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CHAPTER 22

Incentives and Pricing
in Communications Networks

Asuman Ozdaglar and R. Srikant

Abstract

In this chapter, we study two types of pricing mechanisms: one where the goal of the pricing scheme
is to achieve some socially beneficial objective for the network and the other where prices are set
by multiple competing service providers to maximize their revenues. For both cases, we present
an overview of the mathematical models involved and the relevant optimization and game-theoretic
techniques needed to study these models. We study the impact of different degrees of strategic inter-
actions among users and between users and service providers on the network performance. We also
relate our models and solutions to practical resource allocation mechanisms used in communication
networks such as congestion control, routing, and scheduling. We conclude the chapter with a brief
introduction to other game-theoretic topics in emerging networks.

This chapter studies the problem of decentralized resource allocation among competing
users in communication networks. The growth in the scale of communication networks
and the newly emerging interactions between administrative domains and end users
with different needs and quality of service requirements necessitate new approaches
to the modeling and control of communication networks that recognize the difficulty
of formulating and implementing centralized control protocols for resource allocation.
The current research in this area has developed a range of such approaches. Central to
most of these approaches is the modeling of end users and sometimes also of service
providers as self-interested agents that make decentralized and selfish decisions. This
research has two important implications:

(i) The modeling of communication networks consisting of multiple selfish agents requires
tools from game theory.

(ii) In the absence of centralized control, the interaction of multiple selfish agents may lead
to suboptimal resource allocation.

This chapter will survey and develop existing work focusing on the role of prices,
both used as control parameters in the network and set by service providers to in-
crease their revenues. We will identify the different roles that prices may play in
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communication networks depending on the degree of strategic interactions among users
and between users and service providers, and explore their impact on network perfor-
mance under different scenarios. We will also highlight how the study of large-scale
communication networks raises new modeling challenges and develop the mathemati-
cal tools that are commonly used in this analysis.

The chapter is organized into three sections: the first two sections correspond to two
conceptually different strategic settings, one where pricing is used to achieve some
socially beneficial objective, and the other where prices are set by multiple service
providers to maximize their revenues. The last section places the material in this
chapter in the context of the broader literature, discusses some emerging applications
of game theory to communication networks, and suggests a number of areas for future
research.

22.1 Large Networks – Competitive Models

In this section, we present a brief overview of the literature on pricing to maximize
system utility in a network with a large number of users. This line of research has had
a tremendous impact on communication networks, having contributed both to a deeper
understanding of network architectures and to the development of new protocols for
more efficient use of resources in the Internet. We will end the section with some
extensions to wireless networks.

Consider a large network shared by many users, where the goal is to share the
network resources in an optimal manner. It may be useful to think of the network as a
graph with nodes and links. Each end user in the network is interested in transfering
data between a source node and a destination node along a fixed route (or connection).
We will use the terms “user,” “source,” and “connection” interchangeably. The nodes
are interconnected by links. The network resources that we consider here are the link
bandwidths. The bandwidth of a link is the maximum rate at which it can transmit data
between the two nodes at either end of the link. We associate a utility function with
each user in the network, and we will refer to a resource allocation scheme as being
socially optimal if it maximizes the sum of utilities of all users in the network.1

A network is modeled as a set of resources indexed by l, called links, with finite
capacities cl . It is shared by a set of sources, indexed by r . Let Ur (xr ) be the utility
of source r as a function of its rate xr (measured in packets per unit time). The utility
function Ur is assumed to be a strictly increasing, strictly concave function. Associated
with each source is a route that is a collection of links in the network. Let R be a routing
matrix whose (l, r) entry is 1 if source r’s route includes link l and is 0 otherwise.
Since there is a one-to-one mapping between users and routes, we will use the same
index to denote both a user and its route. For example, an index r can represent both
user r and its route. Thus, the notation l ∈ r indicates that link l is in the route of
user r.

1 In the networking literature, social optimality and fairness are often used interchangeably. For other notions of
fairness, see Cho and Goel (2006).
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The resource allocation problem can be formulated as the following nonlinear opti-
mization problem (Kelly, 1997):

max
x≥0

∑

r

Ur (xr ), Rx ≤ c, (22.1)

where x is the vector of source rates and c is the vector of link capacities. The constraint
says that, at each link l, the aggregate source rate

∑
r Rlrxr does not exceed the capacity

cl . If the utility functions are strictly concave, then the above optimization problem has
a unique optimal solution, which we refer to as the socially optimal allocation.

To solve this problem directly, we have to the know the utility functions and routes of
all the sources in the network. In a large network such as the Internet, this information
is not available centrally. One solution to this problem is to devise a mechanism such
as the celebrated Vickrey–Clarke–Groves (VCG) mechanism to encourage users to
reveal their utilities truthfully (see Chapters 5 and 9). However, such a mechanism is
computationally complex to implement and would also require a central authority to
solve an optimization problem to compute the prices. Instead, Kelly devised a simple
mechanism capable of achieving the optimal allocation of resources in the presence
of selfish users (see also Chapter 21). We will describe this scheme in the rest of this
section and also show how the pricing motivation also leads to protocols for managing
the Internet. Such a scheme was originally proposed in Kelly (1997), Kelly et al. (1998)
and variations have been considered in Low and Lapsley (1999), Yaiche et al. (2000),
and Kunniyur and Srikant (2002); for a more exhaustive survey of the work in this
area, see Srikant (2004).

Given the convexity of (22.1), a vector of rates x̂ is optimal if there exists a vec-
tor of Lagrange multipliers p̂ satisfying the following Karush–Kuhn–Tucker (KKT)
conditions:

U ′
r (x̂r ) =

∑

l:l∈r

p̂l, ∀ r, (22.2)

p̂l

(
∑

r:l∈r

x̂r − cl

)
= 0, ∀ l, (22.3)

∑

r:l∈r

x̂r ≤ cl, ∀ l, (22.4)

p̂, x̂ ≥ 0. (22.5)

Now, suppose that the network can compute p̂ and charges each user r a price per bit
of q̂r where q̂r is given by

q̂r =
∑

r:l∈r

p̂l . (22.6)

In vector form, the above relationship can be written as q̂ = RT p̂.
If the contribution of each user’s flow to the aggregate is negligible, we expect them

to take aggregate quantities, in particular prices, as given in their decisions. In this
case, we refer to the users as price takers. Under this assumption, user r’s optimization
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problem can be expressed as

max
xr≥0

Ur (xr ) − q̂rxr . (22.7)

This expression is intuitive since it implies that each user is maximizing his utility minus
the marginal cost of his flow, which consists of the sum of the Lagrange multiplier of
each link traversed on its route. Clearly the solution to this problem is given by x̂r in
(22.2). The equilibrium under this pricing scheme where each user is charged the sum
of the Lagrange multipliers on its path coincides with the socially optimum outcome.
There are two key assumptions for this implication: (1) Users are price takers, which
is reasonable in the case of a large network such as the Internet and (2) prices are set
equal to the Lagrange multipliers to implement the socially optimal allocation. This
assumption is reasonable when prices are set by a network controller interested in the
overall performance. We will discuss how the situation is different when prices are set
by profit-maximizing service providers in the next section.

For the above pricing scheme to work, the network has to be able to compute the
Lagrange multipliers. There are two problems associated with this computation:

P1 The network does not know the utility functions of the users.
P2 Even if all the utility functions are known, there is no central authority that knows all

the link capacities and the network topology to be able to solve (22.2)–(22.5).

To address (P1)–(P2), we consider the following two-step mechanism. First, each user
r announces a bid wr, which is the price per unit time that it is willing to pay. Then,
the network decides to allocate rates to users according to the solution of the following
optimization problem:

max
x≥0

∑

r

wr log(xr ), Rx ≤ c. (22.8)

The solution to the above optimization problem is called a weighted proportionally fair
rate allocation. The KKT conditions for the optimization problem (22.8) are given by

wr

x∗
r

=
∑

r:l∈r

p∗
l , ∀ r, (22.9)

p∗
l

(
∑

r:l∈r

x∗
r − cl

)
= 0, ∀ l, (22.10)

∑

r:l∈r

x∗
r ≤ cl, ∀ l, (22.11)

p∗, x∗ ≥ 0, (22.12)

where x∗ is the solution to (22.8) and p∗ is the associated vector of Lagrange multipliers.
Furthermore, if the user can be induced to select wr = x∗

r U
′
r (x∗

r ), then x∗ = x̂ and the
network problem coincides with the social welfare maximization problem.

To implement the mechanism described above, we have to first design a distributed
algorithm to solve (22.8). The algorithm that we design is a dynamic algorithm where
each link computes a price as a function of time according to a differential equation. The
differential equation is designed so that, in steady state, the price of each link converges



P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 5, 2007 14:36

large networks – competitive models 575

to the Lagrange multiplier corresponding to the link’s resource constraint. To this end,
suppose that each link computes a price according to the differential equation

ṗl = (yl − cl)
+
pl

, (22.13)

where pl(t) is the instantaneous link price at time t, yl = ∑
r:l∈r xr is the total arrival

rate at link l, and (a)+b is equal to max(a, 0) when b = 0 and is equal to a if b > 0.

Note that the equilibrium of this differential equation is either yl = cl or pl = 0 which
satisfy one of the KKT conditions (22.10). Each user’s computer is hardwired with a
program that computes rates according to the equation

xr = wr

qr

, (22.14)

where qr is the price of route r and is given by qr = ∑
l:l∈r pl.

To implement the above set of equations, it is assumed that the user r’s computer
is equipped with a protocol to collect qr, the price of its path, from the network. In
networking parlance, equation (22.14) is called a congestion control algorithm since the
user reacts to congestion indication in the form of qr . It is easy to see that if equations
(22.13)–(22.14) converge, then their steady-state values satisfy (22.9)–(22.12) and thus,
solve the optimization problem (22.8). Indeed the above set of equations converge under
some mild assumptions. Let us suppose that the routing matrix R has full row rank, i.e.,
given a vector q of route prices, the vector of link prices p is uniquely determined by
the equation q = RT p. Since x∗ is unique, this assumption ensures that p∗ is unique.
The following identity is useful:

qT x = pT Rx = pT y.

Now, consider the Lyapunov function

V (p) = 1

2
(p − p∗)T (p − p∗).

Differentiating the Lyapunov function, we get

dV

dt
=

∑

l

(pl − p∗
l )(yl − cl)

+
pl

(a)≤
∑

l

(pl − p∗
l )(yl − cl)

≤ (p − p∗)T (y − c)

= (p − p∗)T (y − y∗) + (p − p∗)T (y∗ − c)
(b)≤ (p − p∗)T (y − y∗)

= (p − p∗)T R(x − x∗) = (q − q∗)T (x − x∗)

=
∑

r

(
wr

xr

− wr

x∗
r

)
(xr − x∗

r )

(c)≤ 0,
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where (a) follows from the fact if the projection (·)+pl
is not active, then the inequality

holds as an equality and if the projection is active, the right-hand side of (a) is positive
while the right-hand side of the equation above (a) is zero. Inequality (b) follows from
the fact that either y∗

l = cl or y∗
l < cl and p∗

l = 0. Finally, inequality (c) follows from
the fact that 1/xr is a decreasing function. Thus, for a fixed set of bids {wr}, the system
of equations (22.13)–(22.14) converges to the point (x∗, p∗).

The above Lyapunov argument indicates that the congestion control algorithm is
stable if wr is fixed. However, since the price that a user pays is a function of its bid wr,

it is in the interest of the user to vary wr. How might the user vary wr? In general, we
may expect users to act strategically and take into account the impact of their current
bid on the future prices they will face. However, for our purposes here, let us suppose
that they ignore these strategic aspects and behave myopically. In this case, they will
simply maximize instantaneous net utility, the user’s optimization problem to choose
wr is given by

max
wr

Ur

(
wr

qr

)
− wr.

Thus, the user chooses wr to satisfy

U ′
r

(
wr

qr

)
= qr,

or equivalently as

wr = xrU
′
r (xr ).

The congestion control algorithm then becomes

U ′
r (xr ) = qr . (22.15)

The equilibrium point of the differential equation (22.13) is then given by (22.9)–
(22.12) with wr replaced by x∗

r U
′
r (x∗). In this case, the x∗ = x̂ where we recall that

x̂ is the optimal solution of (22.1) and satisfies (22.2)–(22.5). Thus, if the user is
price-taking and myopic, then the users’ selfish objectives coincide with the social
welfare objective of the system. To prove the convergence of (22.13)–(22.15), one
can use the same Lyapunov function V (p) as before and proceed along the same
lines.

An interesting side benefit of the pricing scheme above is that it provides a natural
decomposition of the network functionalities that is useful in designing the architecture
of a communication network. The pricing model suggests that the resource allocation
functionality should be decomposed into pieces implemented in different parts of the
network:

(i) Congestion control at the end users: The end users should be equipped with a
protocol to adapt their rates in response to congestion feedback (route price) from the
network.

(ii) Congestion indication at the routers: The routers (the nodes in the graph) in the
network should be equipped with a protocol to compute the price of each link that
originates from the router. The price is an indicator of congestion on the link.
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(iii) Congestion feedback from the network to the users: There must be a protocol that
allows an end user to collect congestion information from the network. For example,
each data packet could contain a field to collect the congestion information. This
congestion field could be set to zero at the source and each router on the path can add
its price to this field. When the data packet reaches the destination, the congestion
field will contain the price of the route. The destination can then send a packet to the
source to convey the route price information.

The pricing framework introduced in this section can also be extended to incorporate
other functionalities such as scheduling in a wireless network. We will briefly illustrate
the extension to wireless networks, using a simple model; for a more general treatment,
please see the survey (Lin et al., 2006) and the references within.

In a wireline network, packets can be transferred on all links simultaneously. How-
ever, in a wireless network, due to interference and collision, if a packet is scheduled
on a link, other links in a neighborhood should be silent to avoid collisions and the
resulting packet loss. We refer to a set of links that can be scheduled simultaneously
as a schedule. Let M1, M2, . . . , Mn be the set of possible schedules in a network. Let
fi be the fraction of time that the network uses schedule Mi. The resource constraints
in the network can now be expressed as

∑

r:l∈r

xr ≤
∑

i:l∈Mi

ficl, (22.16)

n∑

i=1

fi ≤ 1, (22.17)

f, x ≥ 0, (22.18)

where cl is the number of packets that can be served by link l if it is scheduled. The goal
is to find {xr} and {fi} to maximize

∑
r Ur (xr ). The dual of the problem of maximizing∑

r Ur (xr ) subject to the constraints (22.16)–(22.18) is

max
p,λ≥0

D(p, λ),

where

D(p, λ) = max
x≥0,f ≥0

∑

r

Ur (xr ) −
∑

l

pl

⎛

⎝
∑

r:l∈r

xr −
∑

i:l∈Mi

ficl

⎞

⎠

−λ

(
n∑

i=1

fi − 1

)

= max
x≥0

∑

r

Ur (xr ) −
∑

l

pl

∑

r:l∈r

xr (22.19)

+ max
f ≥0

∑

l

pl

∑

i:l∈Mi

ficl − λ

(
n∑

i=1

fi − 1

)
. (22.20)

It is not difficult to see that the dual objective for the wireline problem would also
contain the term (22.19), while (22.20) is unique to the wireless problem. This suggests
that the algorithm to compute x and p would be quite similar to the wireline case, but
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additional computation is necessary to find the optimal value of f. Without using the
Lagrange multiplier λ, note that (22.20) can be equivalently written as

max∑n
i=1 fi≤1,f ≥0

∑

l

pl

∑

i:l∈Mi

ficl = max∑n
i=1 fi≤1,f ≥0

∑

i

fi

∑

l∈Mi

plcl = max
i

∑

l∈Mi

plcl,

where the first equality is a simple interchange of the sums and the second equality
follows from the fact that the optimization is a linear program and hence the solution
will occur at a corner point. The last maximization problem can be interpreted as
follows: pick the schedule that has the largest weighted price where the weights are the
link capacities. The update equation at the source remains the same as before and is
given by (22.15). It should be noted that while the network picks one of the schedules
M1, M2, . . . , Mn to solve (22.15) at each time instant, it turns out that the the long-run
fraction of time that each schedule is the optimal solution to the utility maximization
problem; the interested reader is referred to Lin et al. (2006) and references within.

The price updates at the links are given by

ṗl =
⎛

⎝yl −
∑

i:l∈Mi

ficl

⎞

⎠
+

pl

. (22.21)

Note that the above equation does not have to explicitly implemented; it is simply the
queue length at link l, which will be automatically maintained by each link. Thus, the
only additional implementation required in a wireless network is the computation of
the maximum weighted price schedule. This is a computationally hard problem and,
in practice, also requires a distributed implementation to be feasible. The problem of
low complexity, distributed algorithms to approximate the maximum weighted price
schedule is currently open. Assuming that such an algorithm exists, the stability of
equations (22.15)–(22.21) can be established using a Lyapunov function approach
similar to the wireline case.

22.2 Pricing and Resource Allocation – Game
Theoretic Models

The previous section explored how prices can be used as control parameters for al-
locating resources in communication networks. The analysis was non-game theoretic
since users were assumed to be price takers and prices were set as control parameters
to achieve the socially optimal allocation. While the framework with prices as control
parameters is a useful starting point, it ignores a number of issues that are important
for the analysis of resource allocation in large-scale communication networks. First,
in a number of settings, where centralized control signals may be impractical or im-
possible, end users may not face explicit prices. It is therefore important to understand
the implications of selfish end-user behavior when the congestion they create and
their use of scarce resources are not priced. Second, prices are often set by multiple
service providers in control of their administrative domains with the objective of max-
imizing their (long-run) revenues. In this section, we investigate the implications of
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profit-maximizing pricing by multiple decentralized service providers. We turn to a
discussion of other possible generalizations in the next section.

22.2.1 Pricing and Efficiency with Congestion Externalities

We now construct a model of resource allocation in a network with competing self-
ish users and profit-maximizing service providers. The central question is whether
the equilibrium prices that emerge in such a framework will approximate the prices
implementing the socially optimal allocation discussed in the previous section. The
class of models incorporating strategic behavior by service providers introduces new
modeling and mathematical challenges. These models translate into game-theoretic
competition models with negative congestion externalities,2 whereby the pricing deci-
sion of a service provider affects the level of traffic and thus the extent of congestion
in other parts of the network. Nevertheless, tractable analysis of pricing decisions and
routing patterns are possible under many network topologies.

Models incorporating for-profit service providers have been previously investigated
in Basar and Srikant (2002a, 2002b) and Acemoglu and Ozdaglar (2004). Here, we
develop a general framework for the analysis of price competition among providers in
a congested (and potentially capacitated) network building on Acemoglu and Ozdaglar
(2006a, 2006b). We will see that despite its conceptual simplicity, this framework has
rich implications. We illustrate some of these, for example, by showing the counterin-
tuitive result that increasing competition among providers can reduce efficiency, which
is different from the results of the most common models of competition in economics.
Most importantly, we also show that it is possible to quantify the extent to which prices
set by competing service providers approximate control role of prices discussed in
the previous section. While generally service provider competition does not lead to an
equilibrium replicating the system optimum, the extent of inefficiency resulting from
price competition among service providers can often be bounded.

We start with a simple example that shows the efficiency implications of competition
between two for-profit service providers.

Example 22.1 One unit of traffic will travel from an origin to a destination
using either route 1 or route 2 (cf. Figure 22.1). The latency functions of the links,
which represent the delay costs as a function of the total link flow, are given by

l1(x) = x2

3
, l2(x) = 2

3
x.

It is straightforward to see that the efficient allocation [i.e., one that minimizes
the total delay cost

∑
i li(xi)xi] is xS

1 = 2/3 and xS
2 = 1/3, while the (Wardrop)

equilibrium allocation that equates delay on the two paths is xWE
1 ≈ .73 > xS

1 and
xWE

2 ≈ .27 < xS
2 . The source of the inefficiency is that each unit of traffic does

not internalize the greater increase in delay from travel on route 1, so there is too
much use of this route relative to the efficient allocation.

2 An externality arises when the actions of the player in a game affects the payoff of other players.
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1 unit of
traffic

l1(x)  = x2/3

l2(x)  = (2/3)x

Figure 22.1. A two link network with congestion-dependent latency functions.

Now consider a monopolist controlling both routes and setting prices for travel
to maximize its profits. We show below that in this case, the monopolist will set
a price including a markup, which exactly internalizes the congestion externality.
In other words, this markup is equivalent to the Pigovian tax that a social planner
would set in order to induce decentralized traffic to choose the efficient allocation.
Consequently, in this simple example, monopoly prices will be pME

1 = (2/3)3 + k

and pME
2 = (2/32) + k, for some constant k. The resulting traffic in the Wardrop

equilibrium will be identical to the efficient allocation, i.e., xME
1 = 2/3 and xME

2 =
1/3.

Finally, consider a duopoly situation, where each route is controlled by a
different profit-maximizing provider. In this case, it can be shown that equilibrium
prices will take the form pOE

i = xOE
i (l′1 + l′2) [see Eq. (22.27) in Section 22.2.4], or

more specifically, pOE
1 ≈ 0.61 and pOE

2 ≈ 0.44. The resulting equilibrium traffic
is xOE

1 ≈ .58 < xS
1 and xOE

2 ≈ .42 > xS
2 , which also differs from the efficient

allocation. It is noteworthy that although the duopoly equilibrium is inefficient
relative to the monopoly equilibrium, in the monopoly equilibrium k is chosen
such that all of the consumer surplus is captured by the monopolist, while in the
oligopoly equilibrium users may have positive consumer surplus.3

The intuition for the inefficiency of the duopoly relative to the monopoly is related to
a new source of (differential) monopoly power for each duopolist, which they exploit
by distorting the pattern of traffic: when provider 1, controlling route 1, charges a
higher price, it realizes that this will push some traffic from route 1 to route 2, raising
congestion on route 2. But this makes the traffic using route 1 become more “locked-
in,” because their outside option, travel on route 2, has become worse. As a result, the
optimal price that each duopolist charges will include an additional markup over the
Pigovian markup. Since the two markups are generally different, they will distort the
pattern of traffic away from the efficient allocation.

22.2.2 Model

We consider a network with I parallel links. Let I = {1, . . . , I } denote the set of links.
Let xi denote the total flow on link i, and x = [x1, . . . , xI ] denote the vector of link

3 Consumer surplus is the difference between users’ willingness to pay (reservation price) and effective costs,
pi + li (xi ), and is thus different from the social surplus (which is the difference between users’ willingness to
pay and latency cost, li (xi ), thus also takes into account producer surplus/profits).
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flows. Each link in the network has a flow-dependent latency function li(xi), which
measures the delay as a function of the total flow on link i. We assume that the latency
function li is convex, nondecreasing, and continuously differentiable. The analysis can
be extended to the case when the links are capacity-constrained as in the previous
section; see Acemoglu and Ozdaglar (2006b). We also assume that li(0) = 0 for all i.4

We denote the price per unit flow (bandwidth) of link i by pi . Let p = [p1, . . . , pI ]
denote the vector of prices.

We are interested in the problem of routing d units of flow across the I links.
We assume that this is the aggregate flow of many “small” users and thus adopt the
Wardrop’s principle (see Wordrop, 1952) in characterizing the flow distribution in the
network; i.e., the flows are routed along paths with minimum effective cost, defined as
the sum of the latency at the given flow and the price of that path. We also assume that
the users have a homogeneous reservation utility R and decide not to send their flow if
the effective cost exceeds the reservation utility.

More formally, for a given price vector p ≥ 0, a vector xWE ∈ R
I
+ is a Wardrop

equilibrium (WE) if

li
(
xWE

i

) + pi = min
j

{
lj

(
xWE

j

) + pj

}
, ∀ i with xWE

i > 0, (22.22)

li
(
xWE

i

) + pi ≤ R, ∀ i with xWE
i > 0,

∑

i∈I
xWE

i ≤ d,

with
∑

i∈I xWE
i = d if minj {lj (xWE

j ) + pj } < R. We denote the set of WE at a given
p by W (p).5

We next define the social problem and the social optimum, which is the routing (flow
allocation) that would be chosen by a planner that has full information and full control
over the network. A flow vector xS is a social optimum if it is an optimal solution of
the social problem

max
x≥0∑

i∈I xi≤d

∑

i∈I
(R − li(xi))xi. (22.23)

Hence, the social optimum is the flow allocation that maximizes the social surplus, i.e.,
the difference between users’ willingness to pay and total latency. For two links, let xS

be a social optimum with xS
i > 0 for i = 1, 2. Then it follows from the definition that

l1
(
xS

1

) + xS
1 l′1

(
xS

1

) = l2
(
xS

2

) + xS
2 l′2

(
xS

2

)
. (22.24)

This implies that the prices xS
i l′i(x

S
i ), i.e., the marginal congestion prices, can be used

to decentralize the system optimum [cf. Eq. (22.22)].

4 This assumption is a good approximation to communication networks where queueing delays are more sub-
stantial than propagation delays. We will talk about the efficiency implications of relaxing this assumption in
different models.

5 It is possible to account for additional constraints, such as capacity constraints on the links, by using a variational
inequality formulation (see Acemoglu and Ozdaglar, 2006b; Correa et al., 2005).
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For a given vector x ≥ 0, we define the value of the objective function in the social
problem,

S(x) =
∑

i∈I
(R − li(xi)) xi, (22.25)

as the social surplus, i.e., the difference between users’ willingness to pay and the total
latency.

22.2.3 Monopoly Pricing and Equilibrium

We first assume that a monopolist service provider owns the I links and charges a price
of pi per unit bandwidth on link i. The monopolist sets the prices to maximize his
profit given by

�(p, x) =
∑

i∈I
pixi,

where x ∈ W (p). This defines a two-stage dynamic pricing-congestion game, where
the monopolist sets prices anticipating the demand of users, and given the prices (i.e.,
in each subgame), users choose their flow vectors according to the WE. We define a
vector (pME, xME) ≥ 0 to be a Monopoly Equilibrium (ME) if xME ∈ W (pME) and

�(pME, xME) ≥ �(p, x), ∀ p ≥ 0, ∀ x ∈ W (p).6

In Acemoglu and Ozdaglar (2006b), it was shown that price-setting by a monopolist
internalizes the negative externality and achieves efficiency. In particular, a vector x is
the flow vector at an ME if and only if it is a social optimum. This result was extended
to a model that incorporates a general network topology in Huang et al. (2006). This
is a significant departure from the existing performance results of selfish routing in
the literature that assert that the efficiency losses with general latency functions can be
arbitrarily bad.

22.2.4 Oligopoly Pricing and Equilibrium

We next assume that there are S service providers, denote the set of service providers
by S, and assume that each service provider s ∈ S owns a different subset Is of the
links. Service provider s charges a price pi per unit bandwidth on link i ∈ Is . Given
the vector of prices of links owned by other service providers, p−s = [pi]i /∈Is

, the profit
of service provider s is

�s(ps, p−s, x) =
∑

i∈Is

pixi,

for x ∈ W (ps, p−s), where ps = [pi]i∈Is
.

The objective of each service provider, like the monopolist in the previous section,
is to maximize profits. Because their profits depend on the prices set by other service

6 Our definition of the ME is stronger than the standard subgame perfect Nash equilibrium concept for dynamic
games. In Acemoglu and Ozdaglar (2006b), we show that the two solution concepts coincide for this game.
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providers, each service provider forms conjectures about the actions of other service
providers, as well as the behavior of users, which, we assume, they do according to
the notion of (subgame perfect) Nash equilibrium. We refer to the game among service
providers as the price competition game. We define a vector (pOE, xOE) ≥ 0 to be a
(pure strategy) Oligopoly Equilibrium (OE) if xOE ∈ W (pOE

s , pOE
−s ) and for all s ∈ S,

�s

(
pOE

s , pOE
−s , x

OE) ≥ �s

(
ps, p

OE
−s , x

)
, ∀ ps ≥ 0, ∀ x ∈ W

(
ps, p

OE
−s

)
. (22.26)

We refer to pOE as the OE price.
Analysis of the optimality conditions for the oligopoly problem [cf. (22.26)] allows

us to characterize the OE prices (see Acemoglu and Ozdaglar, 2006b). In particular,
let (pOE, xOE) be an OE such that pOE

i xOE
i > 0 for some i ∈ I. Then, for all s ∈ S and

i ∈ Is ,

pOE
i =

⎧
⎪⎨

⎪⎩

xOE
i l′i

(
xOE

i

)
, if l′j

(
xOE

j

) = 0 for some j /∈ Is,

min

{
R − li

(
xOE

i

)
, xOE

i l′i
(
xOE

i

) +
∑

j∈Is
xOE

j∑
j /∈Is

1
l′
j

(xOE
j

)

}
, otherwise.

The preceding characterization implies that in the two link case with minimum
effective cost less than R, the OE prices satisfy

pOE
i = xOE

i

(
l′1

(
xOE

1

) + l′2
(
xOE

2

))
(22.27)

as claimed before. Intuitively, the price charged by an oligopolist consists of two terms:
the first, xOE

i l′i(x
OE
i ), is equal to the marginal congestion price that a social planner would

set [cf. Eq. (22.24)] because the service provider internalizes the further congestion
caused by additional traffic. The second, xOE

i l′j (xOE
j ), reflects the markup that each

service provider can charge users because of the negative congestion externality (as
users leave its network, they increase congestion in the competitor network).

22.2.5 Efficiency Analysis

We investigate the efficiency properties of price competition games that have pure
strategy equilibria. 7 Given a price competition game with latency functions {li}i∈I , we
define the efficiency metric at some oligopoly equilibrium flow xOE as the ratio of the
social surplus in the oligopoly equilibrium to the surplus in the social optimum [cf. Eq.
22.25 for the definition of the social surplus], i.e., the efficiency metric is given by

rI ({li}, xOE) = S(xOE)

S(xS)
, (22.28)

where xS is a social optimum given the latency functions {li}i∈I and R is the reservation
utility. In other words, the efficiency metric is the ratio of the social surplus in an
equilibrium relative to the surplus in the social optimum. Following the literature on
the “price of anarchy,” in particular Koutsoupias and Papadimitriou (1999), we are
interested in the worst-case performance of an oligopoly equilibrium, so we look for

7 This set includes, but is substantially larger than, games with linear latency functions, see Acemoglu and
Ozdaglar (2006a).
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a lower bound on rI ({li}, xOE) over all price competition games and all oligopoly
equilibria.

We next give an example of an I link network that has positive flows on all links at
the OE and an efficiency metric of 5/6.

Example 22.2 Consider an I link network where each link is owned by
a different provider. Let the total flow be d = 1 and the reservation utility be
R = 1. The latency functions are given by

l1(x) = 0, li(x) = 3

2
(I − 1)x, i = 2, . . . , I.

The unique social optimum for this example is xS = [1, 0, . . . , 0]. It can be seen
that the flow allocation at the unique OE is xOE = [ 2

3 , 1
3(I−1) , . . . ,

1
3(I−1) ]. Hence,

the efficiency metric for this example is rI ({li}, xOE) = 5
6 .

The next theorem establishes the main efficiency result.

Theorem 22.3 Consider a general parallel link network with I ≥ 2 links and
S service providers, where provider s owns a set of links Is ⊂ I. Then, for all
price competition games with pure strategy OE flow xOE, we have

rI ({li}, xOE) ≥ 5

6
,

and the bound is tight.

A notable feature of Example 22.2 and this theorem is that the (tight) lower bound on
inefficiency is independent of the number of links I and how these links are distributed
across different oligopolists (i.e., of market structure). Thus arbitrarily large networks
can feature as much inefficiency as small networks.8

22.2.6 Extensions

In this subsection, we extend the preceding analysis in two directions: First, we con-
sider elastic traffic, which models applications that are tolerant of delay and can take
advantage of even the minimal amounts of bandwidth (e.g., e-mail). We next focus on
more general network topologies.

Elastic Traffic

To model elastic traffic, we assume that user preferences can be represented by an
increasing, concave, and twice continuously differentiable aggregate utility function
u(

∑
i∈I xi), which represents the amount of utility gained from sending a total amount

of flow
∑

i∈I xi through the network.

8 This result superficially contrasts with theorems in the economics literature that large oligopolistic markets
approach competitive behavior. These theorems do not consider arbitrary large markets, but replicas of a given
market structure.
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We assume that at a price vector, the amount of flow and the distribution of flow
across the links is given by the Wardrop’s principle (Wardrop, 1952). In particular, for
a given price vector p ≥ 0, a vector x∗ ∈ R

I
+ is a Wardrop equilibrium if

li(x
∗
i ) + pi = u′

(∑

j∈I
x∗

j

)
, ∀ i with x∗

i > 0,

li(x
∗
i ) + pi ≥ u′

(∑

j∈I
x∗

j

)
, ∀ i ∈ I.

We define the social optimum and the efficiency metric as in Eqs. (22.23) and (22.28),
replacing R

∑
i∈I xi (i.e., users’ willingness to pay) by u(

∑
i∈I xi).

It can be shown that for elastic traffic with a general concave utility function,
the efficiency metric can be arbitrarily close to 0 (see Ozdaglar, 2006). The two-stage
game with multiple service providers and elastic traffic with a single user class was first
analyzed by Hayrapetyan, Tardos and Wexler (2005). Using an additional assumption
on the utility function (i.e., the utility function has a concave first derivative), their
analysis provides nontight bounds on the efficiency loss.9 Using mathematical tools
similar to the analysis in Acemoglu and Ozdaglar (2006b), the recent work (Ozdaglar,
2006) provides a tight bound on the efficiency loss of this game, as established in the
following theorem.

Theorem 22.4 Consider a parallel link network with I ≥ 1 links, where each
link is owned by a different provider. Assume that the derivative of the utility
function, u′ is a concave function. Then, for all price competition games with
elastic traffic and pure strategy OE flow xOE, we have

rI (u, {li}, xOE) ≥ 2

3
,

and the bound is tight.

Parallel-Serial Topologies

Most communication networks cannot be represented by parallel link topologies,
however. A given source-destination pair will typically transmit through multiple inter-
connected subnetworks (or links), potentially operated by different service providers.
Existing results on the parallel-link topology do not address how the cooperation
and competition between service providers will impact efficiency in such general
networks.

Here, we take a step in this direction by considering the simplest network topol-
ogy that allows for serial interconnection of multiple links/subnetworks, which is the
parallel-serial topology (see Figure 22.2). It was shown in Acemoglu and Ozdaglar
(2006a) that the efficiency losses resulting from competition are considerably higher
with this topology. When a particular provider charges a higher price, it creates a nega-
tive externality on other providers along the same path, because this higher price reduces

9 For example, they provide the nontight bound of 1/5.064 in general, and the bound of 1/3.125 for the case when
latency without congestion is 0.
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d units
Reservation utility : R

1j(x1),pj

x3

x1

x2

Figure 22.2. A network with serial and parallel links.

the transmission that all the providers along this path receive. This is the equivalent
of the double marginalization problem in economic models with multiple monopolies
and is the source of the significant degradation in the efficiency performance of the
network.

In its most extreme form, the double marginalization problem leads to a type of
“coordination failure,” whereby all providers, expecting others to charge high prices,
also charge prohibitively high prices, effectively killing all data transmission on a given
path. We may expect such a pathological situation not to arise since firms should not
coordinate on such an equilibrium (especially when other equilibria exist). For this
reason, we focus on a stronger concept of equilibrium introduced by Harsanyi, the
strict equilibrium. In strict OE, each service provider must play a strict best response
to the pricing strategies of other service providers. We also focus our attention on
equilibria in which all traffic is transmitted (otherwise, it can be shown that the double
marginalization problem may cause entirely shutting down transmission, resulting in
arbitrarily low efficiency, see Acemoglu and Ozdaglar, 2006a).

The next theorem establishes the main efficiency result for this topology.

Theorem 22.5 Consider a general I ≥ 2 path network, with serial links on
each path, where each link is owned by a different provider. Then, for all price
competition games with strict OE flow xOE, we have

rI (xOE) ≥ 1

2
,

and the bound is tight.

Despite this positive result, it was shown in Acemoglu and Ozdaglar (2006a) that
when the assumption li(0) = 0 is relaxed, the efficiency loss of strict OE relative to the
social optimum can be arbitrarily large. This suggests that unregulated competition in
general communication networks may have considerable costs in terms of the efficiency
of resource allocation and certain types of regulation may be necessary to make sure
that service provider competition does not lead to significant degradation of network
performance.
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22.3 Alternative Pricing and Incentive Approaches

The two approaches we have presented so far incorporate many of the important ideas
in the role of prices and incentives in communication networks. Nevertheless, a variety
of different approaches have also been developed in the literature, and the models
presented in the previous two sections leave out several interesting aspects, which can
be studied in future work. In this section, we first discuss the previous work on pricing
in networks. We then mention several alternative approaches pursued in ongoing work.
We conclude with a number of areas for future research.

22.3.1 Previous Work on Pricing

Despite the fact that current Internet access is based on a flat access charge, it has been
recognized that the future of the Internet will involve multiple service classes, their use
regulated by differentiated prices. The most natural approach to this problem involves
the modeling of profit-maximizing service providers as developed in the previous
section. Here we discuss some other aspects involved in the use of such prices.

Pricing for Differentiated Services: Service differentiation brings in a clear need for
offering incentives to users to encourage them to choose the service appropriate for
their needs, hence preventing overutilization of network resources. Pricing mechanisms
provide an efficient way to ensure QoS guarantees and regulate system usage. One of the
key debates in network pricing area is whether charges should be based on fixed access
prices or usage-based prices. While usage-based pricing has the potential to fulfill at
least partially the role of a congestion control mechanism, there were criticisms in view
of the apparent disadvantages of billing overheads and the resulting uncertainties in
networking expenses (see DaSilva, 2000).

A variety of pricing mechanisms have been proposed over the last decade. A well-
known usage-based pricing proposal is by Mackie-Mason and Varian (1995), who
proposed a “smart market” for resource allocation over a single link. In this scheme,
users bid for transmission of each individual packet while the network provides service
to packets whose bid exceeds a cutoff level determined by the marginal willingness-to-
pay and marginal congestion costs. Users do not pay the price they bid, but rather the
market- clearing price which is lower than the bids of all admitted packets. This mecha-
nism resembles the Vickrey auction, and therefore provides users the correct incentives
to reveal their true values in their bids. Odlyzko, in his seminal Paris Metro Pricing
proposal (1990), suggested partitioning the network into several logical subnetworks.
Users choose one of these logical networks for the transmission of their traffic, and
this implicitly defines the service level; i.e., higher-priced networks will experience
lower utilizations, and therefore will be able to provide a higher service level. Other
proposed pricing schemes include edge-pricing, which focuses on locally computed
charges based on expected values of congestion levels and routes; expected capacity
pricing, in which users are charged according to the expected capacity the network
provisions; and effective bandwidth pricing, which proposes the pricing of real-time
traffic with QoS requirements, in terms of its “effective bandwidth”; see DaSilva (2000)
for an overview of various pricing mechanisms.
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First-Best Pricing: There is also a large theoretical literature in both communication
networks and transportation networks area that study control mechanisms to induce
efficient allocation of resources among competing users. The main focus is to use
prices (or tolls) to induce flow patterns that optimize an overall system objective
(also referred to as first-best pricing). It is well-known that marginal cost pricing, i.e.,
charging individual users for the negative (congestion) externality they impose on other
users, achieves the system optimal flows. A number of studies have also characterized
the “toll set,” i.e., the set of all tolls that induce optimal flows, with the goal of choosing
tolls from this set according to secondary criteria, e.g., minimizing the total amount of
tolls or the number of tolled routes; see Hearn and Ramana (1998). Other related work
focuses on models with heterogeneous users (i.e., users with different congestion-price
sensitivities) and studies tolls that induce system optimal flows (see Cole et al., 2003;
Fleischer et al., 2004).

22.3.2 Current Research on Pricing and Incentive Models

Many other game-theoretic models are useful in studying communication networks.
Instead of providing a comprehensive survey, we now discuss a few models that are of
significant practical relevance.

Fixed Pricing and the Marginal User Principle: As mentioned in the previous
subsection, for various practical reasons (some of which are perhaps simply legacy
reasons), consumers are accustomed to paying a flat-fee (e.g., monthly) for their service.
In markets with a flat fee, typically a service provider has some idea of the distribution
of the user’s utility functions but not the utility function of each individual user.

An important problem therefore is to determine the fixed flat fee that maximizes
the service provider revenue and to understand the impact of such a pricing scheme
on the allocation of resources. In Acemoglu et al. (2004), we show that in a wireless
network the profit-maximizing fixed price is equal to the utility of the marginal user in
the network, where the marginal user is defined as a user who is indifferent to joining
the network. Since the price and the resource allocation scheme determine the marginal
user, they have to be chosen jointly to maximize the network revenue and it has been
shown in Acemoglu et al. (2004) that such a resource allocation algorithm and price can
be computed by the service provider under certain assumptions on the utility functions.

Incentives for Cooperation in P2P Networks: It is estimated that nearly half the
traffic in today’s Internet is due to peer-to-peer (P2P) networks. P2P networks are used
to typically share large files among users. Some well-known examples of P2P networks
are BitTorrent, Gnutella, KaZaa, etc. A P2P network is a collection of a large number
of users who contribute some resources (typically, bandwidth, and memory) to not only
download files of interest to themselves but to also store and transmit files that may be
of interest to others. A P2P network has remarkable scaling properties compared to a
Web server that stores many files that can be downloaded by users. A Web server has
finite upload bandwidth and therefore, as more users join the network, the bandwidth
per user has to decrease. On the other hand, in a P2P network since each user is a
potential user as well as a server, as the number of users in the network increases, the
capacity of the network also increases to keep up with the demand. In fact, simple
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analytical models suggest that there is no loss of performance as the number of users
increases in a BitTorrent-type network (Qiu and Srikant, 2004). However, such scaling
benefits can be achieved only if users cooperate. For example, if all users are only
willing to download but refuse to upload files, then the network capacity will not
scale with the number of users. Networks such as BitTorrent have some simple built-in
incentive mechanisms to combat such problems and these have been studied in Qiu and
Srikant (2004). As P2P networks continue to proliferate, it becomes quite important to
study incentive mechanisms for such networks. Such issues are studied elsewhere in
this book.

Incentives for Cooperation in Wireless Networks: Another form of networking that
is expected to see tremendous growth in the near future is multihop wireless networks.
In such networks, laptop computer or other mobile radio devices will communicate
with each other in a multihop fashion without any infrastructure such as an access point
or a base station. For such communication to be feasible, each radio must be willing
to forward packets for other users in the network. While on the face of it, the problem
appears to be similar to the case of P2P networks, there are some key differences. In
a wireless network, since the communication medium is shared, it is possible for a
wireless node (say node A) to hear whether a neighbor (call it node B) is being selfish
or not. For example, if node A forwards a packet (destined for another node) to node
B, then A can listen to see if B forwarded the packet or not. However, if another
neighbor of A (say, node C) transmits at the same time as node B, then A will not
hear B’s transmission and thus, may erroneously assume that B is a selfish user. This
is similar to a prisoner’s dilemma model with noisy observations of the players’ true
actions (Piccione, 2002) and has been studied in He et al. (2004) and Mahajan et al.
(2005) in a non-game-theoretic setting and in Milan et al. (2006) using game theory.
However, the models used for the analysis of cooperation in multihop radio networks
are currently quite simplistic and ignore the topological structure of the network. It is
an open problem to develop more detailed models of the network and medium-access
protocols, and to study the game-theoretic interactions for these more realistic models.

22.3.3 Areas for Future Research

The models presented so far highlight a number of fruitful areas for future research.
These include but are not limited to the following topics.

Incentive-compatible Differentiated Pricing: As discussed above, a key role of prices
in networks will be in allocating users with different requirements to differentiated
services. If the service requirements and other characteristics of users were known
by a central controller or service providers, this problem would be similar to those
studied above. In practice, however, such information is not available and the market
mechanism (i.e., the pricing scheme) has to ensure that individuals choose the services
designed for them. This problem can be analyzed as a combination of the competition
models developed above and the classical mechanism design approach. In particular,
the celebrated Revelation Principle in the mechanism design theory (see Mas-Colell
et al., 1995) implies that we can think of direct mechanisms in which individuals
truthfully report their types, and are allocated services and charged prices accordingly.
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The mathematical formulation then necessitates that a set of incentive-compatibility
constraints that make truthful reporting optimal for each user is satisfied. The modeling
challenge in this approach lies in combining the competition among service providers
and the incentive-compatibility constraints.

Capacity Investments: While the focus of the current literature has been in ensuring the
efficiency of the allocation of existing network resources, an arguably more important
problem is to ensure that the right amount and type of infrastructure investment and
capacity are installed in newly emerging networks. The analysis of this set of problems
requires (multi-stage) models in which service providers choose not only prices but
also investment levels and capacities.

Simple Pricing Rules: One potential criticism of economic approaches for resource al-
location in networks is whether the complicated pricing schemes necessary for achiev-
ing socially optimal or profit-maximizing allocations can be computed and imple-
mented in real time. The question of whether simple pricing rules can approximate
these objectives and the quantification of the extent of efficiency or profits from such
simple rules constitute another area for future research.
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