entity-relationship conference proceedings contain numerous papers on conceptual design, with an emphasis on the ER model, for example, [609].

View integration is discussed in several papers, including [84, 118, 153, 207, 465, 480, 479, 596, 608, 657]. [53] is a survey of several integration approaches.