Contents

Preface xiii

I Preliminaries 1

1 Data Structures and Algorithms 3
 1.1 A Philosophy of Data Structures 4
 1.1.1 The Need for Data Structures 4
 1.1.2 Costs and Benefits 6
 1.2 Abstract Data Types and Data Structures 8
 1.3 Design Patterns 12
 1.3.1 Flyweight 13
 1.3.2 Visitor 14
 1.3.3 Composite 15
 1.3.4 Strategy 16
 1.4 Problems, Algorithms, and Programs 17
 1.5 Further Reading 19
 1.6 Exercises 21

2 Mathematical Preliminaries 25
 2.1 Sets and Relations 25
 2.2 Miscellaneous Notation 29
 2.3 Logarithms 31
 2.4 Summations and Recurrences 33
Contents

2.5 Recursion 36
2.6 Mathematical Proof Techniques 39
 2.6.1 Direct Proof 40
 2.6.2 Proof by Contradiction 40
 2.6.3 Proof by Mathematical Induction 41
2.7 Estimating 47
2.8 Further Reading 49
2.9 Exercises 50

3 Algorithm Analysis 57
 3.1 Introduction 57
 3.2 Best, Worst, and Average Cases 63
 3.3 A Faster Computer, or a Faster Algorithm? 65
 3.4 Asymptotic Analysis 67
 3.4.1 Upper Bounds 68
 3.4.2 Lower Bounds 70
 3.4.3 Θ Notation 71
 3.4.4 Simplifying Rules 72
 3.4.5 Classifying Functions 73
 3.5 Calculating the Running Time for a Program 74
 3.6 Analyzing Problems 79
 3.7 Common Misunderstandings 81
 3.8 Multiple Parameters 83
 3.9 Space Bounds 84
 3.10 Speeding Up Your Programs 86
 3.11 Empirical Analysis 89
 3.12 Further Reading 90
 3.13 Exercises 91
 3.14 Projects 95

II Fundamental Data Structures 97

4 Lists, Stacks, and Queues 99
5.6.2 Assigning and Using Huffman Codes

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.2 Assigning and Using Huffman Codes</td>
</tr>
</tbody>
</table>

5.7 Further Reading

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7 Further Reading</td>
</tr>
</tbody>
</table>

5.8 Exercises

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8 Exercises</td>
</tr>
</tbody>
</table>

5.9 Projects

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9 Projects</td>
</tr>
</tbody>
</table>

6 Non-Binary Trees

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 General Tree Definitions and Terminology</td>
<td>205</td>
</tr>
<tr>
<td>6.2 The Parent Pointer Implementation</td>
<td>208</td>
</tr>
<tr>
<td>6.3 General Tree Implementations</td>
<td>216</td>
</tr>
<tr>
<td>6.4 K-ary Trees</td>
<td>221</td>
</tr>
<tr>
<td>6.5 Sequential Tree Implementations</td>
<td>223</td>
</tr>
<tr>
<td>6.6 Further Reading</td>
<td>226</td>
</tr>
<tr>
<td>6.7 Exercises</td>
<td>226</td>
</tr>
<tr>
<td>6.8 Projects</td>
<td>230</td>
</tr>
</tbody>
</table>

III Sorting and Searching

7 Internal Sorting

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Sorting Terminology and Notation</td>
<td>235</td>
</tr>
<tr>
<td>7.2 Three $\Theta(n^2)$ Sorting Algorithms</td>
<td>236</td>
</tr>
<tr>
<td>7.3 Shellsort</td>
<td>237</td>
</tr>
<tr>
<td>7.4 Mergesort</td>
<td>238</td>
</tr>
<tr>
<td>7.5 Quicksort</td>
<td>239</td>
</tr>
</tbody>
</table>
viii

Contents

9.5 Further Reading 351
9.6 Exercises 352
9.7 Projects 355

10 Indexing 357
 10.1 Linear Indexing 359
 10.2 ISAM 361
 10.3 Tree-based Indexing 364
 10.4 2-3 Trees 366
 10.5 B-Trees 372
 10.5.1 B+-Trees 375
 10.5.2 B-Tree Analysis 381
 10.6 Further Reading 382
 10.7 Exercises 382
 10.8 Projects 385

IV Advanced Data Structures 387

11 Graphs 389
 11.1 Terminology and Representations 390
 11.2 Graph Implementations 394
 11.3 Graph Traversals 397
 11.3.1 Depth-First Search 400
 11.3.2 Breadth-First Search 401
 11.3.3 Topological Sort 405
 11.4 Shortest-Paths Problems 407
 11.4.1 Single-Source Shortest Paths 407
 11.5 Minimum-Cost Spanning Trees 411
 11.5.1 Prim’s Algorithm 412
 11.5.2 Kruskal’s Algorithm 415
 11.6 Further Reading 416
 11.7 Exercises 416
 11.8 Projects 420
12 Lists and Arrays Revisited 423
 12.1 Multilists 423
 12.2 Matrix Representations 427
 12.3 Memory Management 430
 12.3.1 Dynamic Storage Allocation 431
 12.3.2 Failure Policies and Garbage Collection 438
 12.4 Further Reading 443
 12.5 Exercises 444
 12.6 Projects 445

13 Advanced Tree Structures 447
 13.1 Tries 447
 13.2 Balanced Trees 452
 13.2.1 The AVL Tree 453
 13.2.2 The Splay Tree 455
 13.3 Spatial Data Structures 459
 13.3.1 The K-D Tree 461
 13.3.2 The PR quadtree 466
 13.3.3 Other Point Data Structures 471
 13.3.4 Other Spatial Data Structures 471
 13.4 Further Reading 473
 13.5 Exercises 473
 13.6 Projects 475

V Theory of Algorithms 479

14 Analysis Techniques 481
 14.1 Summation Techniques 482
 14.2 Recurrence Relations 487
 14.2.1 Estimating Upper and Lower Bounds 487
 14.2.2 Expanding Recurrences 491
 14.2.3 Divide and Conquer Recurrences 492
 14.2.4 Average-Case Analysis of Quicksort 495
Contents

16.6 Exercises 551
16.7 Projects 552

17 Limits to Computation 553
17.1 Reductions 554
17.2 Hard Problems 559
 17.2.1 The Theory of \mathcal{NP}-Completeness 560
 17.2.2 \mathcal{NP}-Completeness Proofs 565
 17.2.3 Coping with \mathcal{NP}-Complete Problems 569
17.3 Impossible Problems 573
 17.3.1 Uncountability 574
 17.3.2 The Halting Problem Is Unsolvable 577
17.4 Further Reading 581
17.5 Exercises 581
17.6 Projects 584

Bibliography 585

Index 591