Contents

List of figures xii
List of tables xiv
List of boxes xvi
List of screenshots xvii
Preface to the second edition xix
Acknowledgements xxiv

1 Introduction 1
1.1 What is econometrics? 1
1.2 Is financial econometrics different from ‘economic econometrics’? 2
1.3 Types of data 3
1.4 Returns in financial modelling 7
1.5 Steps involved in formulating an econometric model 9
1.6 Points to consider when reading articles in empirical finance 10
1.7 Econometric packages for modelling financial data 11
1.8 Outline of the remainder of this book 22
1.9 Further reading 25
 Appendix: Econometric software package suppliers 26

2 A brief overview of the classical linear regression model 27
2.1 What is a regression model? 27
2.2 Regression versus correlation 28
2.3 Simple regression 28
2.4 Some further terminology 37
2.5 Simple linear regression in EViews – estimation of an optimal hedge ratio 40
2.6 The assumptions underlying the classical linear regression model 43
2.7 Properties of the OLS estimator 44
2.8 Precision and standard errors 46
2.9 An introduction to statistical inference 51
2.10 A special type of hypothesis test: the t-ratio 65
2.11 An example of the use of a simple t-test to test a theory in finance: can US mutual funds beat the market? 67
2.12 Can UK unit trust managers beat the market? 69
2.13 The overreaction hypothesis and the UK stock market 71
2.14 The exact significance level 74
2.15 Hypothesis testing in EViews – example 1: hedging revisited 75
2.16 Estimation and hypothesis testing in EViews – example 2: the CAPM 77

Appendix: Mathematical derivations of CLRM results 81

3 Further development and analysis of the classical linear regression model 88
3.1 Generalising the simple model to multiple linear regression 88
3.2 The constant term 89
3.3 How are the parameters (the elements of the β vector) calculated in the generalised case? 91
3.4 Testing multiple hypotheses: the F-test 93
3.5 Sample EViews output for multiple hypothesis tests 99
3.6 Multiple regression in EViews using an APT-style model 99
3.7 Data mining and the true size of the test 105
3.8 Goodness of fit statistics 106
3.9 Hedonic pricing models 112
3.10 Tests of non-nested hypotheses 115

Appendix 3.1: Mathematical derivations of CLRM results 117
Appendix 3.2: A brief introduction to factor models and principal components analysis 120

4 Classical linear regression model assumptions and diagnostic tests 129
4.1 Introduction 129
4.2 Statistical distributions for diagnostic tests 130
4.3 Assumption 1: $E(u_i) = 0$ 131
4.4 Assumption 2: $\text{var}(u_i) = \sigma^2 < \infty$ 132
4.5 Assumption 3: $\text{cov}(u_i, u_j) = 0$ for $i \neq j$ 139
4.6 Assumption 4: the x_i are non-stochastic 160
4.7 Assumption 5: the disturbances are normally distributed 161
4.8 Multicollinearity 170
4.9 Adopting the wrong functional form 174
4.10 Omission of an important variable 178
4.11 Inclusion of an irrelevant variable 179
4.12 Parameter stability tests 180
4.13 A strategy for constructing econometric models and a discussion of model-building philosophies 191
4.14 Determinants of sovereign credit ratings 194

5 Univariate time series modelling and forecasting 206
5.1 Introduction 206
5.2 Some notation and concepts 207
5.3 Moving average processes 211
5.4 Autoregressive processes 215
5.5 The partial autocorrelation function 222
5.6 ARMA processes 223
5.7 Building ARMA models: the Box–Jenkins approach 230
5.8 Constructing ARMA models in EViews 234
5.9 Examples of time series modelling in finance 239
5.10 Exponential smoothing 241
5.11 Forecasting in econometrics 243
5.12 Forecasting using ARMA models in EViews 256
5.13 Estimating exponential smoothing models using EViews 258

6 Multivariate models 265
6.1 Motivations 265
6.2 Simultaneous equations bias 268
6.3 So how can simultaneous equations models be validly estimated? 269
6.4 Can the original coefficients be retrieved from the πs? 269
6.5 Simultaneous equations in finance 272
6.6 A definition of exogeneity 273
6.7 Triangular systems 275
6.8 Estimation procedures for simultaneous equations systems 276
6.9 An application of a simultaneous equations approach to modelling bid–ask spreads and trading activity 279
6.10 Simultaneous equations modelling using EViews 285
6.11 Vector autoregressive models 290
6.12 Does the VAR include contemporaneous terms? 295
6.13 Block significance and causality tests 297
6.14 VARs with exogenous variables 298
6.15 Impulse responses and variance decompositions 298
6.16 VAR model example: the interaction between property returns and the macroeconomy 302
6.17 VAR estimation in EViews 308
7 Modelling long-run relationships in finance

7.1 Stationarity and unit root testing
7.2 Testing for unit roots in EViews
7.3 Cointegration
7.4 Equilibrium correction or error correction models
7.5 Testing for cointegration in regression: a residuals-based approach
7.6 Methods of parameter estimation in cointegrated systems
7.7 Lead--lag and long-term relationships between spot and futures markets
7.8 Testing for and estimating cointegrating systems using the Johansen technique based on VARs
7.9 Purchasing power parity
7.10 Cointegration between international bond markets
7.11 Testing the expectations hypothesis of the term structure of interest rates
7.12 Testing for cointegration and modelling cointegrated systems using EViews

8 Modelling volatility and correlation

8.1 Motivations: an excursion into non-linearity land
8.2 Models for volatility
8.3 Historical volatility
8.4 Implied volatility models
8.5 Exponentially weighted moving average models
8.6 Autoregressive volatility models
8.7 Autoregressive conditionally heteroscedastic (ARCH) models
8.8 Generalised ARCH (GARCH) models
8.9 Estimation of ARCH/GARCH models
8.10 Extensions to the basic GARCH model
8.11 Asymmetric GARCH models
8.12 The GJR model
8.13 The EGARCH model
8.14 GJR and EGARCH in EViews
8.15 Tests for asymmetries in volatility
8.16 GARCH-in-mean
8.17 Uses of GARCH-type models including volatility forecasting
8.18 Testing non-linear restrictions or testing hypotheses about non-linear models
8.19 Volatility forecasting: some examples and results from the literature
8.20 Stochastic volatility models revisited
8.21 Forecasting covariances and correlations 428
8.22 Covariance modelling and forecasting in finance: some examples 429
8.23 Historical covariance and correlation 431
8.24 Implied covariance models 431
8.25 Exponentially weighted moving average model for covariances 432
8.26 Multivariate GARCH models 432
8.27 A multivariate GARCH model for the CAPM with time-varying covariances 436
8.28 Estimating a time-varying hedge ratio for FTSE stock index returns 437
8.29 Estimating multivariate GARCH models using EViews 441
Appendix: Parameter estimation using maximum likelihood 444

9 Switching models 451
9.1 Motivations 451
9.2 Seasonalities in financial markets: introduction and literature review 454
9.3 Modelling seasonality in financial data 455
9.4 Estimating simple piecewise linear functions 462
9.5 Markov switching models 464
9.6 A Markov switching model for the real exchange rate 466
9.7 A Markov switching model for the gilt–equity yield ratio 469
9.8 Threshold autoregressive models 473
9.9 Estimation of threshold autoregressive models 474
9.10 Specification tests in the context of Markov switching and threshold autoregressive models: a cautionary note 476
9.11 A SETAR model for the French franc–German mark exchange rate 477
9.12 Threshold models and the dynamics of the FTSE 100 index and index futures markets 480
9.13 A note on regime switching models and forecasting accuracy 484

10 Panel data 487
10.1 Introduction – what are panel techniques and why are they used? 487
10.2 What panel techniques are available? 489
10.3 The fixed effects model 490
10.4 Time-fixed effects models 493
10.5 Investigating banking competition using a fixed effects model 494
10.6 The random effects model 498
10.7 Panel data application to credit stability of banks in Central and Eastern Europe 499
10.8 Panel data with EViews 502
10.9 Further reading 509
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Limited dependent variable models</td>
<td>511</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction and motivation</td>
<td>511</td>
</tr>
<tr>
<td>11.2</td>
<td>The linear probability model</td>
<td>512</td>
</tr>
<tr>
<td>11.3</td>
<td>The logit model</td>
<td>514</td>
</tr>
<tr>
<td>11.4</td>
<td>Using a logit to test the pecking order hypothesis</td>
<td>515</td>
</tr>
<tr>
<td>11.5</td>
<td>The probit model</td>
<td>517</td>
</tr>
<tr>
<td>11.6</td>
<td>Choosing between the logit and probit models</td>
<td>518</td>
</tr>
<tr>
<td>11.7</td>
<td>Estimation of limited dependent variable models</td>
<td>518</td>
</tr>
<tr>
<td>11.8</td>
<td>Goodness of fit measures for linear dependent variable models</td>
<td>519</td>
</tr>
<tr>
<td>11.9</td>
<td>Multinomial linear dependent variables</td>
<td>521</td>
</tr>
<tr>
<td>11.10</td>
<td>The pecking order hypothesis revisited – the choice between financing methods</td>
<td>525</td>
</tr>
<tr>
<td>11.11</td>
<td>Ordered response linear dependent variables models</td>
<td>527</td>
</tr>
<tr>
<td>11.12</td>
<td>Are unsolicited credit ratings biased downwards? An ordered probit analysis</td>
<td>528</td>
</tr>
<tr>
<td>11.13</td>
<td>Censored and truncated dependent variables</td>
<td>533</td>
</tr>
<tr>
<td>11.14</td>
<td>Limited dependent variable models in EViews</td>
<td>537</td>
</tr>
<tr>
<td>Appendix</td>
<td>The maximum likelihood estimator for logit and probit models</td>
<td>544</td>
</tr>
<tr>
<td>12</td>
<td>Simulation methods</td>
<td>546</td>
</tr>
<tr>
<td>12.1</td>
<td>Motivations</td>
<td>546</td>
</tr>
<tr>
<td>12.2</td>
<td>Monte Carlo simulations</td>
<td>547</td>
</tr>
<tr>
<td>12.3</td>
<td>Variance reduction techniques</td>
<td>549</td>
</tr>
<tr>
<td>12.4</td>
<td>Bootstrapping</td>
<td>553</td>
</tr>
<tr>
<td>12.5</td>
<td>Random number generation</td>
<td>557</td>
</tr>
<tr>
<td>12.6</td>
<td>Disadvantages of the simulation approach to econometric or financial problem solving</td>
<td>558</td>
</tr>
<tr>
<td>12.7</td>
<td>An example of Monte Carlo simulation in econometrics: deriving a set of critical values for a Dickey–Fuller test</td>
<td>559</td>
</tr>
<tr>
<td>12.8</td>
<td>An example of how to simulate the price of a financial option</td>
<td>565</td>
</tr>
<tr>
<td>12.9</td>
<td>An example of bootstrapping to calculate capital risk requirements</td>
<td>571</td>
</tr>
<tr>
<td>13</td>
<td>Conducting empirical research or doing a project or dissertation in finance</td>
<td>585</td>
</tr>
<tr>
<td>13.1</td>
<td>What is an empirical research project and what is it for?</td>
<td>585</td>
</tr>
<tr>
<td>13.2</td>
<td>Selecting the topic</td>
<td>586</td>
</tr>
<tr>
<td>13.3</td>
<td>Sponsored or independent research?</td>
<td>590</td>
</tr>
<tr>
<td>13.4</td>
<td>The research proposal</td>
<td>590</td>
</tr>
<tr>
<td>13.5</td>
<td>Working papers and literature on the internet</td>
<td>591</td>
</tr>
<tr>
<td>13.6</td>
<td>Getting the data</td>
<td>591</td>
</tr>
</tbody>
</table>
13.7 Choice of computer software 593
13.8 How might the finished project look? 593
13.9 Presentational issues 597

14 Recent and future developments in the modelling of financial time series 598
14.1 Summary of the book 598
14.2 What was not covered in the book 598
14.3 Financial econometrics: the future? 602
14.4 The final word 606

Appendix 1 A review of some fundamental mathematical and statistical concepts 607
A1 Introduction 607
A2 Characteristics of probability distributions 607
A3 Properties of logarithms 608
A4 Differential calculus 609
A5 Matrices 611
A6 The eigenvalues of a matrix 614

Appendix 2 Tables of statistical distributions 616

Appendix 3 Sources of data used in this book 628

References 629
Index 641
Figures

1.1 Steps involved in forming an econometric model page 9
2.1 Scatter plot of two variables, y and x ... 29
2.2 Scatter plot of two variables with a line of best fit chosen by eye 31
2.3 Method of OLS fitting a line to the data by minimising the sum of squared residuals 32
2.4 Plot of a single observation, together with the line of best fit, the residual and the fitted value ... 32
2.5 Scatter plot of excess returns on fund XXX versus excess returns on the market portfolio 35
2.6 No observations close to the y-axis ... 36
2.7 Effect on the standard errors of the coefficient estimates when \((x_t - \bar{x})\) are narrowly dispersed ... 48
2.8 Effect on the standard errors of the coefficient estimates when \((x_t - \bar{x})\) are widely dispersed ... 49
2.9 Effect on the standard errors of \(x_t^2\) large ... 49
2.10 Effect on the standard errors of \(x_t^2\) small ... 50
2.11 The normal distribution ... 54
2.12 The t-distribution versus the normal ... 55
2.13 Rejection regions for a two-sided 5% hypothesis test 57
2.14 Rejection regions for a one-sided hypothesis test of the form \(H_0: \beta = \beta^*, H_1: \beta < \beta^*\) ... 57
2.15 Rejection regions for a one-sided hypothesis test of the form \(H_0: \beta = \beta^*, H_1: \beta > \beta^*\) ... 57
2.16 Critical values and rejection regions for a \(t_{20.5\%}\) 61
2.17 Frequency distribution of t-ratios of mutual fund alphas (gross of transactions costs) Source: Jensen (1968). Reprinted with the permission of Blackwell Publishers 68
2.18 Frequency distribution of t-ratios of mutual fund alphas (net of transactions costs) Source: Jensen (1968). Reprinted with the permission of Blackwell Publishers 68
2.19 Performance of UK unit trusts, 1979–2000 ... 70
3.1 \(R^2 = 0\) demonstrated by a flat estimated line, i.e. a zero slope coefficient ... 109
3.2 \(R^2 = 1\) when all data points lie exactly on the estimated line 109
4.1 Effect of no intercept on a regression line ... 131
4.2 Graphical illustration of heteroscedasticity ... 132
4.3 Plot of \(\hat{u}_t\) against \(\hat{u}_{t-1}\), showing positive autocorrelation 141
4.4 Plot of \(\hat{u}_t\) over time, showing positive autocorrelation 142
4.5 Plot of \(\hat{u}_t\) against \(\hat{u}_{t-1}\), showing negative autocorrelation 142
4.6 Plot of \(\hat{u}_t\) over time, showing negative autocorrelation 143
4.7 Plot of \(\hat{u}_t\) against \(\hat{u}_{t-1}\), showing no autocorrelation 143
4.8 Plot of \(\hat{u}_t\) over time, showing no autocorrelation 144
4.9 Rejection and non-rejection regions for DW test 147
List of figures

4.10 A normal versus a skewed distribution 162
4.11 A leptokurtic versus a normal distribution 162
4.12 Regression residuals from stock return data, showing large outlier for October 1987 165
4.13 Possible effect of an outlier on OLS estimation 166
4.14 Plot of a variable showing suggestion for break date 185
5.1 Autocorrelation function for sample MA(2) process 215
5.2 Sample autocorrelation and partial autocorrelation functions for an MA(1) model: $y_t = -0.5y_{t-1} + u_t$ 226
5.3 Sample autocorrelation and partial autocorrelation functions for an MA(2) model: $y_t = 0.5u_{t-1} - 0.25u_{t-2} + u_t$ 226
5.4 Sample autocorrelation and partial autocorrelation functions for a slowly decaying AR(1) model: $y_t = 0.9y_{t-1} + u_t$ 227
5.5 Sample autocorrelation and partial autocorrelation functions for a more rapidly decaying AR(1) model: $y_t = 0.5y_{t-1} + u_t$ 227
5.6 Sample autocorrelation and partial autocorrelation functions for a more rapidly decaying AR(1) model with negative coefficient: $y_t = -0.5y_{t-1} + u_t$ 228
5.7 Sample autocorrelation and partial autocorrelation functions for a non-stationary model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$ 228
5.8 Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model: $y_t = 0.5y_{t-1} + 0.5u_{t-1} + u_t$ 229
5.9 Use of an in-sample and an out-of-sample period for analysis 245
6.1 Impulse responses and standard error bands for innovations in unexpected inflation equation errors 307
6.2 Impulse responses and standard error bands for innovations in the dividend yields 307
7.1 Value of R^2 for 1,000 sets of regressions of a non-stationary variable on another independent non-stationary variable 319
7.2 Value of t-ratio of slope coefficient for 1,000 sets of regressions of a non-stationary variable on another independent non-stationary variable 320
7.3 Example of a white noise process 324
7.4 Time series plot of a random walk versus a random walk with drift 324
7.5 Time series plot of a deterministic trend process 325
7.6 Autoregressive processes with differing values of ϕ (0, 0.8, 1) 325
8.2 The problem of local optima in maximum likelihood estimation 397
8.3 News impact curves for S&P500 returns using coefficients implied from GARCH and GJR model estimates 410
8.4 Three approaches to hypothesis testing under maximum likelihood 418
8.5 Source: Brooks, Henry and Persand (2002). Time-varying hedge ratios derived from symmetric and asymmetric BEKK models for FTSE returns. 440
9.1 Sample time series plot illustrating a regime shift 452
9.2 Use of intercept dummy variables for quarterly data 456
9.3 Use of slope dummy variables 459
9.4 Piecewise linear model with threshold x^* 463
9.5 Source: Brooks and Persand (2001b). Unconditional distribution of US GEYR together with a normal distribution with the same mean and variance 470
9.6 Source: Brooks and Persand (2001b). Value of GEYR and probability that it is in the High GEYR regime for the UK 471
11.1 The fatal flaw of the linear probability model 513
11.2 The logit model 515
11.3 Modelling charitable donations as a function of income 534
11.4 Fitted values from the failure probit regression 542
Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Econometric software packages for modelling financial data</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Sample data on fund XXX to motivate OLS estimation</td>
<td>34</td>
</tr>
<tr>
<td>2.2</td>
<td>Critical values from the standard normal versus t-distribution</td>
<td>55</td>
</tr>
<tr>
<td>2.3</td>
<td>Classifying hypothesis testing errors and correct conclusions</td>
<td>64</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary statistics for the estimated regression results for (2.52)</td>
<td>67</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary statistics for unit trust returns, January 1979-May 2000</td>
<td>69</td>
</tr>
<tr>
<td>2.6</td>
<td>CAPM regression results for unit trust returns, January 1979-May 2000</td>
<td>70</td>
</tr>
<tr>
<td>2.7</td>
<td>Is there an overreaction effect in the UK stock market?</td>
<td>73</td>
</tr>
<tr>
<td>2.8</td>
<td>Part of the EViews regression output revisited</td>
<td>75</td>
</tr>
<tr>
<td>3.1</td>
<td>Hedonic model of rental values in Quebec City, 1990. Dependent variable: Canadian dollars per month</td>
<td>114</td>
</tr>
<tr>
<td>3A.1</td>
<td>Principal component ordered eigenvalues for Dutch interest rates, 1962-1970</td>
<td>123</td>
</tr>
<tr>
<td>3A.2</td>
<td>Factor loadings of the first and second principal components for Dutch interest rates, 1962-1970</td>
<td>123</td>
</tr>
<tr>
<td>4.1</td>
<td>Constructing a series of lagged values and first differences</td>
<td>140</td>
</tr>
<tr>
<td>4.2</td>
<td>Determinants and impacts of sovereign credit ratings</td>
<td>197</td>
</tr>
<tr>
<td>4.3</td>
<td>Do ratings add to public information?</td>
<td>199</td>
</tr>
<tr>
<td>4.4</td>
<td>What determines reactions to ratings announcements?</td>
<td>201</td>
</tr>
<tr>
<td>5.1</td>
<td>Uncovered interest parity test results</td>
<td>241</td>
</tr>
<tr>
<td>5.2</td>
<td>Forecast error aggregation</td>
<td>252</td>
</tr>
<tr>
<td>6.1</td>
<td>Call bid-ask spread and trading volume regression</td>
<td>283</td>
</tr>
<tr>
<td>6.2</td>
<td>Put bid-ask spread and trading volume regression</td>
<td>283</td>
</tr>
<tr>
<td>6.3</td>
<td>Granger causality tests and implied restrictions on VAR models</td>
<td>297</td>
</tr>
<tr>
<td>6.4</td>
<td>Marginal significance levels associated with joint F-tests</td>
<td>305</td>
</tr>
<tr>
<td>6.5</td>
<td>Variance decompositions for the property sector index residuals</td>
<td>306</td>
</tr>
<tr>
<td>7.1</td>
<td>Critical values for DF tests (Fuller, 1976, p. 373)</td>
<td>328</td>
</tr>
<tr>
<td>7.2</td>
<td>DF tests on log-prices and returns for high frequency FTSE data</td>
<td>344</td>
</tr>
<tr>
<td>7.3</td>
<td>Estimated potentially cointegrating equation and test for cointegration for high frequency FTSE data</td>
<td>345</td>
</tr>
<tr>
<td>7.4</td>
<td>Estimated error correction model for high frequency FTSE data</td>
<td>346</td>
</tr>
<tr>
<td>7.5</td>
<td>Comparison of out-of-sample forecasting accuracy</td>
<td>346</td>
</tr>
<tr>
<td>7.6</td>
<td>Trading profitability of the error correction model with cost of carry</td>
<td>348</td>
</tr>
<tr>
<td>7.7</td>
<td>Cointegration tests of PPP with European data</td>
<td>356</td>
</tr>
<tr>
<td>7.8</td>
<td>DF tests for international bond indices</td>
<td>357</td>
</tr>
<tr>
<td>7.9</td>
<td>Cointegration tests for pairs of international bond indices</td>
<td>358</td>
</tr>
<tr>
<td>7.10</td>
<td>Johansen tests for cointegration between international bond yields</td>
<td>359</td>
</tr>
<tr>
<td>7.11</td>
<td>Variance decompositions for VAR of international bond yields</td>
<td>360</td>
</tr>
</tbody>
</table>
List of tables

7.12 Impulse responses for VAR of international bond yields 361
7.13 Tests of the expectations hypothesis using the US zero coupon yield curve with monthly data 364
8.1 GARCH versus implied volatility 423
8.2 EGARCH versus implied volatility 423
8.3 Out-of-sample predictive power for weekly volatility forecasts 426
8.4 Comparisons of the relative information content of out-of-sample volatility forecasts 426
8.5 Hedging effectiveness: summary statistics for portfolio returns 439
9.1 Values and significances of days of the week coefficients 458
9.2 Day-of-the-week effects with the inclusion of interactive dummy variables with the risk proxy 461
9.3 Estimates of the Markov switching model for real exchange rates 468
9.4 Estimated parameters for the Markov switching models 470
9.5 SETAR model for FRF–DEM 478
9.6 FRF–DEM forecast accuracies 479
9.7 Linear AR(3) model for the basis 482
9.8 A two-threshold SETAR model for the basis 483
10.1 Tests of banking market equilibrium with fixed effects panel models 496
10.2 Tests of competition in banking with fixed effects panel models 497
10.3 Results of random effects panel regression for credit stability of Central and East European banks 503
11.1 Logit estimation of the probability of external financing 517
11.2 Multinomial logit estimation of the type of external financing 527
11.3 Ordered probit model results for the determinants of credit ratings 531
11.4 Two-step ordered probit model allowing for selectivity bias in the determinants of credit ratings 532
11.5 Marginal effects for logit and probit models for probability of MSc failure 543
12.1 EGARCH estimates for currency futures returns 574
12.2 Autoregressive volatility estimates for currency futures returns 575
12.3 Minimum capital risk requirements for currency futures as a percentage of the initial value of the position 578
13.1 Journals in finance and econometrics 589
13.2 Useful internet sites for financial literature 592
13.3 Suggested structure for a typical dissertation or project 594
Boxes

1.1 The value of econometrics \hspace{1cm} page 2 \hspace{1cm} 4.6 Observations for the dummy variable \hspace{1cm} 165
1.2 Time series data \hspace{0.5cm} 4 \hspace{1cm} 4.7 Conducting a Chow test \hspace{0.5cm} 180
1.3 Log returns \hspace{0.5cm} 8 \hspace{1cm} 5.1 The stationarity condition for an AR(p) model \hspace{0.5cm} 216
1.4 Points to consider when reading a published paper \hspace{0.5cm} 11 \hspace{1cm} 5.2 The invertibility condition for an MA(2) model \hspace{0.5cm} 224
1.5 Features of EViews \hspace{0.5cm} 21 \hspace{1cm} 5.3 Naive forecasting methods \hspace{0.5cm} 247
2.1 Names for y and xs in regression models \hspace{0.5cm} 28 \hspace{1cm} 6.1 Determining whether an equation is identified \hspace{0.5cm} 270
2.2 Reasons for the inclusion of the disturbance term \hspace{0.5cm} 30 \hspace{1cm} 6.2 Conducting a Hausman test for exogeneity \hspace{0.5cm} 274
2.3 Assumptions concerning disturbance terms and their interpretation \hspace{0.5cm} 44 \hspace{1cm} 6.3 Forecasting with VARs \hspace{0.5cm} 299
2.4 Standard error estimators \hspace{0.5cm} 48 \hspace{1cm} 7.1 Stationarity tests \hspace{0.5cm} 331
2.5 Conducting a test of significance \hspace{0.5cm} 56 \hspace{1cm} 7.2 Multiple cointegrating relationships \hspace{0.5cm} 340
2.6 Carrying out a hypothesis test using confidence intervals \hspace{0.5cm} 60 \hspace{1cm} 8.1 Testing for ‘ARCH effects’ \hspace{0.5cm} 390
2.7 The test of significance and confidence interval approaches compared \hspace{0.5cm} 61 \hspace{1cm} 8.2 Estimating an ARCH or GARCH model \hspace{0.5cm} 395
2.8 Type I and type II errors \hspace{0.5cm} 64 \hspace{1cm} 8.3 Using maximum likelihood estimation in practice \hspace{0.5cm} 398
2.9 Reasons for stock market overreactions \hspace{0.5cm} 71 \hspace{1cm} 9.1 How do dummy variables work? \hspace{0.5cm} 456
2.10 Ranking stocks and forming portfolios \hspace{0.5cm} 72 \hspace{1cm} 10.1 Fixed or random effects? \hspace{0.5cm} 500
2.11 Portfolio monitoring \hspace{0.5cm} 72 \hspace{1cm} 11.1 Parameter interpretation for probit and logit models \hspace{0.5cm} 519
3.1 The relationship between the regression F-statistic and R^2 \hspace{0.5cm} 111 \hspace{1cm} 11.2 The differences between censored and truncated dependent variables \hspace{0.5cm} 535
3.2 Selecting between models \hspace{0.5cm} 117 \hspace{1cm} 12.1 Conducting a Monte Carlo simulation \hspace{0.5cm} 548
4.1 Conducting White’s test \hspace{0.5cm} 134 \hspace{1cm} 12.2 Re-sampling the data \hspace{0.5cm} 555
4.2 ‘Solutions’ for heteroscedasticity \hspace{0.5cm} 138 \hspace{1cm} 12.3 Re-sampling from the residuals \hspace{0.5cm} 556
4.3 Conditions for DW to be a valid test \hspace{0.5cm} 148 \hspace{1cm} 12.4 Setting up a Monte Carlo simulation \hspace{0.5cm} 560
4.4 Conducting a Breusch–Godfrey test \hspace{0.5cm} 149 \hspace{1cm} 12.5 Simulating the price of an Asian option \hspace{0.5cm} 565
4.5 The Cochrane–Orcutt procedure \hspace{0.5cm} 151 \hspace{1cm} 12.6 Generating draws from a GARCH process \hspace{0.5cm} 566
Screenshots

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Creating a workfile</td>
<td>15</td>
</tr>
<tr>
<td>1.2 Importing Excel data into the workfile</td>
<td>16</td>
</tr>
<tr>
<td>1.3 The workfile containing loaded data</td>
<td>17</td>
</tr>
<tr>
<td>1.4 Summary statistics for a series</td>
<td>19</td>
</tr>
<tr>
<td>1.5 A line graph</td>
<td>20</td>
</tr>
<tr>
<td>2.1 Summary statistics for spot and futures</td>
<td>41</td>
</tr>
<tr>
<td>2.2 Equation estimation window</td>
<td>42</td>
</tr>
<tr>
<td>2.3 Estimation results</td>
<td>43</td>
</tr>
<tr>
<td>2.4 Plot of two series</td>
<td>79</td>
</tr>
<tr>
<td>3.1 Stepwise procedure equation estimation window</td>
<td>103</td>
</tr>
<tr>
<td>3.2 Conducting PCA in EViews</td>
<td>126</td>
</tr>
<tr>
<td>4.1 Regression options window</td>
<td>139</td>
</tr>
<tr>
<td>4.2 Non-normality test results</td>
<td>164</td>
</tr>
<tr>
<td>4.3 Regression residuals, actual values and fitted series</td>
<td>168</td>
</tr>
<tr>
<td>4.4 Chow test for parameter stability</td>
<td>188</td>
</tr>
<tr>
<td>4.5 Plotting recursive coefficient estimates</td>
<td>190</td>
</tr>
<tr>
<td>4.6 CUSUM test graph</td>
<td>191</td>
</tr>
<tr>
<td>5.1 Estimating the correlogram</td>
<td>235</td>
</tr>
<tr>
<td>5.2 Plot and summary statistics for the dynamic forecasts for the percentage changes in house prices using an AR(2)</td>
<td>257</td>
</tr>
<tr>
<td>5.3 Plot and summary statistics for the static forecasts for the percentage changes in house prices using an AR(2)</td>
<td>258</td>
</tr>
<tr>
<td>5.4 Estimating exponential smoothing models</td>
<td>259</td>
</tr>
<tr>
<td>6.1 Estimating the inflation equation</td>
<td>288</td>
</tr>
<tr>
<td>6.2 Estimating the rsandp equation</td>
<td>289</td>
</tr>
<tr>
<td>6.3 VAR inputs screen</td>
<td>310</td>
</tr>
<tr>
<td>6.4 Constructing the VAR impulse responses</td>
<td>313</td>
</tr>
<tr>
<td>6.5 Combined impulse response graphs</td>
<td>314</td>
</tr>
<tr>
<td>6.6 Variance decomposition graphs</td>
<td>315</td>
</tr>
<tr>
<td>7.1 Options menu for unit root tests</td>
<td>332</td>
</tr>
<tr>
<td>7.2 Actual, Fitted and Residual plot to check for stationarity</td>
<td>366</td>
</tr>
<tr>
<td>7.3 Johansen cointegration test</td>
<td>368</td>
</tr>
<tr>
<td>7.4 VAR specification for Johansen tests</td>
<td>374</td>
</tr>
<tr>
<td>8.1 Estimating a GARCH-type model</td>
<td>400</td>
</tr>
<tr>
<td>8.2 GARCH model estimation options</td>
<td>401</td>
</tr>
<tr>
<td>8.3 Forecasting from GARCH models</td>
<td>415</td>
</tr>
<tr>
<td>8.4 Dynamic forecasts of the conditional variance</td>
<td>415</td>
</tr>
<tr>
<td>8.5 Static forecasts of the conditional variance</td>
<td>416</td>
</tr>
<tr>
<td>8.6 Making a system</td>
<td>441</td>
</tr>
<tr>
<td>10.1 Workfile structure window</td>
<td>505</td>
</tr>
<tr>
<td>11.1 ‘Equation Estimation’ window for limited dependent variables</td>
<td>539</td>
</tr>
<tr>
<td>11.2 ‘Equation Estimation’ options for limited dependent variables</td>
<td>541</td>
</tr>
<tr>
<td>12.1 Running an EViews program</td>
<td>561</td>
</tr>
</tbody>
</table>