Index

Symbols and Numerics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>braces, 94</td>
</tr>
<tr>
<td>!</td>
<td>(factorial operator), 123</td>
</tr>
<tr>
<td>±</td>
<td>(two values), 194</td>
</tr>
<tr>
<td>></td>
<td>(greater than), 141</td>
</tr>
<tr>
<td>≥</td>
<td>(greater than or equal to), 147</td>
</tr>
<tr>
<td>⊂</td>
<td>(subsets), 94</td>
</tr>
<tr>
<td>^</td>
<td>(estimated value), 291</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>(infinity), 157</td>
</tr>
<tr>
<td><</td>
<td>(less than), 141</td>
</tr>
<tr>
<td>≤</td>
<td>(less than or equal to), 141</td>
</tr>
<tr>
<td>∈</td>
<td>(members not in set), 94</td>
</tr>
<tr>
<td>∉</td>
<td>(membership in set), 94</td>
</tr>
<tr>
<td>∩</td>
<td>(intersections), mathematical operation, 96–97</td>
</tr>
<tr>
<td>∪</td>
<td>(union), mathematical operation, 95–96</td>
</tr>
<tr>
<td>*</td>
<td>(asterisk) character, 47</td>
</tr>
<tr>
<td>^</td>
<td>(caret) character, 47</td>
</tr>
<tr>
<td>1-</td>
<td>(confidence coefficient), 195</td>
</tr>
<tr>
<td>2.71828 (e),</td>
<td>135</td>
</tr>
<tr>
<td>25th percentile, 66, 362</td>
<td></td>
</tr>
<tr>
<td>50th percentile, 66, 362</td>
<td></td>
</tr>
<tr>
<td>75th percentile, 66, 362</td>
<td></td>
</tr>
</tbody>
</table>

A

- addition rule, probability theory formulas, 106–108, 363
- use of, 14
- adjusted coefficient of determination (adjusted R²), 313, 314–315
- alpha (α) error, 206
- alternative hypothesis (\(H_1\)) formula, 367
- F-test, 316
- hypothesis testing, population variance, 257–259
- left-tailed test, 204
- overview, 235
- right-tailed test, 203–204
- t-test, 301, 321
- two-tailed test, 205

B

- \(b\) (intercept), 20, 38, 285, 286
- \(b\) (upper limit of interval), 145
- base, rectangle, 144
- bell-shaped curve, 151–153
- beta (β) error, 206
- bias errors, 360
- BINOMDIST function, Microsoft Excel 2007, 127
- binomial distribution
 - expected value, 128
 - factorial, 123–124
 - formula, 123, 125–126, 364
 - graphing on histogram, 129–131
 - moments, 127–128
 - overview, 16, 122–123
 - process, 122
 - standard deviation, 128
 - uses, 122
 - variance, 128
- BINOM.IDST function, Microsoft Excel 2010, 127
- braces ({}), 94

ANOVA (analysis of variance)

- See also F-distribution
 - alternative hypothesis, 240
 - critical value, finding, 247–248
 - degrees of freedom, 247–248
 - F-statistic, 246
 - F-table, 247–248
 - level of significance, 240–241
 - null hypothesis, 240
 - one-way, 239, 247, 248
 - overview, 233, 239
 - table, 318
 - test statistic, computing, 241–246
 - two-way, 239
- uses, 239

- arithmetic mean, 40–42
- arrangements, 124
- autocorrelations, 308, 358, 370
- average number of events in time period (\(\lambda\)), 135, 265
caret (^) character, 47
causality errors, 357–358
center of data set. See mean (average); median; mode
centered moving averages, 343–344, 371
central limit theorem (CLT), 18, 179–184, 365–366
change in X (ΔX), 285
change in Y (ΔY), 285
chi-square distribution (χ²). See also goodness of fit test; hypothesis testing, population variance
applications, 252
chi-square table, 261, 264
features, 252–253
graphic illustration, 253–254
moments, 255–256
overview, 236, 252
for positive values, 252–253
positively skewed, 252–253
random variable, 255
chi-square table, 261, 264
class frequency distribution, 27
class width, 26–27
cluster samples, probability sampling, 171–172
Cochrane-Orcutt procedure, 308
coefficient of determination (R²)
errors, 356
testing population regression equation, 298–299
coefficient of variation (CV)
defined, 69, 72
formula, 69–70
COMBIN function, Microsoft Excel, 125
combinations
formula, 124
number of, 125
complement, mathematical operation, 97–98
complement rule, probability theory
formulas, 108–109, 363
as mathematical operation, 97–98
purpose, 14, 106
conditional probabilities (|), 102, 104, 105
confidence coefficient (1 - α), 195
confidence intervals
defined, 19, 187, 195, 366
errors, statistical analysis, 355
with known population standard deviation, 195–199, 366
statistical inference, 18–19
with unknown population standard deviation, 199–200, 366
constant (e), 135
constant (e^x), calculator key, 135
continuous probability distributions, 16–17, 365. See also chi-square distribution; F-distribution; normal distribution; Student’s t-distribution; uniform distribution
continuously compounded interest, 135
convenience samples, nonprobability sampling, 172
correlation coefficient
versus covariance, 72, 82–85
defined, 13, 72
diversification, measuring, 88–90
errors, 357–358
interpreting, 85–86
measure of association, 71, 362
negative, 72
population, 80–82
positive, 72
sample, 73–77
scatter plots, 86–88
zero, 72
covariance
versus correlation coefficient, 72, 82–85
defined, 13
measure of association, 71, 362
negative, 72
population, 77–80
positive, 72
sample, 73–77
zero, 72
critical values, hypothesis testing
common, standard normal distribution, 213
defined, 208
degrees of freedom, 210
F-test, 319–320
large sample, 213
left-tailed test overview, 209
left-tailed test with small sample, 211–212
overview, 260
right-tailed test overview, 209
right-tailed test with large sample, 214–215
right-tailed test with small sample, 209–211
small sample, 209–210
standard normal table, positive values, 214
Student’s t-distribution, 210
t-test, 304–305, 322–324
two-tailed test overview, 209
 two-tailed test with large sample, 215–216
 two-tailed test with small sample, 212–213
cumulative frequency distributions, 30–31
cumulative probabilities, 154
CV (coefficient of variation)
 defined, 69, 72
 formula, 69–70
cyclical effects, time series forecasting, 328

• D •
data
 class width, 26–27
data set, 8, 11–12, 55
 defined, 8
frequency distribution, cumulative, 30–31
frequency distribution, qualitative, 29–30
frequency distribution, quantitative, 25–29
frequency distribution, relative, 27–29
 graphic analysis, 8–11
 graphing, 31–38
 measures of association, 13
 measures of dispersion, 12–13
 qualitative (non-numerical), 29–30, 24, 337
 quantitative (numerical), 24–27
 spread, 13
decision rule, hypothesis testing
 left-tailed test and critical value, 216
 right-tailed test and critical value, 216
 two-tailed test and critical value, 216
degrees of freedom (df)
 ANOVA, 247
 chi-square, 236–237
denominator, 234, 236, 237, 370
 F-distribution, 234, 370
 numerator, 234, 236, 237, 370
t-distribution, 189
denominator degrees of freedom, 234, 236, 237, 370
denominators, 45
dependent variable (Y), 20, 283, 370
discrete distributions. See also binomial distribution; geometric distribution;
Poisson distribution
defined, 121, 363
 expected value formula, 364
moments, 363–364
overview, 16
standard deviation formula, 364
uses, 141
 variance formula, 364
dispersion measures, 12
distribution errors, 360
diversification, measuring, 88–90
double-counting, 106
dummy variables, 337–338
Durbin-Watson test, 308

• E •
e (constant), 135
 elements
defined, 93
 membership in sets, 94
 empty sets, 97, 100–101
 equivalent standard normal probabilities, 161–164
error term (ε), 22, 290
errors
 alpha, 206
 beta, 206
 bias, 360
 causality, 357–358
 coefficient of determination, 356
 confidence intervals, 357–358
 correlation as causality, 357–358
 correlation coefficient, 357–358
 distribution, 360
 error sum of square, 242–244
 false positive (Type I), 205–207, 235, 301–302, 317
 false negative (Type II), 205–207, 235, 301–302, 317
 hypothesis test results misinterpretation, 356
 margin of, 18–19, 187, 194–195
 mean square, 245–246, 348–349
 misleading graphs, 353–355
 multicollinearity, 359
 normality assumption, 357
 null hypothesis, interpreting, 356
 overconfidence in forecasts, 359–360
 random, 360
 regression equation, interpreting, 358
 sampling, 242–244
 standard, 178, 180
 wrong conclusion in confidence interval, 355
 wrong distribution, 360
ESS (explained sum of squares), 298–299
estimated value, 291
estimates, 194
estimators, 194
events
defined, 99, 112
independent, 100, 102–103, 105
intersection, 109–110
mutually exclusive, 100, 108
probability, computing, 101, 106–110
sample space subset, 99
\(e^x\) (constant), calculator key, 135
\(E(X)\) (expected value of X), 118, 145, 237
Excel, Microsoft, functions in
BINOMDIST, 127
BINOM.IDIST, 127
COMBIN, 125
EXP, 135
PERCENTILE, 66
POISSON, 136
POISSON.DIST, 136
QUARTILE, 67
RANDBETWEEN, 168, 169
EXP function, Microsoft Excel, 135
expected frequencies, 266
expected value
binomial distribution, 128
chi-square distribution, 255
defined, 117
F random variable, 236–237
formula, 117–118, 364
gamma distribution, 133
histogram, 119
Poisson distribution, 136
probability distribution, 117–119, 128
t-distribution, 189–190
uniform distribution, 145–146
expected value of X (\(E(X)\)), 118, 145, 237
explained sum of squares (ESS), 298–299
exponential distribution, 136
exponential moving averages, forecasting, 22, 371
exponential smoothing, time series, 345–347, 371
exponents, 47
false negative (Type II) error
F-test, 317
overview, 205–207, 235
t-test, 301–302
false positive (Type I) error
F-test, 317
overview, 205–207, 235
t-test, 301–302
finite outcomes, 141
finite population correction factor, 178
first moment, probability distribution, 127
first quartile (\(Q_1\)), 66, 362
Fisher, Sir Ronald, 234
forecasting. See also trends, forecasting
models, 327
overconfidence in, 359–360
techniques, 21–22, 371
formulas, statistical
addition rule, 106–108, 363
alternative hypothesis, 202–205, 367
binomial distribution, 123, 125–126, 364
complement rule, 108–109, 363
certainty interval for population mean, 366
critical values, population variances, 369–370
expected value, 117–118, 364
geometric distribution, 131–132, 364
left-tailed test, 204, 367
multiplication rule, 109–110, 363
normal distribution, 365
null hypothesis, 202, 367
Poisson distribution, 135, 364
right-tailed test, 204, 367
regression equation, 358, 371
standard deviation, 364

\(F\)

F random variable, 236
factorial operator (!), 123–124, 268–269
F-statistic
F-test, 317
overview, 205–207, 235
t-test, 301–302
false negative (Type II) error
F-test, 317
overview, 205–207, 235
t-test, 301–302
finite outcomes, 141
finite population correction factor, 178
first moment, probability distribution, 127
first quartile (\(Q_1\)), 66, 362
Fisher, Sir Ronald, 234
forecasting. See also trends, forecasting
models, 327
overconfidence in, 359–360
techniques, 21–22, 371
formulas, statistical
addition rule, 106–108, 363
alternative hypothesis, 202–205, 367
binomial distribution, 123, 125–126, 364
complement rule, 108–109, 363
certainty interval for population mean, 366
critical values, population variances, 369–370
expected value, 117–118, 364
geometric distribution, 131–132, 364
left-tailed test, 204, 367
multiplication rule, 109–110, 363
normal distribution, 365
null hypothesis, 202, 367
Poisson distribution, 135, 364
right-tailed test, 204, 367
regression equation, 358, 371
standard deviation, 364
Index

statistical analysis, 153
symmetry, 150
values, 153
generalized least squares (GLS) estimators, 294
goodness of fit test
comparing population to normal distribution, 271–275
comparing population to Poisson distribution, 265–270
overview, 251, 264
as right-tailed test, 267
GPAs (grade point averages), 17
graphing
histograms, 8–9, 24, 31–34
lines, 8–10, 24, 34–35
misleading, 353–355
pie charts, 8, 10, 24, 35–36
rectangle graph, 143–144, 146, 150
scatter plots, 8, 10–11, 24, 36–38
t-distribution, 190–192
types, 8, 38
uniform probabilities, 149–150
uses, 23
greater than or equal to (≥), 147
greater than (>) symbol, 141
gross return, 43

H

H₀ (null hypothesis)
ÂNOVA, 240
dependent samples, 230
equal variances, 276
errors in interpreting, 356
F-distribution, 234–235
formula, 367

G

Gauss, Johann Carl Friedrich, 150
Gaussian distribution. See also standard normal distribution
formula, 365
goodness of fit test, 271–275
graphing on bell-shaped curve, 151–153
overview, 16–17, 140, 150
properties, 150–151
H_0 (null hypothesis) (continued)
- F-test, 316
- population variance, 256–257
- single population mean, 202, 221, 235, 257
- t-test, 301, 321
- two population means, 221

H_1 (alternative hypothesis)
- formula, 367
- F-test, 316
- hypothesis testing, population variance, 257–259
- left-tailed test, 204
- overview, 235
- right-tailed test, 203–204
- t-test, 301, 321
- two-tailed test, 205
- height, rectangle, 144
- heteroscedasticity, 308, 358, 370
- histograms
 - benefits, 175
 - binomial distribution, graphing, 129–131
 - defined, 8, 116
 - discrete distributions, 143
 - examples, 31–34
 - geometric distribution, 134
 - overview, 8–9, 24
 - Poisson distribution, 137–138
 - probability distribution, 116
 - sampling distribution, 176–177
- horizontal axis (x), 57, 86
- hypothesis testing, equality of two population variances
 - alternative hypothesis, 276–277
 - critical values, 277–279
 - decision, 279–280
 - F-distribution, 275–276
 - level of significance, 277
 - null hypothesis, 276, 368
 - overview, 275–276, 367
- test statistic, 277, 370

hypothesis testing, population mean. See also ANOVA
- alternative hypothesis, 367
- degrees of freedom, 210
- hypothesized value of population, 202, 367
- left-tailed test, 204, 367
- level of significance, 367
- null hypothesis, 367
- right-tailed test, 203–204, 367
- Student t-distribution, 210
 - two-tailed test, 205, 367
- Type I error, 206–207
- Type II error, 206–207

hypothesis testing, population variance
- alternative hypothesis, 257–259
- chi-square table, 261, 264
- critical value, 260–264
- formula, weighted average, 267
- hypothesized value, 256–257
- left-tailed test, 262
- level of significance, 259
- making decision, 263–264
- null hypothesis, 256–257
- right-tailed test, 260–262
- test statistic, 259–260
- test statistic formula, 266, 369
- two-tailed test, 262–263

hypothesis testing, steps
- alternative hypothesis, 202–205, 235, 367
- critical value, comparing, 208–216
- decision rule, 216–220
- level of significance, 205–207, 235, 367
- null hypothesis, 202, 235, 367
- overview, 19, 201
- test statistic, 207–208
- hypothesized value (σ_i^2), 256–257
- hypothesized value of population (μ_0), 202, 367

i (index)
- expected value, 118
- population covariance, 78
- population regression equation, 290
- sample arithmetic mean, 40
- sample covariance, 73
- sample variance, 56
- In (natural logarithm), 287
- independent events, 100, 102–103, 105
- independent variables (Xs), 20, 283, 370
- independent variables in regression equation (k), 323
- infinite outcomes, 141
- infinity (∞), 157
- integers, 65
- intercept (b), 20, 38, 285, 286
- intercept coefficient (β_0) of regression line, 289
- interquartile range (IQR)
 - defined, 13, 64, 67
 - as measures of dispersion, 362
 - outliers, 68
- intersections (\cap), mathematical operation, 96–97, 109–110
- interval estimates, 194–195
- intervals, 24
IQR (interquartile range)
defined, 13, 64, 67
as measures of dispersion, 362
outliers, 68
irregular effects, time series forecasting, 328

• J •
Jarque-Bera test, 357
Jevons, William Stanley, 357–358
joint probabilities, 102, 103–104
judgment samples, nonprobability sampling, 173

• K •
k (independent variables in regression equation), 323

• L •
Latin letters, 42, 174
left-tailed test
as alternative hypothesis, 203
critical value, 209
F-distribution, 279
formula, 367
interpreting, 203
with large sample, 213
population variance, 258, 262
purpose, 204
with small sample, 211–212
t-test, 323
two population means, 221
less than (<), 141
less than or equal to (≤), 141
level of significance (α)
confidence intervals, 195
equality of two population variances, 277
F-distribution, 234–235
F-test, 317
hypothesis testing, population variance, 259
t-test, 301–302, 321
line graphs
defined, 8
examples, 34–35
overview, 9–10, 24
linear relationships
multiple regression analysis, 310–311
overview, 284–286
scatter plots, 286–289
linear trend, time series, 330–331, 371
linearly related variables, 72

• M •
MA (moving averages), forecasting, 22, 341–344, 371
MAD (mean absolute deviation), 348–349
margin of error, 18–19, 187, 194–195
marginal probabilities, 102–103
mathematical operations, for sets
complements, 97–98
intersections, 96–97
membership, 94
overview, 93
subsets, 94–95
unions, 95–96
mean (average)
arithmetic, 40–42
defined, 11, 39
geometric, 42–44
as measure of central tendency, 361
relationship with median, 49–53
weighted arithmetic, 44–46
weighted geometric, 46–48
mean, population (μ)
arithmetic mean, 42
normal distribution, 153
as parameter, 174
population variance, 61
mean, sample (X)
arithmetic mean, 40–41
overview, 174
sample correlation, 73
sample covariance, 73
sample variance, 56
sampling distributions, 365–366
mean absolute deviation (MAD), 348–349
mean square error (MSE), 245–246, 348–349
measures of association. See also correlation coefficient; covariance
defined, 71
overview, 362
measures of central tendency. See mean (average); median; mode
measures of dispersion, 362. See also
interquartile range; percentiles; quartiles; standard deviation; variance
measures of risk. See standard deviation; variance
measures of uncertainty. See standard deviation; variance
median
 defined, 11–12, 40, 48
 as measure of central tendency, 361
population, calculating for, 48–49
relationship with mean, 49–53
sample, calculating for, 48–49
members not in set (∉), symbol, 94
membership, mathematical operation, 94
membership in set (∈), symbol, 94
Microsoft Excel functions
 BINOMDIST, 127
 BINOM.IDIST, 127
 COMBIN, 125
 EXP, 135
 PERCENTILE, 66
 POISSON, 136
 POISSON.DIST, 136
 QUARTILE, 67
 RANDBETWEEN, 168, 169
Microsoft website, 127
midpoint, interval, 145
mirror images, 152
mode
 defined, 11–12, 40
determining, 53–54
features, 53
 as measure of central tendency, 361
uses, 54
moments
 binomial distribution, 127–128
 chi-square distribution, 255–256
 defined, 117, 127, 144, 251
discrete distribution, 363–364
expected value, 117–119
geometric distribution, 132–134
overview, 111, 121
probability distributions, 117–120
sampling distribution, 178
t-distribution, 189–190
uniform distribution, 144–147
variance, 119–120
moving averages (MA), forecasting, 22,
 341–344, 371
MSE (mean square error), 245–246, 348–349
MSTSR (treatment mean square), 246
multicollinearity, 325, 338, 359, 370
overview, 21, 309
population regression equation, 21, 311–315
predicting value of Y, 313
sample regression equation, 21
t-test, 320–325
variance inflation factor, 325
variation, 314
multiplication rule, probability theory
 formulas, 109–110, 363
 purpose, 14
mutually exclusive events, 100, 108
mutually exclusive sets, 97

\(\mathbb{N} \)

n
 binomial probabilities, 123
 expected value, 118
 population covariance, 78
 sample arithmetic mean, 40
 sample covariance, 73
 sample variance, 56
 in sampling distribution, 178
N, in sampling distribution, 178
natural logarithm (\(\ln \)), 287, 310
nCr function, combinations, 125
negative correlation, 72
negative covariance, 72
negatively related variables, 36
negatively skewed data set, 49, 51
no trend, time series regression, 329–330, 371
nonlinear least squares, 287
nonprobability sampling
 convenience samples, 172
 judgment samples, 173
 overview, 172
 purposive samples, 173
 quota samples, 172–173
normal distribution. See also standard
 normal distribution
formula, 365
goodness of fit test, 271–275
graphing on bell-shaped curve, 151–153
overview, 16–17, 140, 150
properties, 150–151
statistical analysis, 153
symmetry, 150
values, 153
normality errors, statistical analysis, 357
not a subset (⊆), symbol, 94
not in set (∉), symbol, 94
n-period moving averages, time series, 341–342
null hypothesis (H_0)
 ANOVA, 240
 dependent samples, 230
equal variances, 276
errors in interpreting, 356
F-distribution, 234–235
formula, 367
F-test, 316
population variance, 256–257
single population mean, 202, 221, 235, 257
t-test, 301, 321
two population means, 221
numerator degrees of freedom, 234, 236, 237, 370
numerators, 45
numerical (quantitative) data
class width, 26–27
classes, 24
frequency distribution, 25–26
overview, 24
numerical measure, 11

• O •
observed frequency (O), 266
one-way ANOVA hypothesis test, 239, 247, 248
operations, mathematical. See mathematical operations, for sets
ordinary least squares (OLS) estimators, 294
outliers
defined, 12, 39
interquartile range, 68

• P •
p (probability of success), 123, 132
paired samples, 369
parameters. See also population mean;
population variance
defined, 174
Greek letters for, 174
population standard deviation, 61–64
pdf (probability density function), 365
PERCENTILE function, Microsoft Excel, 66
percentiles
computing, 65–66
defined, 12, 64
formula, 65
as measures of dispersion, 362
overview, 64–65
permutations, 125
pie charts
defined, 8
overview, 10, 24, 35–36
point estimates, 194–195
point estimators, 194
Poisson, Siméon Denis, 135
Poisson distribution
 expected value, 136
 formula, 364
 goodness of fit test, 265–270
 histogram, graphing, 137–138
 overview, 16, 134
 probabilities formula, 135
 standard deviation, 137
table, 135–136
variance, 137
POISSON function, Microsoft Excel 2007, 136
POISSON.DIST function, Microsoft Excel 2010, 136
population
 arithmetic mean, calculating, 42
 defined, 40, 165
 geometric mean, calculating, 42–44
 parameters, 174
 standard deviation, 64
 variance, determining, 61–64
 weighted arithmetic mean, calculating, 44–46
 weighted geometric mean, calculating, 46–48
population correlation coefficient, 78, 80–82
population covariance
determining, 77–80
formula, 77
population mean (μ)
 arithmetic mean, 42
 normal distribution, 153
 as parameter, 174
 population variance, 61
population regression equation
 multiple regression analysis, 311–315
 overview, 289–290
 testing, overview, 297–298
 testing, using coefficient of determination, 298–299
population standard deviation (σ), 61–64
population variance (σ^2), 61, 120
positive correlation, 72
positive covariance, 72
positive skewing
 chi-square distribution, 252–253
data set, 49, 52
distribution, 234
F-distribution, 234
positively related variables, 36
probabilities
addition rule, 106–108
basis, 98
complement rule, 108–109
distributions, 15–17
events, computing, 101
multiplication rule, 109–110
overview, 13–14
t-distribution, 193–194
theory, 93
types, 102–105
of union of two events, 106–108
probability distribution function (pdf), 365
probability distributions. See also
F-distribution; normal distribution;
t-distribution
binomial, 16, 122–126, 128–131
chi-square, 236, 252–256, 261, 264
continuous, 141
defined, 115, 121
discrete, 141
expected value, calculating, 128
expected value moment, 117–119
first moment, 127
gemetric, 16, 131–134, 365
histogram view, 116
moments, 117–120
Poisson, 16, 134–138, 265–270, 364
properties, 114
random variables, 114–116
sampling, 18, 166, 179–184, 365–366
second central moment, 128
standard deviation, 128
uniform, 16, 139–147, 365
variance, 128
variance moment, 119–120
p (probability of success), 123, 132
probability sampling
cluster samples, 171–172
defined, 167
simple random samples, 167–168
stratified samples, 170–171
systematic samples, 168–169

probability theory
addition rule, 14, 363
basic rules of, 14, 363
complement rule, 14, 363
computing probabilities, 106–110
continuous probability distributions, 16–17
discrete probability distributions, 16
elements, 93
multiplication rule, 14, 363
overview, 13–14
probability distributions, 15–16
probability types, 102–105
random experiments, 98–101, 111
random variables, 14–15, 111–116
sets, 93–98
probability values (p-values), 306, 320
product being computed, 46
products, geometric means, 42
purposive samples, nonprobability
sampling, 173
p-values (probability values), 306, 320

• Q •

Q_1 (first quartile), 66
Q_2 (second quartile), 66
Q_3 (third quartile), 66, 362
Q_4 (fourth quartile), 66
Q-Q plots, 357
quadratic trend, time series, 331, 371
qualitative (non-numerical) data
class width, 26–27
classes, 24
frequency distribution, 25–26
overview, 24
variable in regression equation, 337
quantile, 196
quantitative (numerical) data
class width, 26–27
classes, 24
class width, 25–26
overview, 24
QUARTILE function, Microsoft Excel, 67
quartiles
computing, 66–67
defined, 12–13, 64, 66
as measure of dispersion, 362
overview, 66
quota samples, nonprobability sampling,
172–173

• R •

R^2 (coefficient of determination)
adjusted, 314–315
errors, 356
testing population regression equation,
298–299
RANDBETWEEN function, Microsoft Excel,
168, 169
random errors, 360
random experiments
 events, 99–100
 overview, 14, 111
 probabilities of events, 101
 sample space, 99
random number generator, 167–168
random variables (Xs)
 chi-square, 255
 defined, 111
 as function, 112
 independent, 20, 283, 370
 overview, 14–15
 probability distribution, assigning, 114–116
 role of, 111–114
range, measure of dispersion, 56
rectangle graph, 143–144, 146, 150
regression analysis. See also multiple regression analysis
 goodness of fit test as, 265, 267
 with large sample, 213–215
 one-way ANOVA hypothesis test as, 248
 population variance, 258, 260–262
 with small sample, 210–211
 t-test, 323
 two means, 221
 two population means, 221
 two population means with equal variances, 224
 unequal variances, 276
risk. See also standard deviation; variance
 reducing via diversification, 88–90
 relative, 69–70
 rounding down, 65
 rounding up, 65
RSS (residual sum of squares), 298–300

S
s (sample standard deviation), 57–60, 174, 365
s^2 (sample variance), 56–57, 174, 365
sample arithmetic mean, 40–41
sample correlation coefficient, 73–74, 75
sample covariance, 73–76
sample mean (\(\bar{X} \))
 arithmetic mean, 40–41
 overview, 174
sample correlation, 73
sample covariance, 73
sample variance, 56
sampling distributions, 365–366
sample mean for Y (\(\bar{Y} \)), 73
sample regression equation, 291
sample space (S)
 complement, 97–98
 defined, 97, 99, 112
 events, 99–100
sample standard deviation (s), 57–60, 174, 365
sample statistics. See also sample mean; sample standard deviation; sample variance
 defined, 166, 174, 365
 most important, 365
sample variance (s^2), 56–57, 174, 365
samples
 arithmetic mean for, calculating, 40–41
 defined, 17, 40, 165
 geometric mean for, calculating, 42–44
 overview, 165–166
 weighted arithmetic mean for, calculating, 44–46
 weighted geometric mean for, calculating, 46–48
sampling, nonprobability, 172–173
sampling, probability
 cluster samples, 171–172
 defined, 167
 simple random samples, 167–168
 stratified samples, 170–171
 systematic samples, 168–169
sampling distributions
 central limit theorem, 18, 179–184, 365–366
 computing moments, 180
 defined, 166, 365
 finding probability, 180–184
 graphic illustration, 175–177
 moments, 178
 parameters, 174
 standard error, 178, 180
 statistics, 174
sampling errors, 242–244
sampling techniques, 17–18
scatter plots
 defined, 8
 linear relationships, 286–289
 overview, 10–11, 24, 36–38, 86
 showing relationship between two variables, 71, 86
seasonal variation, time series forecasting
dummy variables, 337–338
example of, 337–341
multicollinearity, 338
overview, 337
second central moment, 128
second quartile (Q2), 66, 362
sets
 complement, 14, 97–98
 defined, 14, 93
 intersections, 14, 96–97
 members not in, 94
 membership in, 94
 subsets, 94–95
 unions, 95–96
simple moving averages, 371
simple random samples, probability
 sampling, 167–168
simple regression analysis. See also multiple regression analysis; regression analysis assumptions, 307–308, 370
autocorrelations, 308, 358, 370
Cochrane-Orcutt procedure, 308
coefficient of determination, 299–300
Durbin-Watson test, 308
errors in interpreting regression equation, 358
heteroscedasticity, 308, 358, 370
linear relationships, 284–286
population regression equation, estimating, 291–297
population regression equation, overview, 20, 289–290
regression equation formula, 293
regression equation slope formula, 294
sample regression equation, 20, 291
software for, 306–307
White test, 308
simulation studies, 143
skewness of data distribution
 negative, 49, 51
 positive, 49, 52
slope coefficient (β1) of regression line, 289
slope of line (m), 20, 38, 285, 286
smoothing constant, time series, 345
smoothing techniques, time series
centered moving average, 343–344
exponential smoothing, 345–347
moving averages, 341–343
overview, 341
Solve My Math website, 141
spreadsheets
 adjusted coefficient of determination, 315
 ANOVA hypothesis, 249–250
 population regression equation, 312
 for regression analysis, 306–307
SPSS software, IBM, 306–307
squared units, 120
SSE (error sum of squares)
 calculating, 242–244
 constructing test statistic, 242
SST (total sum of squares)
 calculating, 245
 constructing test statistic, 242
SSTR (treatment sum of squares)
 calculating, 244–245
 constructing test statistic, 242
overview, 244
standard deviation (σ)
 binomial distribution, 128
 chi-square distribution, 256
 defined, 12, 120
 formula, 364
 geometric distribution, 134
 as measures of dispersion, 362
 overview, 56
Poisson distribution, 137
population, finding, 62–64
population, formula, 64
probability distribution, 120, 128
sample, formula, 57–61
of sampling distribution, 178
standard error, 178
t-distribution, 190
uniform distribution, 146–147
versus variance, 61
standard error
 defined, 178, 366
 sampling distribution, 178
standard error of the estimate (SEE), 302
standard error of the regression (SER), 302–304
standard normal distribution. See also normal distribution
certainty property, 157
overview, 154
properties, 157–158
symmetry property, 157–158
versus t-distribution, 188–189
standard normal probabilities
 Central Limit Theorem tables, 179
 computing if Z is greater than or equal to specified value, 159
 computing if Z is less than or equal to specified value, 155–158
 computing in between, 160–161
 computing overview, 154
 properties, 157–158
standard normal random variable (Z), 154, 272–273
standard normal tables
 computing greater than or equal to standard normal probabilities, 159
 computing in between standard normal probabilities, 160
 computing less than or equal to standard normal probabilities, 155–158
 estimating confidence intervals, 196, 272, 273
 finding probabilities, 184
 negative Z values, 272–273
 overview, 154
 positive Z values, 273–274
standard uniform probability distribution
 defined, 143
 formula, 149–150
 uses, 143
statistical analysis, 153
statistical formulas
 addition rule, 106–108, 363
 alternative hypothesis, 202–205, 367
 binomial distribution, 123, 125–126, 364
 complement rule, 108–109, 363
 confidence interval for population mean, 366
 critical values, population variances, 369–370
 expected value, 117–118, 364
 geometric distribution, 131–132, 364
 left-tailed test, 204, 367
 multiplication rule, 109–110, 363
 normal distribution, 365
 null hypothesis, 202, 367
 Poisson distribution, 135, 364
 probability for standard mean, 365–366
 regression equation, 358, 371
 right-tailed test, 204, 367
 standard deviation, 364
 test statistic, equality of two population means, 277, 368–369
 test statistic, population mean, 207–208, 367–368
 test statistic, population variances, 266, 369–370
 two-tailed test, 205, 367
 uniform distribution, 147–150, 365
 variance, 119–120, 364
statistical inference
 confidence intervals, 18–19
defined, 18, 166
 hypothesis testing, 19
 statistics, 18, 174
 Statistics How To website, 127
 strata, 170
 stratified samples, probability sampling, 170–171
Student’s t-distribution
 confidence interval for population mean, 195
degrees of freedom, 189
 versus F-distribution, 234
 graphing, 190–192
 hypothesis testing, 210
 interval estimates for known population standard deviation, 195–199
 interval estimates for unknown population standard deviation, 199–200
 median, 189
 moments, 189–190
 point estimates, 194–195
 point estimators, 194
 probabilities, 193–194
 properties, 188
 purpose, 188
 standard deviation, 190
 versus standard normal distribution, 188–189
t-table, 193–194
 variance, 189–190
 Student’s t-table, 193–194, 211, 323
 subsets (⊂), 94
summary measures. See also moments
 measures of association, 362
 measures of central tendency, 361
 measures of dispersion, 362
 overview, 361
 summation operator (Σ), 40–42, 73, 117, 118
sums, arithmetic means, 42
symmetrical data set, 49, 50–51, 150
systematic samples, probability sampling,
168–169

• T •
tables. See also standard normal tables
ANOVA, 318
central limit theorem, 179
chi-square, 261, 264
coefficient of determination, 300
critical values, standard normal
distribution, 213
F-table, 247–248, 278, 280, 319
Poisson, 135–136
standard error of \(\beta_1 \), 303
Student’s t-distribution, 211, 305
table, 193–194
tails (distribution), 51, 152
t-distribution
certainty interval for population mean, 195
degrees of freedom, 189
versus F-distribution, 234
graphing, 190–192
hypothesis testing, 210
interval estimates for known population
standard deviation, 195–199
interval estimates for unknown population
standard deviation, 199–200
median, 189
moments, 189–190
point estimates, 194–195
point estimators, 194
probabilities, 193–194
properties, 188
purpose, 188
standard deviation, 190
versus standard normal distribution,
188–189
t-table, 193–194, 211, 323
variance, 189–190
test statistic
defined, 302
formula, 207–208
F-test, 317–318
t-test, 302–304, 321
t-tests. See also goodness of fit test; left-tailed
test; right-tailed test; t-test; two-tailed
test
Durbin-Watson, 308
F-test, 316–320
Jarque-Bera, 357
one-way ANOVA, 239, 247, 248
White, 308
Texas Instruments calculators, 127
third quartile (Q3), 66, 362
TI-83 calculator, Texas Instruments, 127
TI-84 calculator, Texas Instruments, 127
time series regression analysis
defined, 328
exponential smoothing, 345–347
forecasting, 21–22, 336–337
forecasts, comparing, 348–349
possible effects, 328
regression model, 328–329
seasonal variation, 337–341
smoothing techniques, 341–344
trends, classifying, 329–332, 371
trends, estimating, 332–336
total sum of squares (TSS)
calculating, 245
computing, 299–300
constructing test statistic, 242
treatment mean square (MSTSR), 246
treatment sum of squares (SSTR)
calculating, 244–245
constructing test statistic, 242
overview, 244
trend effects, time series forecasting, 328
trend lines, 37, 86, 287–288
trend models forecasting, 22
trends, forecasting
estimating, 332–336
higher-order, 371
linear, 330–331, 335, 371
no trend, 329–330, 371
other possibilities, 332
quadratic, 331, 336, 371
TSS (total sum of squares)
calculating, 245
computing, 299–300
constructing test statistic, 242
t-statistic, 302, 307
table, 193–194
t-test
comparing p-value with level of significance,
324–325
critical values, 304–305, 322–324
decision, 324
decision rule, 305–306
level of significance, 301–302, 321
null hypothesis, 301, 321
overview, 301
Student’s t-distribution table, 305
test statistic, 302–304, 321
two values (±), 194
two-tailed test
as alternative hypothesis, 203, 277
dependent samples, 230
F-distribution, 279
formula, 367
with large sample, 215–216
overview, 203
population variance, 257, 258, 259, 262–263
with small sample, 212–213
t-test, 301, 323
two critical values, 209
two means, 221
two population means, 221
two population means with equal
variance, 224
unequal variances, 276–277
two-way ANOVA, 239
Type I (false positive) error
F-test, 317
overview, 205–207, 235
t-test, 301–302
Type II (false negative error)
F-test, 317
overview, 205–207, 235
t-test, 301–302

• U •

unconditional (marginal) probabilities, 102–103
unexplained variation (RSS), 298–299
uniform distribution
defined, 142
expected value, 145–146
formula, 365
moments, 143–144
overview, 16, 139–140, 142–143
probability density function, 365
rectangle illustration, 143–144
standard deviation, 146–147
standard uniform distribution, 143
variance, 146
uniform probabilities
computing probability that \(X\) is between
two constants, 148
computing probability that \(X\) is greater than
or equal to \(x\), 147
computing probability that \(X\) is less than or
equal to \(x\), 147
computing with formulas, 147–149
computing with graphs, 149–150
union (\(\cup\)), mathematical operation, 95–96
union of two events, probability of, 106–108
unique values, 95
universal set (\(S\))
complement, 97–98
defined, 97, 99, 112
events, 99–100
unrelated variables, 36

• V •

variables. See specific variables by name or
type
variance
binomial distribution, 128
chi-square distribution, 255
defined, 12, 120
formula, 119–120, 364
geometric distribution, 133–134
as measures of dispersion, 362
overview, 55–56
Poisson distribution, 137
population, determining for, 62–64
population, formula, 61–62
probability distribution, 119–120, 128
sample, formula, 56–57
sampling distribution, 178
versus standard deviation, 61
t-distribution, 189–190
uniform distribution, 146
variance analysis (ANOVA). See also
F-distribution
alternative hypothesis, 240
critical value, finding, 247–248
degrees of freedom, 247–248
F-statistic, 246
F-table, 247–248
level of significance, 240–241
null hypothesis, 240
one-way, 239, 247, 248
overview, 233, 239
table, 318
test statistic, computing, 241–246
two-way, 239
uses, 239
variance inflation factor (VIF), 325, 359
variation, 298–299
Venn diagram, 94–95, 96, 97, 98
vertical axis (\(y\)), 57, 86

• W •

weighted arithmetic mean, 44–46, 268–269
weighted geometric mean, 46–48
weighted least squares (WLS) estimators, 294
White test, 308
width, interval, 144
Wikipedia website, 143

• X •

\(\bar{X} \) (sample mean)
 arithmetic mean, 40–41
 overview, 174
 sample correlation, 73
 sample covariance, 73
 sample variance, 56
 sampling distributions, 365–366
 \(\chi^2 \) (chi-square distribution). See also
 goodness of fit test; hypothesis testing,
 population variance
 applications, 252
 chi-square table, 261, 264
 features, 252–253
 graphic illustration, 253–254
 moments, 255–256
 overview, 236, 252
 for positive values, 252–253
 positively skewed, 252–253
 random variable, 255
 x-axis, 57, 86
 Xs (random variables)
 chi-square, 255
 defined, 111
 as function, 112
 independent, 20, 283, 370
 overview, 14–15
 probability distribution. assigning, 114–116
 role of, 111–114

• Y •

y-axis, 57, 86

• Z •

Z (standard normal random variable), 154
 zero correlation, 72
 zero covariance, 72