Chapter 17

Data preparation

Objectives

After reading this chapter, you should be able to:

1. discuss the nature and scope of data preparation and the data preparation process;
2. explain questionnaire checking and editing and the treatment of unsatisfactory responses by returning to the field, assigning missing values and discarding unsatisfactory responses;
3. describe the guidelines for coding questionnaires, including the coding of structured and unstructured questions;
4. discuss the data cleaning process and the methods used to treat missing responses: substitution of a neutral value, imputed response, casewise deletion and pairwise deletion;
5. state the reasons for and methods of statistically adjusting data: weighting, variable re-specification and scale transformation;
6. describe the procedure for selecting a data analysis strategy and the factors influencing the process;
7. classify statistical techniques and give a detailed classification of univariate techniques as well as a classification of multivariate techniques;
8. understand the intra-cultural, pan-cultural and cross-cultural approaches to data analysis in international marketing research;
9. identify the ethical issues related to data processing, particularly the discarding of unsatisfactory responses, violation of the assumptions underlying the data analysis techniques, and evaluation and interpretation of results.

Perhaps the most neglected series of activities in the marketing research process. Handled with care, data preparation can substantially enhance the quality of statistical results.
Decisions related to data preparation and analysis should not take place after data have been collected. Before the raw data contained in the questionnaires can be subjected to statistical analysis, they must be converted into a form suitable for analysis. The suitable form and the means of analysis should be considered as a research design is developed. This ensures that the output of the analyses will satisfy the research objectives set for a particular project.

The care exercised in the data preparation phase has a direct effect upon the quality of statistical results and ultimately the support offered to marketing decision-makers. Paying inadequate attention to data preparation can seriously compromise statistical results, leading to biased findings and incorrect interpretation.

This chapter describes the data collection process, which begins with checking the questionnaires for completeness. Then we discuss the editing of data and provide guidelines for handling illegible, incomplete, inconsistent, ambiguous or otherwise unsatisfactory responses. We also describe coding, transcribing and data cleaning, emphasising the treatment of missing responses and statistical adjustment of data. We discuss the selection of a data analysis strategy and classify statistical techniques. The intra-cultural, pan-cultural and cross-cultural approaches to data analysis in international marketing research are explained. Finally, the ethical issues related to data processing are identified with emphasis on discarding of unsatisfactory responses, violation of the assumptions underlying the data analysis techniques, and evaluation and interpretation of results.

We begin with an illustration of the data preparation process in the GlobalCash Project.

Data preparation

In the GlobalCash Project, the data were obtained by postal questionnaires. As the questionnaire was developed and finalised a preliminary plan was drawn up of how the findings could be analysed. The questionnaires were edited by a supervisor as they were being returned from individual European countries by the respective business schools involved in the project. The questionnaires were checked for incomplete, inconsistent and ambiguous responses. Questionnaires with problematic responses were queried with the respective business schools (who kept copies of the original questionnaires). In some circumstances, the business schools were asked to re-contact the respondents to clarify certain issues. Twenty questionnaires were discarded because the proportion of unsatisfactory responses was large. This resulted in a final sample size of 1,075.

A codebook was developed for coding the questionnaires. Coding was extremely difficult given the large number of banks and banking software companies that operate throughout Europe, the number of different names these banks may be known by, and the need for translation in certain open-ended questions. The data were transcribed by being directly keyed into a survey analysis package. The SNAP software used for data entry and analysis has a built-in error-check that identifies out-of-range responses. About 10% of the data were verified for other data entry errors. The data were cleaned by identifying logically inconsistent responses. Most of the rating information was obtained using five-point scales, so responses of 0, 6 and 7 were considered out of range and a code of 9 was assigned to missing responses. If an out-of-range response was keyed in, the SNAP software package did not allow any continuation of data entry; an audible warning was made. In statistically adjusting the data, dummy variables were created for the categorical variables. New variables that were composites of original variables were also created. Finally, a data analysis strategy was developed.

The GlobalCash example describes the various phases of the data preparation process. Note that the process is initiated while the fieldwork is still in progress. A systematic description of the data preparation process follows.
The data preparation process

The data preparation process is shown in Figure 17.1. The entire process is guided by the preliminary plan of data analysis that was formulated in the research design phase. The first step is to check for acceptable questionnaires. This is followed by editing, coding and transcribing the data. The data are cleaned and a treatment for missing responses is prescribed. Often, after the stage of sample validation, statistical adjustment of the data may be necessary to make them representative of the population of interest. The researcher should then select an appropriate data analysis strategy. The final data analysis strategy differs from the preliminary plan of data analysis due to the information and insights gained since the preliminary plan was formulated. Data preparation should begin as soon as the first batch of questionnaires is received from the field, while the fieldwork is still going on. Thus, if any problems are detected, the fieldwork can be modified to incorporate corrective action.

Checking the questionnaire

The initial step in questionnaire checking involves reviewing all questionnaires for completeness and interviewing or completion quality. Often these checks are made while fieldwork is still under way. If the fieldwork was contracted to a data collection agency, the researcher should make an independent check after it is over. A questionnaire returned from the field may be unacceptable for several reasons:

1. Parts of the questionnaire may be incomplete.
2. The pattern of responses may indicate that the respondent did not understand or follow the instructions. For example, filter questions may not have been followed.
3. The responses show little variance. For example, a respondent has ticked only 4s on a series of seven-point rating scales.
4. The returned questionnaire is physically incomplete: one or more pages is missing.
5 The questionnaire is received after the pre-established cut-off date.
6 The questionnaire is answered by someone who does not qualify for participation.

If quotas or cell group sizes have been imposed, the acceptable questionnaires should be classified and counted accordingly. Any problems in meeting the sampling requirements should be identified, and corrective action, such as conducting additional interviews in the under-represented cells, should be taken where this is possible, before the data are edited.

Editing

Editing is the review of the questionnaires with the objective of increasing accuracy and precision. It consists of screening questionnaires to identify illegible, incomplete, inconsistent or ambiguous responses. Responses may be illegible if they have been poorly recorded. This is particularly common in questionnaires with a large number of unstructured questions. The data must be legible if they are to be properly coded. Likewise, questionnaires may be incomplete to varying degrees. A few or many questions may be unanswered.

At this stage, the researcher makes a preliminary check for consistency. Certain obvious inconsistencies can be easily detected. For example, a respondent may have answered a whole series of questions relating to their perceptions of a particular bank, yet in other questions may have indicated that they have not used that particular bank or even heard of it.

Responses to unstructured questions may be ambiguous and difficult to interpret clearly. The answer may be abbreviated, or some ambiguous words may have been used. For structured questions, more than one response may be marked for a question designed to elicit a single response. Suppose that a respondent circles 2 and 3 on a five-point rating scale. Does this mean that 2.5 was intended? To complicate matters further, the coding procedure may allow for only a single-digit response.

Treatment of unsatisfactory responses

Unsatisfactory responses are commonly handled by returning to the field to get better data, assigning missing values, and discarding unsatisfactory respondents.

Returning to the field

Questionnaires with unsatisfactory responses may be returned to the field, where the interviewers re-contact the respondents. This approach is particularly attractive for business and industrial marketing surveys, where the sample sizes are small and the respondents are easily identifiable. The data obtained the second time, however, may be different from those obtained during the original survey. These differences may be attributed to changes over time or differences in the mode of questionnaire administration (e.g. telephone versus in-person interview).

Assigning missing values

If returning the questionnaires to the field is not feasible, the editor may assign missing values to unsatisfactory responses. This approach may be desirable if (1) the number of respondents with unsatisfactory responses is small, (2) the proportion of unsatisfactory responses for each of these respondents is small, or (3) the variables with unsatisfactory responses are not the key variables.

Discarding unsatisfactory respondents

In another approach, the respondents with unsatisfactory responses are simply discarded. This approach may have merit when (1) the proportion of unsatisfactory respondents is small (less than 10%); (2) the sample size is large; (3) the unsatisfactory respondents do not differ from sat-
Care must be taken in discarding questionnaires from unsatisfactory respondents.

isfactory respondents in obvious ways (e.g. demographics, product usage characteristics); (4) the proportion of unsatisfactory responses for each of these respondents is large; or (5) responses on key variables are missing. Unsatisfactory respondents may differ from satisfactory respondents in systematic ways, however, and the decision to designate a respondent as unsatisfactory may be subjective. Both these factors bias the results. If the researcher decides to discard unsatisfactory respondents, the procedure adopted to identify these respondents and their number should be reported, as in the following example.

Declaring ‘discards’

In a cross-cultural survey of marketing managers from English-speaking African countries, questionnaires were posted to 565 firms. A total of 192 completed questionnaires were returned, of which four were discarded because respondents suggested that they were not in charge of overall marketing decisions. The decision to discard the four questionnaires was based on the consideration that the sample size was sufficiently large and the proportion of unsatisfactory respondents was small.

Coding

Many questionnaire design and data entry software packages code data automatically. Examples of the options available will be presented in the Internet and computer applications section and on the Companion Website. Learning how to use such packages or even using spreadsheet packages means that the process of coding is now a much simpler task for the marketing researcher. Many of the principles of coding are based on the days of data processing using ‘punched cards’ or even, much more recently, DOS files. Whilst there may be many data analysts who could present coherent cases for the use of original forms of data entry, the greater majority of researchers enjoy the benefits of a simpler, speedier and less error-prone form of data entry, using proprietary software packages such as SNAP on www.mercator.co.uk or Keypoint2 on www.camsp.com. The nature and importance of coding for qualitative
data was introduced in Chapters 6 and 9. For quantitative data, which can include coping with open-ended responses or responses to 'Other – Please State…', it is still important to understand the principles of coding, as reference to the process is made by so many in the marketing research industry. The examples of coding presented are based on the original forms of conducting the GlobalCash survey in 1996 and 1998. In the 2000 and 2002 surveys, the process of coding was completely automated using the SNAP package.

Coding means assigning a code, usually a number, to each possible answer to each question. For example, a question on the gender of respondents may be assigned a code of 1 for females and 2 for males. For every individual question in a questionnaire, the researcher decides which codes should be assigned to all its possible answers.

If the question posed has only two possible answers, the codes assigned of 1 or 2 take up one digit space. If the question posed had 300 possible answers such as 'Which European bank do you conduct most business with?’ the possible answers and assigned codes of 1 to 300 would take up three digit spaces. The reason for focusing upon the digit spaces required for any particular question relates to recording the answers from individual questionnaire respondents in ‘flat ASCII files’. Such files were typically 80 columns wide. The columns would be set out into ‘fields’, i.e. assigned columns that relate to specific questions. Thus the task for the researcher after assigning codes to individual question responses was to set out a consecutive series of fields or columns. These fields would represent where the answers to particular questions would be positioned in the ASCII file. In each row of a computer file would be the coded responses from individual questionnaire respondents. Each row is termed a ‘record’, i.e. all the fields that make up the response from one respondent. All the attitudinal, behavioural, demographic and other classification characteristics of a respondent may be contained in a single record.

Table 17.1 shows an extract from the GlobalCash questionnaire and Table 17.2 illustrates the answers to these questions from a selection of respondents as set out in

Table 17.1 Classification questions from the GlobalCash survey

<table>
<thead>
<tr>
<th>Question 1 – Do you work in a:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsidiary</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 2 – What is the main industry in which your group operates?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>Oil/gas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 3 – What are your group’s approximate annual worldwide sales? (€/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 4 – In how many European countries does your group operate?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 5 – What position do you hold in your company?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
codes, fields and records. The classification questions set out on Table 17.1 were placed at the end of the questionnaire but, as they represent simple structured questions, they are assumed to be at the start of the questionnaire for this illustration.

Question 1 has five possible answers which are coded 1 to 5, that take up one digit space. Question 2 has 15 possible answers which are coded 1 to 15, that take up two digit spaces. Note that, with question 2, code 15 represents ‘Other, Please State’. If the researcher finds that there are other categories emerging that should have been included in the list of answers, these can be given individual codes. As two digit spaces have been allocated to cope with 15 possible answers, up to 99, i.e. 84 additional, categories of ‘other’ can be catered for. Question 3 is open-ended and requires a number to represent the worldwide sales of the respondent in millions of euros. This question can be pre-coded into bands, e.g. Code 1 = 0 to 50, Code 2 = 51 to 100, Code 3 = 101 to 250, etc. Alternatively, the data can be entered in its raw format, which allows far more precision in later analyses and still retains the ability to put respondents into bands at a later date. By entering the response in a raw data format, eight digit spaces have been allowed, compared with the one or perhaps two had it been pre-coded. Question 4 has the same structure as Question 1, taking up one digit space. Question 5 is similar to Question 2 in that it has an ‘Other, Please State’ option. Note that at the end of each question is a small number in parentheses. These numbers represent the first field positions of each question as illustrated in Table 17.2.

In Table 17.2, the columns represent the fields and the rows represent the records of each respondent. The field space 1 to 4 is used to record an assigned number to each respondent. Should the record require more than 80 digit spaces, it would wrap around on to a second, third or fourth line, and so on.

Table 17.3 illustrates how the same data may be entered using a spreadsheet. Each row represents an individual respondent, each column representing the fields required to hold the response to an individual question. Note that there is a column that identifies a specific number attached to each record. Many survey analysis packages record a unique ID for each record so that, as the answers to an individual questionnaire are entered, the ID is automatically updated. However, if a unique ID is attached to each questionnaire before it is sent out (for example, in a postal survey), the ID may be entered as a distinct field (see column A).

<table>
<thead>
<tr>
<th>Table 17.2</th>
<th>Illustrative computer file held on a flat ASCII file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields</td>
<td>Records</td>
</tr>
<tr>
<td>Record #1</td>
<td>0001</td>
</tr>
<tr>
<td>Record #11</td>
<td>0011</td>
</tr>
<tr>
<td>Record #21</td>
<td>0021</td>
</tr>
<tr>
<td>Record #1011</td>
<td>1011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 17.3</th>
<th>Example of computer file held on a spreadsheet program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual fields in columns</td>
<td>A</td>
</tr>
<tr>
<td>Records in rows</td>
<td>ID</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>1011</td>
<td>1011</td>
</tr>
</tbody>
</table>
Coding is still required to identify the individual responses to individual questions. Spreadsheets are normally wide enough to allow an individual record to be recorded on one line, and they can be set up so that whoever is entering the data can clearly keep track of which questions relate to which columns. Spreadsheets can be used as a format to analyse data in a wide variety of data analysis packages and so are very versatile. They do, however, have shortcomings. The next paragraph will go on to illustrate these.

In many surveys, multiple choice questions are widely used. An example of a multiple choice question is shown in Table 17.4, a question from the GlobalCash survey which examines respondent’s plans for changes over the next two years.

Table 17.4 Multiple choice question from the GlobalCash survey

<table>
<thead>
<tr>
<th>Question 51 – During the next two years, which of the following changes does your company plan to make? (please tick appropriate boxes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

In essence, each of the options presented in Question 51 is an individual ‘yes’ or ‘no’ question. In the example shown, the respondent has replied ‘yes’ to the first, fifth, sixth and ninth variables. Using a spreadsheet, this question would be coded as shown in Table 17.5 where the response in Table 17.4 is represented as ‘Record 1’. The ‘ticks’ above have been coded as a ‘1’ to represent ‘yes’ and ‘0’ as ‘no’.

Table 17.5 GlobalCash, Question 51 spreadsheet presentation

<table>
<thead>
<tr>
<th>Individual fields in columns</th>
<th>Question 51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Records</td>
<td>Q51(1)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>...n</td>
<td>0</td>
</tr>
</tbody>
</table>

Entering data for multiple choice questions is a simple task on a spreadsheet, provided that there are not so many of these question types in a survey. In the GlobalCash questionnaire there was one question related to which banks were used in 25 European countries. The multiple choice question of 250 different banks multiplied by 25 countries would have meant a spreadsheet of 6,250 columns, just for the one question! If a respondent had indicated that they used ABN AMRO in Norway, this would mean finding the precise column to enter a ‘1’ and then 6,249 ‘0s’. This is a lengthy and potentially error-prone task, but fortunately cases like this are rare. This is where proprietary questionnaire design and survey packages really hold many advan-
tages, i.e. they make the data entry task very simple and check for errors. Again, the use of proprietary packages will be outlined at the end of this chapter.

Codebook

Whether, the researcher uses DOS-based systems, spreadsheets or a proprietary package, a summary of the whole questionnaire, showing the position of the fields and the key to all the codes, should be produced. Such a summary is called a codebook. Table 17.6 shows an extract from the GlobalCash codebook. The codebook shown is based upon using a spreadsheet to enter the data. Depending upon which type of data entry is used, the codebook style will change, but in essence the type of information recorded is the same.

A **codebook** contains instructions and the necessary information about the questions and potential answers in a survey. A codebook guides the ‘coders’ in their work and helps the researcher identify and locate the questions properly. Even if the questionnaire has been pre-coded, it is helpful to prepare a formal codebook. As illustrated in Table 17.6, a codebook generally contains the following information: (1) column identifier, (2) question name, (3) question number, and (4) coding instructions.

Table 17.6 Extract from the GlobalCash survey codebook

<table>
<thead>
<tr>
<th>Column identifier</th>
<th>Question name</th>
<th>Question number</th>
<th>Coding instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Respondent ID</td>
<td></td>
<td>Enter handwritten number from top right-hand corner of the questionnaire.</td>
</tr>
<tr>
<td>B</td>
<td>Treasury type</td>
<td>Q. 1</td>
<td>Subsidiary = ‘1’
Country treasury = ‘2’
Regional treasury = ‘3’
European treasury = ‘4’
Group treasury = ‘5’
Missing value = ‘9’</td>
</tr>
<tr>
<td>C</td>
<td>Industry</td>
<td>Q. 2</td>
<td>Enter number as seen alongside ticked box. Missing value = ‘99’</td>
</tr>
<tr>
<td>D</td>
<td>Worldwide sales</td>
<td>Q. 3</td>
<td>Enter actual value in € millions</td>
</tr>
<tr>
<td>E</td>
<td>Countries operated in</td>
<td>Q. 4</td>
<td>1 = ‘1’
2 to 5 = ‘2’
6 to 10 = ‘3’
11 to 15 = ‘4’
over 15 = ‘5’
Missing value = ‘9’</td>
</tr>
<tr>
<td>F</td>
<td>Position</td>
<td>Q. 5</td>
<td>Treasurer = ‘1’
Finance director = ‘2’
Accountant = ‘3’
Chief executive = ‘4’
Cash manager = ‘5’
Other = ‘6’
Missing value = ‘9’</td>
</tr>
</tbody>
</table>

Coding open-ended questions

The coding of structured questions, be they single or multiple choice, is relatively simple because the response options are predetermined. The researcher assigns a code for each response to each question and specifies the appropriate field or column in which it will appear; this is termed ‘pre-coding’. The coding of unstructured or open-ended questions is more complex; this is termed ‘post-coding’. Respondents’
verbatim responses are recorded on the questionnaire. One option the researcher has is to go through all the completed questionnaires, list the verbatim responses and then develop and assign codes to these responses. Another option that is allowed on some data entry packages is to enter the verbatim responses directly on to the computer, allowing a print-off of the collective responses and codes to be assigned before all of the questionnaires have been entered. The coding process here is similar to the process of assigning codes in the analysis of qualitative data as described in Chapter 9. The verbatim responses to 1,000 questionnaires may generate 1,000 different answers. The words may be different but the essence of the response may mean that 20 issues have been addressed. The researcher decides what those 20 issues are, names the issues and assigns codes from 1 to 20, and then goes through all the 1,000 questionnaires to enter the code alongside the verbatim response.

The following guidelines are suggested for coding unstructured questions and questionnaires in general. Category codes should be mutually exclusive and collectively exhaustive. Categories are mutually exclusive if each response fits into one and only one category code. Categories should not overlap. Categories are collectively exhaustive if every response fits into one of the assigned category codes. This can be achieved by adding an additional category code of ‘other’ or ‘none of the above’. An absolute maximum of 10% of responses should fall into the ‘other’ category; the researcher should strive to assign all responses into meaningful categories.

Category codes should be assigned for critical issues even if no one has mentioned them. It may be important to know that no one has mentioned a particular response. For example, a bank may be concerned about their new Web page design. In a question ‘How did you learn about Credit Card X’, the Web should be included as a distinct category, even if no respondents gave this as an answer.

Transcribing

Transcribing data involves keying the coded data from the collected questionnaires into computers. If the data have been collected via the Internet, CATI or CAPI, this step is unnecessary because the data are entered directly into the computer as they are collected. Besides the direct keying of data, they can be transferred by using mark sense forms, optical scanning or computerised sensory analysis (see Figure 17.2). Mark sense forms require responses to be recorded in a pre-designated area coded for
that response, and the data can then be read by a machine. Optical scanning involves direct machine reading of the codes and simultaneous transcription. A familiar example of optical scanning is the transcription of universal product code (UPC) data, scanned at supermarket checkout counters. Technological advances have resulted in computerised sensory analysis systems, which automate the data collection process. The questions appear on a computerised gridpad, and responses are recorded directly into the computer using a sensing device.

Except for CATI and CAPI, an original record exists which can be compared with what was either automatically read or keyed. Errors can occur in an automatic read or as data are keyed and it is necessary to verify the dataset, or at least a portion of it, for these errors.

A second operator re-punches the data from the coded questionnaires. The transcribed data from the two operators are compared record by record. Any discrepancy between the two sets of transcribed data is investigated to identify and correct for data keyed in error. Verification of the entire data set will double the time and cost of data transcription. Given the time and cost constraints, and that experienced operators who key data are quite accurate, it is sufficient to verify 10–25% of the data. With automatically read data, the completed data set that has been read can be compared with original records. Again, a percentage may be selected and checks made to see what may have caused differences between the original record and the read data (e.g. respondents entering two ticks when only one was requested).

When CATI, CAPI or the Internet are employed, data are verified as they are collected. In the case of inadmissible responses, the computer will prompt the interviewer or respondent. In the case of admissible responses, the interviewer or the respondent can see the recorded response on the screen and verify it before proceeding.

The selection of a data transcription method is guided by the type of interviewing method used and the availability of equipment. If CATI, CAPI or the Internet are used, the data are entered directly into the computer. Keypunching via a computer terminal is most frequently used for ordinary telephone, in-home and street interviewing and traditional mail interviews. The use of computerised sensory analysis systems in personal interviews is increasing with the growing use of handheld computers, however. Optical scanning can be used in structured and repetitive surveys, and mark sense forms are used in special cases.5

Data cleaning

Thorough and extensive checks for consistency and treatment of missing responses.

Consistency checks

A part of the data cleaning process that identifies data that are out of range, logically inconsistent, or have extreme values. Data with values not defined by the coding scheme are inadmissible.

Cleaning the data

Data cleaning includes consistency checks and treatment of missing responses. Even though preliminary consistency checks have been made during editing, the checks at this stage are more thorough and extensive, because they are made by computer.

Consistency checks

Consistency checks identify data that are out of range or logically inconsistent or have extreme values. Out-of-range data values are inadmissible and must be corrected. For example, respondents have been asked to express their degree of agreement with a series of lifestyle statements on a 1 to 5 scale. Assuming that 9 has been designated for missing values, data values of 0, 6, 7 and 8 are out of range. Computer packages can be programmed to identify out-of-range values for each variable and will not progress to another variable within a record until a value in the set range is entered. Other packages can be programmed to print out the respondent code, variable code, variable name, record number, column number and out-of-range value. This makes it easy to check each variable systematically for out-of-range values. The correct responses can be determined by going back to the edited and coded questionnaire.
Responses can be logically inconsistent in various ways. For example, a respondent may indicate that he charges long-distance calls to a calling card from a credit card company, although he does not have such a credit card. Or a respondent reports both unfamiliarity with and frequent usage of the same product. The necessary information (respondent code, variable code, variable name, record number, column number and inconsistent values) can be printed to locate these responses and to take corrective action.

Finally, extreme values should be closely examined. Not all extreme values result from errors, but they may point to problems with the data. For example, in the GlobalCash survey, companies were asked how many banks they use for domestic business. Certain Italian companies recorded 70 or more banks when the mean for all respondents was around six. In these circumstances the extreme values can be identified and the actual figure validated in many cases by re-contacting the respondent or examining secondary data sources. In the GlobalCash survey, contact was made with the respondents who recorded 70 or more banks, and in all cases the figures were correct.

Treatment of missing responses

Missing responses represent values of a variable that are unknown either because respondents provided ambiguous answers or because their answers were not properly recorded. Treatment of missing responses poses problems, particularly if the proportion of missing responses is more than 10%. The following options are available for the treatment of missing responses.7

- **Substitute a neutral value.** A neutral value, typically the mean response to the variable, is substituted for the missing responses. Thus, the mean of the variable remains unchanged, and other statistics such as correlations are not affected much. Although this approach has some merit, the logic of substituting a mean value (say 4) for respondents who, if they had answered, might have used either high ratings (6 or 7) or low ratings (1 or 2) is questionable.8

- **Substitute an imputed response.** The respondents’ pattern of responses to other questions is used to impute or calculate a suitable response to the missing questions. The researcher attempts to infer from the available data the responses the individuals would have given if they had answered the questions. This can be done statistically by determining the relationship of the variable in question to other variables based on the available data. For example, product usage could be related to household size for respondents who have provided data on both variables. Given that respondent’s household size, the missing product usage response for a respondent could then be calculated. This approach, however, requires considerable effort and can introduce serious bias. Sophisticated statistical procedures have been developed to calculate imputed values for missing responses.9

- **Casewise deletion.** In casewise deletion, cases or respondents with any missing responses are discarded from the analysis. Because many respondents may have some missing responses, this approach could result in a small sample. Throwing away large amounts of data is undesirable because it is costly and time-consuming to collect data. Furthermore, respondents with missing responses could differ from respondents with complete responses in systematic ways. If so, casewise deletion could seriously bias the results.

- **Pairwise deletion.** In pairwise deletion, instead of discarding all cases with any missing responses, the researcher uses only the cases or respondents with complete responses for each calculation. As a result, different calculations in an analysis may be
based on different sample sizes. This procedure may be appropriate when (1) the sample size is large, (2) there are few missing responses, and (3) the variables are not highly related. Yet this procedure can produce unappealing or even infeasible results.

The different procedures for the treatment of missing responses may yield different results, particularly when the responses are not missing at random and the variables are related. Hence, missing responses should be kept to a minimum. The researcher should carefully consider the implications of the various procedures before selecting a particular method for the treatment of non-response.

Statistically adjusting the data

Procedures for statistically adjusting the data consist of weighting, variable re-specification and scale transformation. These adjustments are not always necessary but can enhance the quality of data analysis.

Weighting

In weighting, each case or respondent in the database is assigned a weight to reflect its importance relative to other cases or respondents. The value 1.0 represents the unweighted case. The effect of weighting is to increase or decrease the number of cases in the sample that possess certain characteristics. (See Chapter 15, which discussed the use of weighting to adjust for non-response bias.)

Weighting is most widely used to make the sample data more representative of a target population on specific characteristics. For example, it may be used to give greater importance to cases or respondents with higher-quality data. Yet another use of weighting is to adjust the sample so that greater importance is attached to respondents with certain characteristics. If a study is conducted to determine what modifications should be made to an existing product, the researcher might want to attach greater weight to the opinions of heavy users of the product. This could be accomplished by assigning weights of 3.0 to heavy users, 2.0 to medium users, and 1.0 to light users and non-users. Because it destroys the self-weighting nature of the
sample design, weighting should be applied with caution. If used, the weighting procedure should be documented and made a part of the project report.10

Determining the weight of community centre users
A mail survey was conducted in the Scottish city of Edinburgh to determine the patronage of a community centre. The resulting sample composition differed in age structure from the area population distribution as compiled from recent census data. Therefore, the sample was weighted to make it representative in terms of age structure. The weights applied were determined by dividing the population percentage by the corresponding sample percentage. The distribution of age structure for the sample and population, as well as the weights applied, are given in the following table.

<table>
<thead>
<tr>
<th>Age group</th>
<th>Sample percentage</th>
<th>Population percentage</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 to 18</td>
<td>4.32</td>
<td>6.13</td>
<td>1.42</td>
</tr>
<tr>
<td>19 to 24</td>
<td>5.89</td>
<td>7.45</td>
<td>1.26</td>
</tr>
<tr>
<td>25 to 34</td>
<td>12.23</td>
<td>13.98</td>
<td>1.14</td>
</tr>
<tr>
<td>35 to 44</td>
<td>17.54</td>
<td>17.68</td>
<td>1.01</td>
</tr>
<tr>
<td>45 to 54</td>
<td>14.66</td>
<td>15.59</td>
<td>1.06</td>
</tr>
<tr>
<td>55 to 64</td>
<td>13.88</td>
<td>13.65</td>
<td>0.98</td>
</tr>
<tr>
<td>65 to 74</td>
<td>15.67</td>
<td>13.65</td>
<td>0.87</td>
</tr>
<tr>
<td>75 plus</td>
<td>15.81</td>
<td>11.87</td>
<td>0.75</td>
</tr>
<tr>
<td>Totals</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Age groups under-represented in the sample received higher weights, whereas over-represented age groups received lower weights. Thus, the data for a respondent aged 13 to 18 would be overweighted by multiplying by 1.42, whereas the data for a respondent aged 75 or over would be underweighted by multiplying by 0.75. ■

Variable re-specification
Variable re-specification involves the transformation of data to create new variables or to modify existing variables. The purpose of re-specification is to create variables that are consistent with the objectives of the study. For example, suppose that the original variable was product usage, with 10 response categories. These might be collapsed into four categories: heavy, medium, light and non-user. Or the researcher may create new variables that are composites of several other variables. For example, in a survey where one question establishes ‘gender’ and another ‘age’, a new variable may combine these. The new variable could have four values of ‘young women’, ‘older women’, ‘young men’ and ‘older men’. In the GlobalCash study, a composite variable was created based upon how many European countries a company operates in and the size of global sales. Likewise, one may take the ratio of variables. If the amount of purchases at a clothes shop (X_1) and the amount of purchases where a credit card was used (X_2) have been measured, the proportion of purchases charged to a credit card can be a new variable, created by taking the ratio of the two (X_2/X_1). Other re-specifications of variables include square root and log transformations, which are often applied to improve the fit of the model being estimated.

An important re-specification procedure involves the use of dummy variables for re-specifying categorical variables. Dummy variables are also called binary, dichotomous, instrumental or qualitative variables. They are variables that may take on only two values, such as 0 or 1. The general rule is that to re-specify a categorical variable...
with K categories, $K - 1$ dummy variables are needed. The reason for having $K - 1$, rather than K, dummy variables is that only $K - 1$ categories are independent. Given the sample data, information about the Kth category can be derived from information about the other $K - 1$ categories. Consider gender, a variable having two categories. Only one dummy variable is needed. Information on the number or percentage of males in the sample can be readily derived from the number or percentage of females. The following example further illustrates the concept of dummy variables.

Example

Frozen consumers treated as dummies

In a survey of consumer preferences for frozen foods, the respondents were classified as heavy users, medium users, light users and non-users, and they were originally assigned codes of 4, 3, 2 and 1, respectively. This coding was not meaningful for several statistical analyses. To conduct these analyses, product usage was represented by three dummy variables, X_1, X_2 and X_3, as shown.

<table>
<thead>
<tr>
<th>Product usage category</th>
<th>Original variable code</th>
<th>Dummy variable code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-users</td>
<td>1</td>
<td>$X_1 = 1$</td>
</tr>
<tr>
<td>Light users</td>
<td>2</td>
<td>$X_2 = 1$</td>
</tr>
<tr>
<td>Medium users</td>
<td>3</td>
<td>$X_3 = 1$</td>
</tr>
<tr>
<td>Heavy users</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Note that $X_1 = 1$ for non-users and 0 for all others. Likewise, $X_2 = 1$ for light users and 0 for all others, and $X_3 = 1$ for medium users and 0 for all others. In analysing the data, X_1, X_2, and X_3 are used to represent all user/non-user groups.

Scale transformation

Scale transformation involves a manipulation of scale values to ensure comparability with other scales or otherwise to make the data suitable for analysis. Frequently, different scales are employed for measuring different variables. For example, image variables may be measured on a seven-point semantic differential scale, attitude variables on a continuous rating scale, and lifestyle variables on a five-point Likert scale. Therefore, it would not be meaningful to make comparisons across the measurement scales for any respondent. To compare attitudinal scores with lifestyle or image scores, it would be necessary to transform the various scales. Even if the same scale is employed for all the variables, different respondents may use the scale differently. For example, some respondents consistently use the upper end of a rating scale whereas others consistently use the lower end. These differences can be corrected by appropriately transforming the data.

Example

Health care services: transforming consumers

In a study examining preference segmentation of health care services, respondents were asked to rate the importance of 18 factors affecting preferences for hospitals on a three-point scale (very, somewhat, or not important). Before analysing the data, each individual’s ratings were transformed. For each individual, preference responses were averaged across all 18 items. Then this mean X was subtracted from each item rating X_i and a constant C was added to the difference. Thus, the transformed data, X_t, were obtained by

$$X_t = X_i - X + C$$

Subtraction of the mean value corrected for uneven use of the importance scale. The constant C was added to make all the transformed values positive, since negative importance ratings are not meaningful conceptually. This transformation was desirable because some respondents, especially those with low incomes, had rated almost all the preference items as
very important. Others, high-income respondents in particular, had assigned the very important rating to only a few preference items. Thus, subtraction of the mean value provided a more accurate idea of the relative importance of the factors.

In this example, the scale transformation is corrected only for the mean response. A more common transformation procedure is standardisation. To standardise a scale X_i, we first subtract the mean, \bar{X}, from each score and then divide by the standard deviation, s_x. Thus, the standardised scale will have a mean of zero and a standard deviation of 1. This is essentially the same as the calculation of z scores (see Chapter 15). Standardisation allows the researcher to compare variables that have been measured using different types of scales. 12 Mathematically, standardised scores, z_i, may be obtained as

$$z_i = \frac{(X_i - \bar{X})}{s_x}$$

Selecting a data analysis strategy

The process of selecting a data analysis strategy is described in Figure 17.3. The selection of a data analysis strategy should be based on the earlier steps of the marketing research process, known characteristics of the data, properties of statistical techniques, and the background and philosophy of the researcher.

Data analysis is not an end in itself. Its purpose is to produce information that will help address the problem at hand. The selection of a data analysis strategy must begin with a consideration of the earlier steps in the process: problem definition (step 1), development of an approach (step 2), and research design (step 3). The preliminary plan of data analysis prepared as part of the research design should be used as a springboard. Changes may be necessary in the light of additional information generated in subsequent stages of the research process.

The next step is to consider the known characteristics of the data. The measurement scales used exert a strong influence on the choice of statistical techniques (see Chapter 12). In addition, the research design may favour certain techniques. For example, analysis of variance (see Chapter 19) is suited for analysing experimental data from causal designs. The insights into the data obtained during data preparation can be valuable for selecting a strategy for analysis.

It is also important to take into account the properties of the statistical techniques, particularly their purpose and underlying assumptions. Some statistical techniques
are appropriate for examining differences in variables, others for assessing the magnitudes of the relationships between variables, and still others for making predictions. The techniques also involve different assumptions, and some techniques can withstand violations of the underlying assumptions better than others. A classification of statistical techniques is presented below.

Finally, the researcher’s background and philosophy affect the choice of a data analysis strategy. The experienced, statistically trained researcher will employ a range of techniques, including advanced statistical methods. Researchers differ in their willingness to make assumptions about the variables and their underlying populations. Researchers who are conservative about making assumptions will limit their choice of techniques to distribution-free methods. In general, several techniques may be appropriate for analysing the data from a given project. We use the GlobalCash Project for illustration.

Data analysis strategy

As part of the analysis conducted in the GlobalCash Project, service quality was modelled in terms of the most important quality issues in domestic banking service delivery. The sample was split into halves. The respondents in each half were clustered on the basis of the importance of service quality characteristics. Statistical tests for clusters were conducted, and eight
segments were identified. Service quality was modelled in terms of the evaluations of banks on the quality variables. The model was estimated separately for each segment. Differences between segment preference functions were statistically tested. Finally, model verification and cross-validation were conducted for each segment. The data analysis strategy adopted is depicted in the figure opposite.

A classification of statistical techniques

Statistical techniques can be classified as univariate or multivariate. **Univariate techniques** are appropriate when there is a single measurement of each element in the sample or when there are several measurements of each element but each variable is analysed in isolation. **Multivariate techniques**, on the other hand, are suitable for analysing data when there are two or more measurements of each element and the variables are analysed simultaneously. Multivariate techniques are concerned with the simultaneous relationships among two or more phenomena. Multivariate techniques differ from univariate techniques in that they shift the focus away from the levels (averages) and distributions (variances) of the phenomena, concentrating instead on the degree of relationships (correlations or covariances) among these phenomena.

The univariate and multivariate techniques are described in detail in Chapters 18–24, but here we show how the various techniques relate to each other in an overall scheme of classification.

Univariate techniques can be further classified based on whether the data are metric or non-metric (as introduced in Chapter 12). **Metric data** are measured on an interval or ratio scale, whereas **non-metric data** are measured on a nominal or ordinal scale. For metric data, when there is only one sample, the \(z \) test and the \(t \) test can be used. When there are two or more independent samples, the \(z \) test and \(t \) test can be used for two samples, and one-way analysis of variance (one-way ANOVA) can be used for more than two samples. In the case of two or more related samples, the paired \(t \) test can be used. For non-metric data involving a single sample, frequency distribution, chi-square, Kolmogorov-Smirnov (K-S), runs, and binomial tests can be used.
used. For two independent samples with non-metric data, the chi-square, Mann-Whitney, median, K-S and Kruskal-Wallis one-way analysis of variance (K-W ANOVA) can be used. In contrast, when there are two or more related samples, the sign, Wilcoxon, McNemar and chi-square tests should be used.

Multivariate statistical techniques can be classified as dependence techniques or interdependence techniques (see Figure 17.5). **Dependence techniques** are appropriate when one or more variables can be identified as dependent variables and the remaining ones as independent variables. When there is only one dependent variable, cross-tabulation, analysis of variance and covariance, multiple regression, two-group discriminant analysis and conjoint analysis can be used. If there is more than one dependent variable, however, the appropriate techniques are multivariate analysis of variance and covariance, canonical correlation and multiple discriminant analysis. In **interdependence techniques**, the variables are not classified as dependent or independent; rather, the whole set of interdependent relationships is examined. These techniques focus on either variable interdependence or inter-object similarity. The major technique for examining variable interdependence is factor analysis. Analysis of inter-object similarity can be conducted by cluster analysis and multidimensional scaling.\(^{15}\)

International marketing research

Before analysing the data, the researcher should ensure that the units of measurement are comparable across countries or cultural units. For example, the data may have to be adjusted to establish currency equivalents or metric equivalents. Furthermore, standardisation or normalisation of the data may be necessary to make meaningful comparisons and achieve consistent results.

Example

A worldwide scream for ice cream\(^{16}\)

Over half the sales of Häagen-Dazs, the US ice cream manufacturer, come from markets outside the United States. How have Häagen-Dazs achieved this situation? Marketing research conducted in several European countries (e.g. Britain, France and Germany) and several Asian countries (e.g. Japan, Singapore and Taiwan) revealed that consumers were...
hungry for a high-quality ice cream with a high-quality image and were willing to pay a pre-
mium price for it. These consistent findings emerged after the price of ice cream in each
country was standardised to have a mean of zero and a standard deviation of unity.
Standardisation was desirable because the prices were specified in different local curren-
ties and a common basis was needed for comparison across countries. Also, in each
country, the premium price had to be defined in relation to the prices of competing brands.
Standardisation accomplished both of these objectives.

Based on these findings, Häagen-Dazs first introduced the brand at a few high-end retailers;
it then built company-owned stores in high-traffic areas; and finally it rolled into convenience
stores and supermarkets. It maintained the premium quality brand name by starting first with a
few high-end retailers. It also supplied free freezers to retailers. Hungry for quality products, con-
sumers in the new markets paid double or triple the price of home brands. In the United States,
Häagen-Dazs remains popular, although faced with intense competition and a health-conscious
market. This added to the impetus to enter international markets.

Data analysis could be conducted at three levels: (1) individual, (2) within coun-
try or cultural unit, and (3) across countries or cultural units. Individual level
analysis requires that the data from each respondent be analysed separately. For
example, one might compute a correlation coefficient or run a regression analysis
for each respondent. This means that enough data must be obtained from each
individual to allow analysis at the individual level, which is often not feasible. Yet it
has been argued that, in international marketing or cross-cultural research, the
researcher should possess a sound knowledge of the consumer in each culture. This
can best be accomplished by individual level analysis.17

In within-country or cultural unit analysis, the data are analysed separately for
each country or cultural unit. This is also referred to as \textit{intra-cultural analysis}.
This level of analysis is quite similar to that conducted in domestic marketing
research. The objective is to gain an understanding of the relationships and patterns
existing in each country or cultural unit.

In across-countries analysis, the data from all the countries are analysed simulta-
neously. Two approaches to this method are possible. The data for all respondents
from all the countries can be pooled and analysed. This is referred to as \textit{pan-
cultural analysis}. Alternatively, the data can be aggregated for each country, and
then these aggregate statistics can be analysed. For example, one could compute
means of variables for each country, and then compute correlations on these
means. This is referred to as \textit{cross-cultural analysis}. The objective of this level of
analysis is to assess the comparability of findings from one country to another. The
similarities as well as the differences between countries should be investigated.
When examining differences, not only differences in means but also differences in
variance and distribution should be assessed.

All the statistical techniques that have been discussed in this book can be applied
to within-country or across-country analysis and, subject to the amount of data
available, to individual-level analysis as well.18
New ethical issues can arise during the data preparation and analysis step of the marketing research process. While checking, editing, coding, transcribing and cleaning, researchers can get some idea about the quality of the data. Sometimes it is easy to identify respondents who did not take the questionnaire seriously or who otherwise provided data of questionable quality. Consider, for example, a respondent who ticks the ‘neither agree nor disagree’ response to all the 20 items measuring attitudes towards spectator sports. Decisions as to whether such respondents should be discarded or not included in analyses can raise ethical concerns. A good rule of thumb is to make such decisions during the data preparation phase before conducting any analysis.

In contrast, suppose that the researcher conducted the analysis without first attempting to identify unsatisfactory responses. The analysis, however, does not reveal the expected relationship; the analysis does not show that attitude towards spectator sports influences attendance at spectator sports. The researcher then decides to examine the quality of data obtained. In checking the questionnaires, a few respondents with unsatisfactory data are identified. These respondents are eliminated and the reduced data set is analysed to obtain the expected results. Discarding respondents after analysing the data raises ethical concerns, particularly if the report does not state that the initial analysis was inconclusive. Moreover, the procedure used to identify unsatisfactory respondents and the number of respondents discarded should be clearly disclosed, as in the following example.

Elimination of decision-makers unwilling to be ethical

In a study of MBAs’ responses to marketing ethics dilemmas, respondents were required to respond to 14 questions regarding ethically ambiguous scenarios by writing a simple sentence regarding what action they would take if they were the manager. The responses were then analysed to determine whether the respondent’s answer was indicative of ethical behaviour. However, in the data preparation phase, six respondents out of the 561 total respondents were eliminated from further analysis because their responses indicated that they did not follow the directions which told them to state clearly their choice of action. This is an example of ethical editing of the data. The criterion for unsatisfactory responses is clearly stated, the unsatisfactory respondents are identified before the analysis, and the number of respondents eliminated is disclosed.

While analysing the data, the researcher may also have to deal with ethical issues. The assumptions underlying the statistical techniques used to analyse the data must be satisfied to obtain meaningful results. For example, the error terms in bivariate regression must be normally distributed about zero, with a constant variance, and be uncorrelated (Chapter 20). The researcher has the responsibility to test these assumptions and take appropriate corrective actions if necessary. The appropriateness of the statistical techniques used for analysis should be discussed when presenting the results. When this is not done, ethical questions can be raised.
In evaluating software that can help the marketing researcher with data preparation tasks, a distinction should be made between survey design and analysis packages such as SNAP (www.snapsurveys.com), Keypoint2 (www.camsp.com) and SphinxSurvey (www.scolari.co.uk), and statistical packages such as SPSS (www.spss.com), SAS (www.sas.com) and Minitab (www.minitab.com), and office products such as Microsoft Excel (www.microsoft.com). It is advised that these Websites are visited to view the demonstration versions of the packages to gain a feel for their capabilities and applications.

Survey design and analysis packages such as SNAP, Keypoint2 and Sphinx perform a much broader range of tasks to help with the array of data preparation tasks than either the statistical packages or the more generic office products. Primarily, they allow the physical format of a questionnaire to be designed. The designed questionnaire can either be printed out and used for traditional mail surveys, formatted for interviewer-led surveys using CATI or CAPI, or formatted for self-completion Internet surveys. As the questionnaire is designed on screen, the underlying structure of the questionnaire is automatically created. This results in the coding of question replies and the associated field positions automatically being worked out. It also means that any alterations in the design of the questionnaire automatically maintain the structure and integrity of the data being collected, ensuring accuracy in the later analysis stages.

Data can be entered directly by respondents as an Internet survey progresses, or entered by an interviewer on a CATI or CAPI survey. Alternatively, the data can be keyed directly from a paper questionnaire on to the computer. The packages have built in checks for ‘out of range’ responses which halt the progress of data entry; for example, if a five-point Likert scale is used and a ‘7’ is entered, there is an audible warning and the data entry halts until the error is corrected.

Multiple choice questions typically appear as tick boxes and can be set as either a single response or a multiple response, and it is a simple task to highlight one or more of the boxes. Alternatively, numbers, dates or verbatim responses can be entered. The verbatim data can be transferred to qualitative data analysis packages if needed, or can be post-coded (coded later) and a new variable established for subsequent analysis.

Data preparation effort is considerably reduced when replies are entered directly on to the computer as each question is asked. For paper-based surveys this is not practical and optical scanning can be a cost-effective solution, particularly when there is a large proportion of multiple response questions. The pages of the questionnaire are scanned and the systems search for marks within boxes, and even allow for situations where a reply has been altered or removed. Scanning becomes less cost effective when the proportion of open questions increases, as there is often a high level of manual intervention to clean and code the responses. Scanning systems currently recognise and interpret numbers and hand-printed text, but are not yet capable of accurately recognising hand-written text. Some systems can be ‘trained’ to recognise an individual style of handwriting, but such a task is inappropriate for normal marketing research surveys, particularly if they are self-completion. For certain types of surveys, scanning is a great time saver. For others, the scanning, coding and cleaning are no faster than manually entering the data on to the computer.

Verification is the process of manually re-entering a proportion of the questionnaires to check the accuracy of data entry, and this facility is regularly used for paper-based surveys. Options are available to set a percentage level (perhaps 5–10%) and the programs then randomly select questionnaires to be re-entered.
The programs also allow for validation checks between questions to be set up, completing a comprehensive error avoidance and checking ability, which in total means that the full array of data cleaning tasks can be performed.

Once the dataset has been created, checked and cleaned, SNAP and Keypoint2 allow statistical adjustment of the data through the creation of weights, scale transformation and the ability to create new variables or modify existing ones. Univariate and basic multivariate statistical analyses can be performed and presented in an array of styles of tables and graphs. Before questionnaires are sent out, the forms of analysis and the resulting tables and graphs can be designed and the instructions for these forms stored. This means that, as questionnaire responses start to build up in any survey format, a full set of tables and graphs as an interim analysis can be performed at any time by the researcher.

In essence, these packages perform the complete array of tasks faced by the marketing researcher, from designing a questionnaire and ensuring a sound dataset is built up to analysing the data and presenting the findings. There are limitations to the extent and array of multivariate statistical analyses that can be performed by these packages. However, they do allow for links to statistical analysis packages. For example, SNAP has the option to transform the files that describe the question and answer structure, and the raw data of a survey, into a fully labelled and coded SPSS SAV file, ready to perform any of the multivariate analysis tasks as detailed in Chapters 18–24. Alternatively, SNAP can both export and import Triple S files, www.triple-s.org, a standard used by over 50 survey-related software packages worldwide to represent both the definitions of the survey and the associated data. Go to the Companion Website and read Professional Perspective 20 ‘Make it snappy’ by Tim Macer. Tim reviews the latest version of SNAP, explaining its features and outlining its benefits and limitations.

Summary

Data preparation begins with a preliminary check of all questionnaires for completeness and interviewing quality. Then more thorough editing takes place. Editing consists of screening questionnaires to identify illegible, incomplete, inconsistent or ambiguous responses. Such responses may be handled by returning questionnaires to the field, assigning missing values or discarding unsatisfactory respondents.

The next step is coding. A numeric or alphanumeric code is assigned to represent a specific response to a specific question along with the column position or field that code will occupy. It is often helpful to prepare a codebook containing the coding instructions and the necessary information about the variables in the dataset. The coded data are transcribed on to disks or magnetic tapes or entered directly into a data analysis package. Mark sense forms, optical scanning or computerised sensory analysis may also be used.

Cleaning the data requires consistency checks and treatment of missing responses. Options available for treating missing responses include substitution of a neutral value such as a mean, substitution of an imputed response, casewise deletion and pairwise deletion. Statistical adjustments such as weighting, variable re-specification and scale transformations often enhance the quality of data analysis. The selection of a data analysis strategy should be based on the earlier steps of the marketing research process, known characteristics of the data, properties of statistical techniques, and the background and philosophy of the researcher. Statistical techniques may be classified as univariate or multivariate.
Before analysing the data in international marketing research, the researcher should ensure that the units of measurement are comparable across countries or cultural units. The data analysis could be conducted at three levels: (1) individual, (2) within-country or cultural unit (intra-cultural analysis), and (3) across countries or cultural units (pan-cultural or cross-cultural analysis). Several ethical issues are related to data processing, particularly the discarding of unsatisfactory responses, violation of the assumptions underlying the data analysis techniques, and evaluation and interpretation of results.

Questions

1. Describe the data preparation process. Why is this process needed?
2. What activities are involved in the preliminary checking of questionnaires that have been returned from the field?
3. What is meant by editing a questionnaire?
4. How are unsatisfactory responses that are discovered in editing treated?
5. What is the difference between pre-coding and post-coding?
6. Describe the guidelines for the coding of unstructured questions.
7. What does transcribing the data involve?
8. What kinds of consistency checks are made in cleaning the data?
9. What options are available for the treatment of missing data?
10. What kinds of statistical adjustments are sometimes made to the data?
11. Describe the weighting process. What are the reasons for weighting?
12. What are dummy variables? Why are such variables created?
13. Explain why scale transformations are made.
14. Which scale transformation procedure is most commonly used? Briefly describe this procedure.
15. What considerations are involved in selecting a data analysis strategy?

Notes

8. A meaningful and practical value should be imputed. The value imputed should be a legitimate response code. For example, a mean of 3.86 may not be practical if only single-digit response codes have been developed. In such cases, the mean should be rounded to the nearest integer.

14 Bivariate techniques have been included here with multivariate techniques. Although bivariate techniques are concerned with pairwise relationships, multivariate techniques examine more complex simultaneous relationships among phenomena. See Tacq, J., *Multivariate Analysis Techniques in Social Science Research Analysis* (Thousand Oaks, CA: Sage, 1996).

