
Chapter 12

Managing Lists
In This Chapter

▶ Defining why lists are important

▶ Generating lists

▶ Looking through lists

▶ Working with list items sequentially

▶ Changing list content

▶ Locating specific information in lists

▶ Putting list items in order

▶ Using the Counter object to your advantage

A

lot of people lose sight of the fact that most programming techniques
are based on the real world. Part of the reason is that programmers

often use terms that other people don’t to describe these real-world objects.
For example, most people would call a place to store something a box or a
cupboard — but programmers insist on using the term variable. Lists are dif-
ferent. Everyone makes lists and uses them in various ways to perform an
abundance of tasks. In fact, you’re probably surrounded by lists of various
sorts where you’re sitting right now as you read this book. So, this chapter is
about something you already use quite a lot. The only difference is that you
need to think of lists in the same way Python does.

You may read that lists are hard to work with. The reason that some people
find working with lists difficult is that they’re not used to actually thinking
about the lists they create. When you create a list, you simply write items
down in whatever order makes sense to you. Sometimes you rewrite the list
when you’re done to put it in a specific order. In other cases, you use your
finger as a guide when going down the list to make looking through it easier.
The point is that everything you normally do with lists is also doable within
Python. The difference is that you must now actually think about what you’re
doing in order to make Python understand what you want done.

224 Part III: Performing Common Tasks

Lists are incredibly important in Python. This chapter introduces you to the
concepts used to create, manage, search, and print lists (among other tasks).
When you complete the chapter, you can use lists to make your Python appli-
cations more robust, faster, and more flexible. In fact, you’ll wonder how you
ever got along without using lists in the past. The important thing to keep in
mind is that you have already used lists most of your life. There really isn’t
any difference now except that you must now think about the actions that
you normally take for granted when managing your own lists.

Organizing Information in an Application
People create lists to organize information and make it easier to access and
change. You use lists in Python for the same reason. In many situations, you
really do need some sort of organizational aid to hold data. For example, you
might want to create a single place to look for days of the week or months
of the year. The names of these items would appear in a list, much as they
would if you needed to commit them to paper in the real world. The following
sections describe lists and how they work in more detail.

Defining organization using lists
The Python specification defines a list as a kind of sequence. Sequences
simply provide some means of allowing multiple data items to exist together
in a single storage unit, but as separate entities. Think about one of those
large mail holders you see in apartment buildings. A single mail holder con-
tains a number of small mailboxes, each of which can contain mail. Python
supports other kinds of sequences as well (Chapter 13 discusses a number of
these sequences):

 ✓ Tuples

 ✓ Dictionaries

 ✓ Stacks

 ✓ Queues

 ✓ Deques

 Of all the sequences, lists are the easiest to understand and are the most
directly related to a real-world object. Working with lists helps you become
better able to work with other kinds of sequences that provide greater func-
tionality and improved flexibility. The point is that the data is stored in a
list much as you would write it on a piece of paper — one item comes after

225 Chapter 12: Managing Lists

another, as shown in Figure 12-1. The list has a beginning, a middle, and an
end. As shown in the figure, the items are numbered. (Even if you might not
normally number them in real life, Python always numbers the items for you.)

Figure 12-1:

A list is

simply a

sequence

of items,

much as

you would

write on a

notepad.

Understanding how computers view lists
The computer doesn’t view lists in the same way that you do. It doesn’t have
an internal notepad and use a pen to write on it. A computer has memory.
The computer stores each item in a list in a separate memory location, as
shown in Figure 12-2. The memory is contiguous, so as you add new items,
they’re added to the next location in memory.

Figure 12-2:

Each item

added to a

list takes the

next position

in memory.

In many respects, the computer uses something like a mailbox to hold your
list. The list as a whole is the mail holder. As you add items, the computer
places it in the next mailbox within the mail holder.

226 Part III: Performing Common Tasks

 Just as the mailboxes are numbered in a mail holder, the memory slots used
for a list are numbered. The numbers begin with 0, not with 1 as you might
expect. Each mailbox receives the next number in line. A mail holder with
the months of the year would contain 12 mailboxes. The mailboxes would be
numbered from 0 to 11 (not 12, as you might think). It’s essential to get the
numbering scheme down as quickly as possible because even experienced
developers get into trouble by using 1 and not 0 as a starting point at times.

Depending on what sort of information you place in each mailbox, the mail-
boxes need not be of the same size. Python lets you store a string in one
mailbox, an integer in another, and a floating-point value in another. The com-
puter doesn’t know what kind of information is stored in each mailbox and it
doesn’t care. All the computer sees is one long list of numbers that could be
anything. Python performs all the work required to treat the data elements
according to the right type and to ensure that when you request item five,
you actually get item five.

 In general, it’s good practice to create lists of like items to make the data
easier to manage. When creating a list of all integers, for example, rather than
of mixed data, you can make assumptions about the information and don’t
have to spend nearly as much time checking it. However, in some situations,
you might need to mix data. Many other programming languages require that
lists have just one type of data, but Python offers the flexibility of using mixed
data sorts. Just remember that using mixed data in a list means that you must
determine the data type when retrieving the information in order to work with
the data correctly. Treating a string as an integer would cause problems in
your application.

Creating Lists
As in real life, before you can do anything with a list, you must create it. As
previously stated, Python lists can mix types. However, it’s always a best
practice to restrict a list to a single type when you can. The following steps
demonstrate how to create Python lists.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type List1 = [“One”, 1, “Two”, True] and press Enter.

 Python creates a list named List1 for you. This list contains two string
values (One and Two), an integer value (1), and a Boolean value (True).
Of course, you can’t actually see anything because Python processes the
command without saying anything.

227 Chapter 12: Managing Lists

 Notice that each data type that you type is a different color. When you
use the default color scheme, Python displays strings in green, numbers
in black, and Boolean values in orange. The color of an entry is a cue
that tells you whether you have typed the entry correctly, which helps
reduce errors when creating a list.

 3. Type print(List1) and press Enter.

 You see the content of the list as a whole, as shown in Figure 12-3. Notice
that the string entries appear in single quotes, even though you typed
them using double quotes. Strings can appear in either single quotes or
double quotes in Python.

Figure 12-3:

Python

displays the

content of

List1.

 4. Type dir(List1) and press Enter.

 Python displays a list of actions that you can perform using lists, as
shown in Figure 12-4. Notice that the output is actually a list. So, you’re
using a list to determine what you can do with another list.

Figure 12-4:

Python

provides a

listing of the

actions you

can perform

using a list.

228 Part III: Performing Common Tasks

 As you start working with objects of greater complexity, you need to
remember that the dir() command always shows what tasks you can
perform using that object. The actions that appear without underscores
are the main actions that you can perform using a list. These actions are
the following:

	 •	append

	 •	clear

	 •	copy

	 •	count

	 •	extend

	 •	index

	 •	insert

	 •	pop

	 •	remove

	 •	reverse

	 •	sort

 5. Close the Python Shell window.

Accessing Lists
After you create a list, you want to access the information it contains. An
object isn’t particularly useful if you can’t at least access the information it
contains. The previous section shows how to use the print() and dir()
functions to interact with a list, but there are other ways to perform the task,
as described in the following steps.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type List1 = [“One”, 1, “Two”, True] and press Enter.

 Python creates a list named List1 for you.

229 Chapter 12: Managing Lists

 3. Type List1[1] and press Enter.

 You see the value 1 as output, as shown in Figure 12-5. The use of a
number within a set of square brackets is called an index. Python always
uses zero-based indexes, so asking for the element at index 1 means get-
ting the second element in the list.

Figure 12-5:

Make sure

to use

the cor-

rect index

number.

 4. Type List1[1:3] and press Enter.

 You see a range of values that includes two elements, as shown in
Figure 12-6. When typing a range, the end of the range is always one
greater than the number of elements returned. In this case, that means
that you get elements 1 and 2, not elements 1 through 3 as you might
expect.

Figure 12-6:

Ranges

return mul-

tiple values.

 5. Type List1[1:] and press Enter.

 You see all the elements, starting from element 1 to the end of the list,
as shown in Figure 12-7. A range can have a blank ending number, which
simply means to print the rest of the list.

230 Part III: Performing Common Tasks

Figure 12-7:

Leaving

the ending

number of a

range blank

prints the

rest of the

list.

 6. Type List1[:3] and press Enter.

 Python displays the elements from 0 through 2. Leaving the start of a
range blank means that you want to start with element 0, as shown in
Figure 12-8.

Figure 12-8:

Leaving the

beginning

number of a

range blank

prints from

element 0.

 7. Close the Python Shell window.

 Even though it’s really confusing to do so, you can use negative indexes with
Python. Instead of working from the left, Python will work from the right and
backward. For example, if you have List1 = ["One", 1, "Two", True]
and type List1[-2], you get Two as output. Likewise, typing List[-3]
results in an output of 1. The rightmost element is element -1 in this case.

231 Chapter 12: Managing Lists

Looping through Lists
To automate the processing of list elements, you need some way to loop
through the list. The easiest way to perform this task is to rely on a for state-
ment, as described in the following steps. This example also appears with the
downloadable source code as ListLoop.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

List1 = [0, 1, 2, 3, 4, 5]

for Item in List1:
 print(Item)

 The example begins by creating a list consisting of numeric values.
It then uses a for loop to obtain each element in turn and print it
onscreen.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The output shows the individual
values in the list, one on each line, as shown in Figure 12-9.

Figure 12-9:

A loop

makes it

easy to

obtain a

copy of

each item

and process

it as needed.

232 Part III: Performing Common Tasks

Modifying Lists
You can modify the content of a list as needed. Modifying a list means to
change a particular entry, add a new entry, or remove an existing entry. To
perform these tasks, you must sometimes read an entry. The concept of mod-
ification is found within the acronym CRUD, which stands for Create, Read,
Update, and Delete. Here are the list functions associated with CRUD:

 ✓ append(): Adds a new entry to the end of the list.

 ✓ clear(): Removes all entries from the list.

 ✓ copy(): Creates a copy of the current list and places it in a new list.

 ✓ extend(): Adds items from an existing list and into the current list.

 ✓ insert(): Adds a new entry to the position specified in the list.

 ✓ pop(): Removes an entry from the end of the list.

 ✓ remove(): Removes an entry from the specified position in the list.

The following steps show how to perform modification tasks with lists. This
is a hands-on exercise. As the book progresses, you see these same functions
used within application code. The purpose of this exercise is to help you gain
a feel for how lists work.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type List1 = [] and press Enter.

 Python creates a list named List1 for you.

 Notice that the square brackets are empty. List1 doesn’t contain any
entries. You can create empty lists that you fill with information later. In
fact, this is precisely how many lists start because you usually don’t know
what information they will contain until the user interacts with the list.

 3. Type len(List1) and press Enter.

 The len() function outputs 0, as shown in Figure 12-10. When creating
an application, you can check for an empty list using the len() func-
tion. If a list is empty, you can’t perform tasks such as removing ele-
ments from it because there is nothing to remove.

 4. Type List1.append(1) and press Enter.

233 Chapter 12: Managing Lists

Figure 12-10:

Check for

empty lists

as needed

in your

application.

 5. Type len(List1) and press Enter.

 The len() function now reports a length of 1.

 6. Type List1[0] and press Enter.

 You see the value stored in element 0 of List1, as shown in Figure 12-11.

Figure 12-11:

Appending

an element

changes the

list length

and stores

the value at

the end of

the list.

 7. Type List1.insert(0, 2) and press Enter.

 The insert() function requires two arguments. The first argument is
the index of the insertion, which is element 0 in this case. The second
argument is the object you want inserted at that point, which is 2 in this
case.

 8. Type List1 and press Enter.

 Python has added another element to List1. However, using the insert()
function lets you add the new element before the first element, as shown
in Figure 12-12.

234 Part III: Performing Common Tasks

Figure 12-12:

Inserting

provides

flexibility

in decid-

ing where

to add an

element.

 9. Type List2 = List1.copy() and press Enter.

 The new list, List2, is a precise copy of List1. Copying is often used
to create a temporary version of an existing list so that a user can make
temporary modifications to it rather than to the original list. When the
user is done, the application can either delete the temporary list or copy
it to the original list.

 10. Type List1.extend(List2) and press Enter.

 Python copies all the elements in List2 to the end of List1. Extending
is commonly used to consolidate two lists.

 11. Type List1 and press Enter.

 You see that the copy and extend processes have worked. List1 now
contains the values 2, 1, 2, and 1, as shown in Figure 12-13.

 12. Type List1.pop() and press Enter.

 Python displays a value of 1, as shown in Figure 12-14. The 1 was stored
at the end of the list, and pop() always removes values from the end.

 13. Type List1.remove(1) and press Enter.

 This time, Python removes the item at element 1. Unlike the pop()
function, the remove() function doesn’t display the value of the item it
removed.

 14. Type List1.clear() and press Enter.

 Using clear() means that the list shouldn’t contain any elements now.

235 Chapter 12: Managing Lists

Figure 12-13:

Copying and

extending

provide

methods for

moving a

lot of data

around

quickly.

Figure 12-14:

Use pop()

to remove

elements

from the end

of a list.

236 Part III: Performing Common Tasks

 15. Type len(List1) and press Enter.

 You see that the output is 0. List1 is definitely empty. At this point,
you’ve tried all the modification methods that Python provides for lists.
Work with List1 some more using these various functions until you feel
comfortable making changes to the list.

 16. Close the Python Shell window.

Searching Lists
Modifying a list isn’t very easy when you don’t know what the list contains.
The ability to search a list is essential if you want to make maintenance tasks
easier. The following steps help you create an application that demonstrates
the ability to search a list for specific values. This example also appears with
the downloadable source code as SearchList.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

Using operators with lists
Lists can also rely on operators to perform cer-
tain tasks. For example, if you want to create a
list that contains four copies of the word Hello,
you could use MyList = ["Hello"] * 4
to fill it. A list allows repetition as needed. The
multiplication operator (*) tells Python how
many times to repeat a given item. It’s essen-
tial to remember that every repeated ele-
ment is separate, so what MyList contains
is ['Hello', 'Hello', 'Hello',
'Hello'].

You can also use concatenation to fill a list. For
example, using MyList = ["Hello"] +
["World"] + ["!"] * 4 creates six

elements in MyList. The first element is Hello,
followed by World and ending with four ele-
ments with one exclamation mark (!) in each
element.

The membership operator (in) also works with
lists. This chapter uses a straightforward and
easy-to-understand method of searching lists
(the recommended approach). However, you
can use the membership operator to make
things shorter and simpler by using "Hello"
in MyList. Assuming that you have your list
filled with ['Hello', 'World', '!',
'!', '!', '!'], the output of this state-
ment is True.

237 Chapter 12: Managing Lists

Colors = ["Red", "Orange", "Yellow", "Green", "Blue"]

ColorSelect = ""

while str.upper(ColorSelect) != "QUIT":
 ColorSelect = input("Please type a color name: ")
 if (Colors.count(ColorSelect) >= 1):
 print("The color exists in the list!")
 elif (str.upper(ColorSelect) != "QUIT"):
 print("The list doesn't contain the color.")

 The example begins by creating a list named Colors that contains
color names. It also creates a variable named ColorSelect to hold
the name of the color that the user wants to find. The application then
enters a loop where the user is asked for a color name that is placed in
ColorSelect. As long as this variable doesn’t contain the word QUIT,
the application continues a loop that requests input.

 Whenever the user inputs a color name, the application asks the list to
count the number of occurrences of that color. When the value is equal
to or greater than one, the list does contain the color and an appropri-
ate message appears onscreen. On the other hand, when the list doesn’t
contain the requested color, an alternative message appears onscreen.

 Notice how this example uses an elif clause to check whether
ColorSelect contains the word QUIT. This technique of including
an elif clause ensures that the application doesn’t output a message
when the user wants to quit the application. You need to use similar
techniques when you create your applications to avoid potential user
confusion or even data loss (when the application performs a task the
user didn’t actually request).

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application asks you to type a
color name.

 4. Type Blue and press Enter.

 You see a message telling you that the color does exist in the list, as
shown in Figure 12-15.

 5. Type Purple and press Enter.

 You see a message telling you that the color doesn’t exist, as shown in
Figure 12-16.

 6. Type Quit and press Enter.

 The application ends. Notice that the application displays neither a suc-
cess nor a failure message.

238 Part III: Performing Common Tasks

Figure 12-15:

Colors that

exist in the

list receive

the success

message.

Figure 12-16:

Entering a

color that

doesn’t exist

results in

a failure

message.

Sorting Lists
The computer can locate information in a list no matter what order it appears
in. It’s a fact, though, that longer lists are easier to search when you put them
in sorted order. However, the main reason to put a list in sorted order is to
make it easier for the human user to actually see the information the list con-
tains. People work better with sorted information.

This example begins with an unsorted list. It then sorts the list and out-
puts it to the display. The following steps demonstrate how to perform this
task. This example also appears with the downloadable source code as
SortList.py.

239 Chapter 12: Managing Lists

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

Colors = ["Red", "Orange", "Yellow", "Green", "Blue"]

for Item in Colors:
 print(Item, end=" ")

print()

Colors.sort()

for Item in Colors:
 print(Item, end=" ")

print()

 The example begins by creating an array of colors. The colors are cur-
rently in unsorted order. The example then prints the colors in the order
in which they appear. Notice the use of the end=" " argument for the
print() function to ensure that all color entries remain on one line
(making them easier to compare).

 Sorting the list is as easy as calling the sort() function. After the exam-
ple calls the sort() function, it prints the list again so that you can see
the result.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application outputs both the
unsorted and sorted lists, as shown in Figure 12-17.

Figure 12-17:

Sorting a list

is as easy as

calling the

sort()

function.

240 Part III: Performing Common Tasks

 You may need to sort items in reverse order at times. To accomplish this task,
you use the reverse() function. The function must appear on a separate
line. So the previous example would look like this if you wanted to sort the
colors in reverse order:

Colors = ["Red", "Orange", "Yellow", "Green", "Blue"]

for Item in Colors:
 print(Item, end=" ")

print()

Colors.sort()
Colors.reverse()

for Item in Colors:
 print(Item, end=" ")

print()

Working with the Counter Object
Sometimes you have a data source and you simply need to know how often
things happen (such as the appearance of a certain item in the list). When
you have a short list, you can simply count the items. However, when you
have a really long list, it’s nearly impossible to get an accurate count. For
example, consider what it would take if you had a really long novel like War

and Peace in a list and wanted to know the frequency of the words the novel
used. The task would be impossible without a computer.

 The Counter object lets you count items quickly. In addition, it’s incredibly
easy to use. This book shows the Counter object in use a number of times,
but this chapter shows how to use it specifically with lists. The example in
this section creates a list with repetitive elements and then counts how many
times those elements actually appear. This example also appears with the
downloadable source code as UseCounterWithList.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after each
line:

241 Chapter 12: Managing Lists

from collections import Counter

MyList = [1, 2, 3, 4, 1, 2, 3, 1, 2, 1, 5]
ListCount = Counter(MyList)

print(ListCount)

for ThisItem in ListCount.items():
 print("Item: ", ThisItem[0],
 " Appears: ", ThisItem[1])

print("The value 1 appears {0} times."
 .format(ListCount.get(1)))

 In order to use the Counter object, you must import it from collections.
Of course, if you work with other collection types in your application, you
can import the entire collections module by typing import collections
instead.

 The example begins by creating a list, MyList, with repetitive numeric
elements. You can easily see that some elements appear more than once.
The example places the list into a new Counter object, ListCount. You
can create Counter objects in all sorts of ways, but this is the most con-
venient method when working with a list.

 The Counter object and the list aren’t actually connected in any
way. When the list content changes, you must re-create the Counter
object because it won’t automatically see the change. An alternative
to re-creating the counter is to call the clear() method first and then
call the update() method to fill the Counter object with the new data.

 The application prints ListCount in various ways. The first output
is the Counter as it appears without any manipulation. The second
output prints the individual unique elements in MyList along with the
number of times each element appears. To obtain both the element and
the number of times it appears, you must use the items() function as
shown. Finally, the example demonstrates how to obtain an individual
count from the list using the get() function.

 3. Choose Run➪Run Module.

 A Python Shell window opens, and you see the results of using the
Counter object, as shown in Figure 12-18.

242 Part III: Performing Common Tasks

Figure 12-18:

The
Counter
is helpful in

obtaining

statistics

about longer

lists.

 Notice that the information is actually stored in the Counter as a key
and value pair. Chapter 13 discusses this topic in greater detail. All
you really need to know for now is that the element found in MyList
becomes a key in ListCount that identifies the unique element name.
The value contains the number of times that that element appears
within MyList.

