Contents

1 Introduction ... 1
 1.1 Problem Definition and Objectives of This Work 1
 1.2 Course of Investigation ... 2

2 Credit Risk Measurement in the Context of Basel II 5
 2.1 Banking Supervision and Basel II 5
 2.2 Measures of Risk in Credit Portfolios 8
 2.2.1 Risk Parameters and Expected Loss 8
 2.2.2 Value at Risk, Tail Conditional Expectation,
 and Expected Shortfall 11
 2.2.3 Coherency of Risk Measures 16
 2.2.4 Estimation and Statistical Errors of VaR and ES 22
 2.3 The Unconditional Probability of Default Within the Asset
 Value Model of Merton ... 25
 2.4 The Conditional Probability of Default Within the One-Factor
 Model of Vasicek ... 28
 2.5 Measuring Credit Risk in Homogeneous Portfolios
 with the Vasicek Model ... 31
 2.6 Measuring Credit Risk in Heterogeneous Portfolios
 with the ASRF Model of Gordy 35
 2.7 Measuring Credit Risk Within the IRB Approach
 of Basel II .. 39
 2.8 Appendix .. 43

3 Concentration Risk in Credit Portfolios and Its Treatment
 Under Basel II ... 57
 3.1 Types of Concentration Risk 57
 3.2 Incurrence and Relevance of Concentration Risk 59
 3.3 Measurement and Management of Concentration Risk 62
3.4 Heuristic Approaches for the Measurement of Concentration Risk .. 67

3.5 Review of the Literature on Model-Based Approaches of Concentration Risk Measurement 70

4 Model-Based Measurement of Name Concentration Risk in Credit Portfolios .. 73

4.1 Fundamentals and Research Questions on Name Concentration Risk .. 73

4.2 Measurement of Name Concentration Using the Risk Measure Value at Risk .. 75

4.2.1 Considering Name Concentration with the Granularity Adjustment .. 75

4.2.2 Numerical Analysis of the VaR-Based Granularity Adjustment .. 87

4.3 Measurement of Name Concentration Using the Risk Measure Expected Shortfall ... 103

4.3.1 Adjusting for Coherency by Parameterization of the Confidence Level .. 103

4.3.2 Considering Name Concentration with the Granularity Adjustment .. 108

4.3.3 Moment Matching Procedure for Stochastic LGDs .. 114

4.3.4 Numerical Analysis of the ES-Based Granularity Adjustment .. 121

4.4 Interim Result .. 134

4.5 Appendix .. 136

5 Model-Based Measurement of Sector Concentration Risk in Credit Portfolios .. 183

5.1 Fundamentals and Research Questions on Sector Concentration Risk .. 183

5.2 Incorporation of Sector Concentrations Using Multi-Factor Models ... 185

5.2.1 Structure of Multi-Factor Models and Basel II-Consistent Parameterization Through a Correlation Matching Procedure .. 185

5.2.2 Accounting for Sector Concentrations with the Model of Pykhtin .. 190

5.2.3 Accounting for Sector Concentrations with the Model of Cespedes, Herrero, Kreinin and Rosen .. 197

5.2.4 Accounting for Sector Concentrations with the Model of Düllmann .. 202
Contents

5.3 Performance of Multi-Factor Models .. 212
 5.3.1 Analysis for Deterministic Portfolios 212
 5.3.2 Simulation Study for Homogeneous and Heterogeneous
 Portfolios .. 215
5.4 Interim Result ... 219
5.5 Appendix ... 220

6 Conclusion .. 237

References .. 241
List of Figures

Fig. 2.1 Probability mass function of portfolio losses for an exemplary portfolio ... 15
Fig. 2.2 Limiting loss distribution of Vasicek (1991) 34
Fig. 3.1 Types of concentration risk ... 58
Fig. 3.2 Accuracy of the Pillar 1 capital requirements considering risk concentrations ... 66
Fig. 3.3 Lorenz curve for credit exposures 68
Fig. 4.1 Value at risk for a wide range of probabilities 88
Fig. 4.2 Value at risk for high confidence levels 89
Fig. 4.3 Granularity add-on for heterogeneous portfolios calculated analytically with first-order (solid lines) and second-order (dotted lines) adjustments as well as with Monte Carlo simulations (+ and o) using three million trials 102
Fig. 4.4 Value at risk in the ASRF and the Vasicek model 104
Fig. 4.5 Different value at risk measures in the Vasicek model 106
Fig. 4.6 Expected shortfall in the ASRF and the Vasicek model 107
Fig. 4.7 Portfolio quality distributions ... 109
Fig. 4.8 Probability distribution of recovery rates for corporate bonds and loans, 1970–2003 .. 115
Fig. 4.9 Expected shortfall for a wide range of probabilities 122
Fig. 4.10 Expected shortfall for high confidence levels 122
Fig. 4.11 ES-based granularity add-on for heterogeneous portfolios calculated analytically with first-order (solid lines) and second-order (dotted lines) adjustments as well as with Monte Carlo simulations (+ and o) using three million trials 133
Fig. 4.12 Relation between the shift of the probability and the loss quantile ... 143
Fig. 5.1 Diversification Factor realizations on the basis of 50,000 simulations 200
Fig. 5.2 Surface plot of the DF-function .. 201
Fig. 5.3 Deviations of VaR^Basel and VaR^mf from ES^mf 218
List of Tables

Table 2.1 Loss distribution for an exemplary portfolio 14
Table 3.1 Guidance for institutions and supervisors considering concentration risk .. 64
Table 4.1 Critical number of credits from that ASRF solution can be stated to be sufficient for measuring the true VaR (see (4.49)) 92
Table 4.2 Critical number of credits from that the exact solution at confidence level 0.995 exceeds the infinite fine granularity at confidence level 0.999 (see (4.50)) 93
Table 4.3 Critical number of credits from that the first order adjustment can be stated to be sufficient for measuring the true VaR (see (4.51)) .. 96
Table 4.4 Critical number of credits from that the first order adjustment at confidence level 0.995 exceeds the infinite fine granularity at confidence level 0.999 (see (4.52)) 97
Table 4.5 Critical number of credits from that the first plus second order adjustment can be stated to be sufficient for measuring the true VaR (see (4.53)) .. 99
Table 4.6 Critical number of credits from that the first plus second order adjustment at confidence level 0.995 exceeds the infinite fine granularity at confidence level 0.999 (see (4.54)) 101
Table 4.7 Confidence level for the ES so that the ES is matched with the VaR with confidence level 0.999 for portfolios of different quality .. 108
Table 4.8 Recovery rates by seniority, 1970–2003 119
Table 4.9 Results of the normal distribution 120
Table 4.10 Results of the lognormal distribution 120
Table 4.11 Results of the logit-normal distribution 120
Table 4.12 Results of the beta distribution 120
Table 4.13 Critical number of credits from that ASRF solution can be stated to be sufficient for measuring the true ES if LGDs are deterministic (see (4.98)) ... 125
Table 4.14 Critical number of credits from that ASRF solution can be stated to be sufficient for measuring the true ES if LGDs are stochastic (see (4.99)) ... 126
Table 4.15 Critical number of credits from that the first order adjustment can be stated to be sufficient for measuring the true ES if LGDs are deterministic (see (4.100)) 127
Table 4.16 Critical number of credits from that the first order adjustment can be stated to be sufficient for measuring the true ES if LGDs are stochastic (see (4.101)) 129
Table 4.17 Critical number of credits from that the first plus second order adjustment can be stated to be sufficient for measuring the true ES if LGDs are deterministic (see (4.102)) 131
Table 4.18 Critical number of credits from that the first plus second order adjustment can be stated to be sufficient for measuring the true ES if LGDs are stochastic (see (4.103)) 132
Table 5.1 Inter-sector correlation structure based on MSCI industry indices (in %) .. 188
Table 5.2 Overall sector composition of the German banking system 189
Table 5.3 Implicit intrasector correlations for different portfolio qualities .. 189
Table 5.4 Parameter combinations for the calibration of the model 210
Table 5.5 Comparison of the models for the five benchmark portfolios with absolute error in basis points (bp) and relative error in percent (%) ... 213
Table 5.6 Comparison of the models for five high concentrated portfolios with absolute error in basis points (bp) and relative error in percent (%) ... 214
Table 5.7 Comparison of the models for five low concentrated portfolios with absolute error in basis points (bp) and relative error in percent (%) ... 215
Table 5.8 Accuracy of different models in comparison with the “true” ES calculated with Monte Carlo simulations for the specified simulation studies ... 216
Table 5.9 Comparison of the runtime .. 218