
Panels and Widgets – Part

One
A panel is an area in your design which can contain a number of widgets. These
widgets can be installed by simply "dropping" them into place using the admin area.

A widget is a small visual object such as a poll, login box, search box, news scroller,
and so on, which you may want to place on your site.

Items placed in a panel can be seen on every page of the site.

In this chapter, we will learn how to:

•	 Create the panel plugin

•	 Create the content snippet widget

•	 Add widgets to panels

•	 Display panels and widgets on the front-end

This is another two-part chapter.

This irst chapter will develop panels and widgets enough that they can be created
and seen on the front-end.

The next chapter will enhance this foundation and let you customize the widgets,
and choose which pages the panels and widgets should be visible on.

Creating the panel plugin
Usually when creating a website, a header, footer, and sidebar will be written into
the theme which are speciic to the company the website is for.

www.eBookTM.Com

Panels and Widgets – Part One

[246]

The header would include the company name, logo, and maybe a collage of pertinent
images.

The footer would include the company name, trademarks, maybe a contact number.

The sidebar would include contact details of the company.

If you replace those three areas with panels (named "header", "footer", "sidebar"),
each of which can contain a widget which provides the required HTML for the
company-speciic details, then this allows you to create a generic web design which
can be customized for a speciic company, and yet be reused by another customer if
you wish.

The Content Snippet widget is just that—it's a snippet of HTML content which you
want to have shared among all your pages.

Create the directory /ww.plugins/panels and add this plugin.php to it:

<?php

$plugin=array(

 'name'=>'Panels',

 'description'=>

 'Allows content sections to be displayed throughout the site.',

 'admin'=>array(

 'menu'=>array(

 'Misc>Panels'=>'index'

)

),

 'frontend'=>array(

 'template_functions'=>array(

 'PANEL'=>array(

 'function' => 'panels_show'

)

)

),

 'version'=>4

);

function panels_show($vars){

}

We'll leave the front-end function blank for now.

Notice that we've added a template function to the coniguration array. Because we
are talking about adding panels to speciic parts of the site design, we need to add
code to the theme's template iles to say where the panels go. We do this by adding
the PANEL function to Smarty, which will call panels_show() when it is used in the
design. The template_functions array will be explained later.

www.eBookTM.Com

Chapter 10

[247]

An example of its use:

<html>

 <body>

 {{$PANEL name="header"}}

 <p>page content goes here</p>

 {{$PANEL name="footer"}}

 </body>

</html>

At the moment, our CMS doesn't actually add that function to Smarty, but we'll get
to that.

Notice as well that the coniguration set the version number to 4. This is because
there were four database table revisions I made while developing the plugin.

I've combined all four into one step here. Add the /ww.plugins/panels/upgrade.
php ile:

<?php

if($version<4){ // panels table

 dbQuery('CREATE TABLE IF NOT EXISTS `panels` (

 `id` int(11) NOT NULL auto_increment,

 `name` text,

 `body` text,

 `visibility` text,

 `disabled` smallint default 0,

 PRIMARY KEY (`id`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8');

 $version=4;

}

The panels table includes these ields:

id Internal ID of the panel.

name The name of the panel. This is used in the design template.

For example: {{PANEL name="footer"}}

body A JSON array containing details of any contained widgets.

visibility A list of pages which this panel is visible on. If left blank, it's visible
on all of them.

disabled This allows you to "turn off" a panel so it's not visible at all on the
front-end, yet keeps its settings.

www.eBookTM.Com

Panels and Widgets – Part One

[248]

The reason we detail the contained widgets in a JSON array instead of a related
database table is that database access is usually slower than simply reading a text
ile, especially if there are quite a few records.

In any one panel, there would usually be only two or three widgets. Running a
database search for that number of items is silly when you can include their details in
the container panel's result instead.

Registering a panel
A panel is tied explicitly to a name, which is referred to in a template. When you
create the template, you write into it where you want the panel to appear by using
that name.

There are two ways to know the names of the panels that are contained in any
template:

1. Decide beforehand what names are allowed.

2. Parse the templates to extract the names.

The irst option is simply unreasonable. If we do decide on a certain list of allowed
names, we may end up with a list of ten or more panel names, where any design may
pick and choose from the list. However, we then still have the problem of showing
only the active panel names to the administrator.

It is more reasonable to not restrict the list of names, but instead extract the names
that the designer chose from the template itself.

The extraction itself also poses a problem. Do we parse the actual template ile itself?
If so, we would be writing the equivalent of a Smarty compiler.

Why not let Smarty do the work itself? The solution I've come to use is that the panel
names in any template are igured out by viewing the template in the front-end and
using Smarty to then register any unknown panels in a database table.

This means that by viewing the front-end of the site before you go to the
administration page, we populate the table of panels with a list of actual panels that
are in use by the site.

While this is not ideal, in actual usage, it's suficient. Most website designs involve
creating the pages before worrying about panels. This means that the list of panels is
complete before the administrator goes to populate them.

So, irst we need to edit the template and add in the panel. Open up the /ww.skins/
basic/h/_default.html ile and add in the following highlighted lines:

www.eBookTM.Com

Chapter 10

[249]

 <div id="wrapper">

 <div id="menu-wrapper">{{MENU

 direction="horizontal"}}</div>

 {{PANEL name="right"}}

 <div id="page-wrapper">{{$PAGECONTENT}}</div>

 {{PANEL name="footer"}}

 </div>

I've also edited the CSS ile so the right panel, when generated, will be loated to the
right-hand side and the #page-wrapper element leaves enough margin space for it.
It's not essential for me to print that here.

Note that in the plugin.php ile, we had this section:

 'frontend'=>array(

 'template_functions'=>array(

 'PANEL'=>array(

 'function' => 'panels_show'

)

)

),

We will use the template_functions array to add custom functions to Smarty,
which will be executed at the appropriate place in the template.

Edit /ww.incs/common.php, and add the highlighted code to the smarty_setup
function:

 $smarty->register_function('MENU', 'menu_show_fg');

 foreach($GLOBALS['PLUGINS'] as $pname=>$plugin){

 if(isset($plugin['frontend']['template_functions'])){

 foreach($plugin['frontend']['template_functions']

 as $fname=>$vals){

 $smarty->register_function($fname,$vals['function']);

 }

 }

 }

 return $smarty;

}

Now any template_functions array items will be added to Smarty and can be
called from the template itself.

www.eBookTM.Com

Panels and Widgets – Part One

[250]

Edit the /ww.plugins/panels/plugin.php ile, and replace the panels_show()
function:

function panels_show($vars){

 $name=isset($vars['name'])?$vars['name']:'';

 // { load panel data

 $p=dbRow('select visibility,disabled,body from panels where

 name="'.addslashes($name).'" limit 1');

 if(!$p){

 dbQuery("insert into panels (name,body)

 values('".addslashes($name)."','{\"widgets\":[]}')");

 return '';

 }

 // }

 // { is the panel visible?

 // }

 // { get the panel content

 $widgets=json_decode($p['body']);

 if(!count($widgets->widgets))return '';

 // }

}

This is a skeleton function. A lot of it has been left out. At the moment, all that it
does is to verify that the panel is in the database and if not, the panel is added to the
database.

When you view the page in the browser, there is no visible difference. The HTML
source has not been changed. It's as if the {{PANEL}} lines weren't in the template at all.

This is because if a panel is empty, it is pointless having an empty space in the page.

It is possible to have CSS change the layout of the page depending on whether the
panel exists or not. That is outside the scope of the book, but if you need to know
how to do it, read the following article which I wrote a few months ago:

http://blog.webworks.ie/2010/04/27/creating-optional-columns-in-
website-layouts/

www.eBookTM.Com

Chapter 10

[251]

Even though there is no visible difference in the HTML, the database table has been
populated:

By decoding the JSON in the body ield, the function knew there were no contained
widgets and returned an empty string.

The panel admin area
Now we need to populate the panels.

The panel admin section will be easy to explain the look of, but is kind of complex
underneath it.

The page will be a two-column layout, with a wide column on the left-hand side
holding a list of all available widgets, and a narrow column on the right-hand side
listing the available panels.

We will start by building that visual.

Create the /ww.plugins/panels/admin directory, and in there, place an index.php
ile:

<?php

echo '<table style="width:95%"><tr>';

echo '<td><h3>Widgets</h3><p>Drag a widget into a panel on '

 .'the right.</p><div id="widgets"></div>'

 .'<br style="clear:both" /></td>';

echo '<td style="width:220px"><h3>Panels</h3><p>Click a '

 .'header to open it.</p><div id="panels"></div>'

 .'<br style="clear:both" /></td></tr>';

echo '</table>';

www.eBookTM.Com

Panels and Widgets – Part One

[252]

When viewed, we get a general idea of how this will work.

Next, we will show the panels that we inserted into the database in the previous
section of the chapter.

Showing panels
Add the following code to the admin/index.php ile that we just edited:

echo '<link rel="stylesheet" type="text/css"

 href="/ww.plugins/panels/admin/css.css" />';

// { panel and widget data

echo '<script>';

// { panels

echo 'ww.panels=[';

$ps=array();

$rs=dbAll('select * from panels order by name');

foreach($rs as $r)$ps[]='{id:'.$r['id'].',disabled:'

 .$r['disabled'].',name:"'.$r['name'].'",widgets:'

 .$r['body'].'}';

echo join(',',$ps);

echo '];';

// }

// { widgets

echo 'ww.widgets=[];';

// }

www.eBookTM.Com

Chapter 10

[253]

// { widget forms

echo 'ww.widgetForms={};';

// }

// }

?>

</script>

<script src="/ww.plugins/panels/admin/js.js"></script>

When viewed in a browser, the plugin now generates the following HTML:

<h1>panels</h1>

<table style="width:95%">

 <tr>

 <td><h3>Widgets</h3><p>Drag a widget into a panel on the

 right.</p><div id="widgets"></div>

 <br style="clear:both" /></td>

 <td style="width:220px"><h3>Panels</h3><p>Click a header

 to open it.</p><div id="panels"></div>

 <br style="clear:both" /></td>

 </tr>

</table>

<link rel="stylesheet" type="text/css"

 href="/ww.plugins/panels/admin/css.css" />

<script>

ww.panels=[

 {id:2,disabled:0,name:"footer",widgets:{"widgets":[]}},

 {id:1,disabled:0,name:"right",widgets:{"widgets":[]}}

];

ww.widgets=[];

ww.widgetForms={};

</script>

<script src="/ww.plugins/panels/admin/js.js"></script>

And now we can add some JavaScript to generate the panel wrappers. Create the ile
/ww.plugins/panels/admin/js.js:

function panels_init(panel_column){

 for(var i=0;i<ww_panels.length;++i){

 var p=ww_panels[i];

 $('<div class="panel-wrapper '

 +(p.disabled?'disabled':'enabled')+'" id="panel'

 +p.id+'">'

 +'<h4>'+p.name+'</h4>'

 +''

 +'<a title="remove panel" href="'

www.eBookTM.Com

Panels and Widgets – Part One

[254]

 +'javascript:panel_remove('

 +i+');" class="remove">remove, '

 +'<a href="javascript:panel_visibility('

 +p.id+');" class="visibility">visibility, '

 +'<a href="javascript:panel_toggle_disabled('

 +i+');" class="disabled">'

 +(p.disabled?'disabled':'enabled')+''

 +'</div>'

)

 .data('widgets',p.widgets.widgets)

 .appendTo(panel_column);

 }

}

$(function(){

 var panel_column=$('#panels');

 panels_init(panel_column);

 $('↓')

 .appendTo('.panel-wrapper h4')

 .click(function(){

 var $this=$(this);

 var panel=$this.closest('div');

 if($('.panel-body',panel).length){

 $('.controls',panel).css('display','none');

 return $('.panel-body',panel).remove();

 }

 $('.controls',panel).css('display','block');

 });

});

So irst, we get the #panels wrapper and run panels_init on it. This function
builds up a simple element with a few links inside it:

remove This link is for deleting the panel if your template doesn't use it or you just
want to empty it quickly.

visibility This will be used to decide what pages the panel is visible on. If you want
this panel to only show on the front page, for example, you would use this.

enabled This link lets you turn off the whole panel and its contained widgets so you
can work on it in the admin area but it's not visible in the front-end.

Notice the usage of .data('widgets',p.widgets.widgets)—this saves the
contained widget data to the panel element itself. We'll make use of that soon.

The panels start with their bodies hidden and only their names visible (in <h4>
elements).

www.eBookTM.Com

Chapter 10

[255]

After panels_init() is inished, we then add a down-arrow link to each of those
<h4> elements, which when clicked will toggle the panel body's visibility.

Here's what the page looks like now, with one of the panels opened up:

Before we write the code for those links, we will start building the widget code—
otherwise, there'd be no visible proof that the links are working.

Creating the content snippet plugin
In order to demonstrate widgets, we will build a simple plugin called content
snippet. This plugin will manage small snippets of code which can be displayed
anywhere that a panel is.

In my own work, I use content snippets to add editable footers, headers, and side
panel content sections (for addresses, contact details, and so on) to design templates.
This allows the customer to update details without needing access to the template
iles themselves.

Create the directory /ww.plugins/content-snippet, and add the following
plugin.php ile in it:

<?php

$plugin=array(

 'name' => 'Content Snippets',

 'admin' => array(

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Panels and Widgets – Part One

[256]

 'widget' => array(

 'form_url' => '/ww.plugins/content-snippet/admin/'

 .'widget-form.php'

)

),

 'description' => 'Add small static HTML snippets to any '

 .'panel - address, slogan, footer, image, etc.',

 'frontend' => array(

 'widget' => 'contentsnippet_show'

),

 'version' => '1'

);

function contentsnippet_show($vars=null){

 require_once SCRIPTBASE.'ww.plugins/content-snippet/'

 .'frontend/index.php';

 return content_snippet_show($vars);

}

Inside the admin array, we have a widget section. The form_url parameter points to
the address of a PHP script which will be used to conigure the panel.

And inside the front-end array, we have a corresponding widget section which
points at a function which will display the widget.

We will need a database table for this plugin, so create the upgrade.php ile:

<?php

if($version=='0'){ // add table

 dbQuery('create table if not exists content_snippets(id'

 .' int auto_increment not null primary key, html text)'

 .'default charset=utf8;');

 $version=1;

}

All we need for this panel is to record some HTML, which is then displayed as-is on
the front-end.

After you inish writing the iles, go to the Plugins area of the CMS and enable this
new plugin, then go back to the Panels area.

Adding widgets to panels
We now have a very simple plugin skeleton ready to go. All we need to do is add
it to a panel, conigure it (by adding HTML), and then show it on the front-end.

www.eBookTM.Com

Chapter 10

[257]

Showing widgets
First, we need to show the list of available widgets.

Edit the ile /ww.plugins/panels/admin/index.php and change the widgets
section to this:

// { widgets

echo 'ww_widgets=[';

$ws=array();

foreach($PLUGINS as $n=>$p){

 if(isset($p['frontend']['widget']))$ws[]='{type:"'.$n

 .'",description:"'.addslashes($p['description']).'"}';

}

echo join(',',$ws);

echo '];';

// }

That will output the following to our browser:

ww_widgets=[{type:"content-snippet",description:"Add small static HTML
snippets to any panel - address, slogan, footer, image, etc."}];

Now we edit the admin/js.js ile to show these widgets in the left-hand side column.
This will involve a few small changes, so we'll step through them one at a time.

First, add the highlighted lines to the $(function){ section:

 panels_init(panel_column);

 var widget_column=$('#widgets');

 ww_widgetsByName={};

 widgets_init(widget_column);

 $('↓')

Then add the widgets_init() function:

function widgets_init(widget_column){

 for(var i=0;i<ww_widgets.length;++i){

 var p=ww_widgets[i];

 $('<div class="widget-wrapper"><h4>'+p.type

 +'</h4><p>'+p.description+'</p></div>')

 .appendTo(widget_column)

 .data('widget',p);

 ww_widgetsByName[p.type]=p;

 }

}

www.eBookTM.Com

Panels and Widgets – Part One

[258]

This takes the global ww_widgets array and builds little box elements out of the data,
attaching the widget data to the boxes, and then adding the boxes to the left column
of the main table.

The page looks much better now, as you can see in the next screenshot:

The next step is to take widgets from the left-hand side of the page and associate
them with panels on the right-hand side of the page.

Dragging widgets into panels
Drag-and-drop is handled by using jQuery UI's Sortable plugin, which allows you to
drag items from one list (the widgets list on the left-hand side) and drop into another
list (the list of contained widgets in each panel on the right).

Edit the $(function()){ section of js.js again and add these highlighted lines:

 $('.controls',panel).css('display','block');

 var widgets_container=$('<div class="panel-body">'

 +'</div>');

 widgets_container.appendTo(panel);

 $('<br style="clear:both" />')

 .appendTo(panel);

 $('.panel-body').sortable({

 });

 });

www.eBookTM.Com

Chapter 10

[259]

 $('#widgets').sortable({

 'connectWith':'.panel-body',

 'stop':function(ev,ui){

 var item=ui.item;

 var panel=item.closest('.panel-wrapper');

 if(!panel.length)return $(this).sortable('cancel');

 }

 })

 $('<br style="clear:both" />').appendTo(widget_column);

});

First we add a panel-body element to the right-hand side panels, which will hold
the widgets.

Next, we make the contents of the right-hand side pane-body elements sortable, so
we can link to them with the left-hand side column widgets.

Finally, we make the left-hand side column sortable, linking to the panel-body
elements on the right-hand side.

With this done, we can now drag widgets into the panels:

www.eBookTM.Com

Panels and Widgets – Part One

[260]

Unfortunately, this is not very useful, as the widget has been removed from the
left-hand side column, and therefore can't be reused. For example, if you wanted
to use a content snippet in each panel, you can't do that now.

So, what we need to do is "clone" the dragged item (or at least its data properties)
and place the clone in the panel, then cancel the drag so the original dragged widget
goes back to the right panel.

Edit the same ile again, and add these highlighted lines:

 'stop':function(ev,ui){

 var item=ui.item;

 var panel=item.closest('.panel-wrapper');

 if(!panel.length)return $(this).sortable('cancel');

 var p=ww_widgetsByName[$('h4',ui.item).text()];

 var clone=buildRightWidget({'type':p.type});

 panel.find('.panel-body').append(clone);

 $(this).sortable('cancel');

 }

The above code calls a function buildRightWidget() with the widget name (the
name of the plugin used to create the widget), and the resulting element is added to
the panel instead of the actual dragged widget.

The dragged widget is then returned to its original place (by cancelling the sortable's
drag) where it can be used again.

Here's the function buildRightWidget(), to be added to the ile:

function buildRightWidget(p){

 var widget=$('<div class="widget-wrapper '

 +(p.disabled?'disabled':'enabled')+'"></div>')

 .data('widget',p);

 var h4=$('<h4></h4>')

 .appendTo(widget);

 var name=p.name||p.type;

 $('<input type="checkbox" class="widget_header_visibility"'

 +' title="tick this to show the widget title on the'

 +' front-end" />')

 .click(widget_header_visibility)

 .appendTo(h4);

 $(''+name+'')

 .click(widget_rename)

 .appendTo(h4);

 $('↓')

 .appendTo(h4)

www.eBookTM.Com

Chapter 10

[261]

 .click(showWidgetForm);

 return widget;

}

This code creates another wrapper similar to the panels wrappers, with the title of
the widget visible.

There are a number of functions called with callbacks, for doing things such as
renaming the widget, showing the widget name in the front-end, or showing the
widget form.

We'll get to those. In the meantime, add some "stub" functions as placeholders:

function showWidgetForm(){}

function widget_header_visibility(){}

function widget_rename(){}

Now, after dragging, we have a visual similar to the following screenshot:

We'll do one more thing in the admin area, then we can show the widget in the
front-end.

Saving panel contents
Whenever a new widget is added to a panel, we need to rebuild the panel's body
JSON string (in the panels table in the database) and save it to the server.

www.eBookTM.Com

Panels and Widgets – Part One

[262]

Edit the js.js ile again, and add the following highlighted lines:

 widgets_container.appendTo(panel);

 $('<br style="clear:both" />').appendTo(panel);

 $('.panel-body').sortable({

 'stop':function(){

 updateWidgets($(this).closest('.panel-wrapper'));

 }

 });

 });

This code runs updateWidgets() whenever a widget in the right panel is moved
around (rearranged, for instance).

Add the following highlighted code as well:

 var clone=buildRightWidget({'type':p.type});

 panel.find('.panel-body').append(clone);

 $(this).sortable('cancel');

 updateWidgets(panel);

 }

 })

This adds a behavior such that when the widget is dropped into a panel body,
the function updateWidgets() is run.

Here is the updateWidgets() function:

function updateWidgets(panel){

 var id=panel[0].id.replace(/panel/,'');

 var w_els=$('.widget-wrapper',panel);

 var widgets=[];

 for(var i=0;i<w_els.length;++i){

 widgets.push($(w_els[i]).data('widget'));

 }

 panel.data('widgets',widgets);

 var json=json_encode({'widgets':widgets});

 $.post('/ww.plugins/panels/admin/save.php',{

 'id':id,

 'data':json

 });

}

This function takes a panel as its parameter. It then searches the panel for any
contained widgets, adds all of their contained "widget" data to its own "widgets"
array, and sends that to the server to be saved.

www.eBookTM.Com

Chapter 10

[263]

There is no built-in JSON encoder in jQuery, so you'll need to add one.

Edit /ww.admin/j/admin.js and add this:

function typeOf(value) {

 // from http://javascript.crockford.com/remedial.html

 var s = typeof value;

 if (s === 'object') {

 if (value) {

 if (value instanceof Array) {

 s = 'array';

 }

 } else {

 s = 'null';

 }

 }

 return s;

}

function json_encode(obj){

 switch(typeOf(obj)){

 case 'string':

 return '"'+obj.replace(/(["\\])/g,'\\$1')+'"';

 case 'array':

 return '['+obj.map(json_encode).join(',')+']';

 case 'object':

 var string=[];

 for(var property in obj)string.push(

 json_encode(property)+':'

 +json_encode(obj[property]));

 return '{'+string.join(',')+'}';

 case 'number':

 if(isFinite(obj))break;

 case false:

 return 'null';

 }

 return String(obj);

}

The irst function, typeOf(), is there because JavaScript's built-in typeof keyword
doesn't differentiate between objects and arrays, and those are very different in JSON!

www.eBookTM.Com

Panels and Widgets – Part One

[264]

Here is the server-side ile that saves it—/ww.plugins/panels/admin/save.php.

<?php

require $_SERVER['DOCUMENT_ROOT'].'/ww.admin/admin_libs.php';

$id=(int)$_REQUEST['id'];

$widgets=addslashes($_REQUEST['data']);

dbQuery("update panels set body='$widgets' where id=$id");

Now after dragging a content snippet widget into a panel, here is the database table:

We can now record what widgets are in what panels.

While interesting details of the widgets, such as customizing widget contents, are
yet to be recorded, this is enough to display some stubs on the front-end, which
we'll do next.

Showing panels on the front-end
We have the panel widgets in the database now, so let's write some code to extract
and render them.

Edit /ww.plugins/panels/plugin.php and add the following highlighted code to
the end of the panels_show() function:

 // { show the panel content

 $h='';

 global $PLUGINS;

 foreach($widgets->widgets as $widget){

 if(isset($PLUGINS[$widget->type])){

 if(

 isset($PLUGINS[$widget->type]['frontend']['widget'])

){

 $h.=$PLUGINS[$widget->type]['frontend']['widget']

 ($widget);

 }

 else $h.='plugin "'

www.eBookTM.Com

Chapter 10

[265]

 .htmlspecialchars($widget->type)

 .'" does not have a widget interface.';

 }

 else $h.='missing plugin "'

 .htmlspecialchars($widget->type)

 .'".';

 }

 // }

 $name=preg_replace('/[^a-z0-9\-]/','-',$name);

 return '<div class="panel panel-'.$name.'">'.$h.'</div>';

 // }

}

The highlighted line does the trick. In the plugin.php for the content snippet
plugin, we had this section:

 'frontend' => array(

 'widget' => 'contentsnippet_show'

),

What the highlighted line does is to call the function contentsnippet_show() with
a parameter $widget which is set to the contents of the panel's $widgets array at
that point.

So, anything that's saved in the admin area for that widget is passed to the function
on the front-end as an array. We'll see more on this later.

The function contentsnippet_show() loads up frontend/index.php and then
returns the result of a call to its contained content_snippet_show().

The functions have similar names—the only difference being the '_'. The one without
the '_' is a stub, in case the other is not actually required. There is no point loading up
a lot of code if only a little of it is actually used.

Create the directory /ww.plugins/content-snippet/frontend, and add the ile
index.php to it:

<?php

function content_snippet_show($vars){

 if(is_object($vars) && isset($vars->id) && $vars->id){

 $html=dbOne('select html from content_snippets

 where id='.$vars->id,'html');

 if($html)return $html;

 }

 return '<p>this Content Snippet is not yet defined.</p>';

}

www.eBookTM.Com

Panels and Widgets – Part One

[266]

You can see that the function expects the parameter $vars to be an object with a
variable $id in it.

We have not set that variable yet, which would correspond to a table entry in the
database, so the alternative failure string is returned instead.

If you remember, we added two panels to the template—a right panel, visible in this
screenshot, and a footer panel. The footer panel is not visible, because we haven't
added anything to it yet.

Summary
In this chapter, we built the basics of a panels and widgets system.

Widgets are a way to add huge lexibility to any web design that has panels built
into it.

In the next chapter, we will inish the system, letting the admin customize the
widgets, and choose what pages the widgets and panels are visible on.

www.eBookTM.Com

