In our previous chapter, we discussed how to identify and organize the relevant cash flows for capital investment decisions. Our primary interest there was in coming up with a preliminary estimate of the net present value for a proposed project. In this chapter, we focus on assessing the reliability of such an estimate and on some additional considerations in project analysis.

We begin by discussing the need for an evaluation of cash flow and NPV estimates. We go on to develop some useful tools for such an evaluation. We also examine additional complications and concerns that can arise in project evaluation.

For a drug company, the cost of developing a new product can easily approach $1 billion. Such companies therefore rely on blockbusters to fuel profits. And when it launched Vioxx, pharmaceutical giant Merck thought it had a hugely profitable product on its hands. The painkilling pill came to market in 1999 and quickly grew to annual sales of $2.5 billion. Unfortunately, in September 2004, Merck pulled Vioxx from the market after it was linked to a potential increase in heart attacks in individuals taking the drug.

So, what looked like a major moneymaker may turn into a huge loss for Merck. By the middle of 2006, more than 14,000 lawsuits had been filed against the company because of Vioxx. Although only seven lawsuits had been decided, with Merck winning four of the seven, analysts estimated that the cost to Merck from litigation and other issues surrounding Vioxx could be between $4 and $30 billion.

Obviously, Merck didn’t plan to spend billions defending itself from 14,000 lawsuits over a withdrawn product. However, as the Vioxx disaster shows, projects do not always go as companies think they will. This chapter explores how this can happen and what companies can do to analyze and possibly avoid these situations.

Visit us at www.mhhe.com/rwj

DIGITAL STUDY TOOLS
- Self-Study Software
- Multiple-Choice Quizzes
- Flashcards for Testing and Key Terms
11.1 Evaluating NPV Estimates

As we discussed in Chapter 9, an investment has a positive net present value if its market value exceeds its cost. Such an investment is desirable because it creates value for its owner. The primary problem in identifying such opportunities is that most of the time we can’t actually observe the relevant market value. Instead, we estimate it. Having done so, it is only natural to wonder whether our estimates are at least close to the true values. We consider this question next.

THE BASIC PROBLEM

Suppose we are working on a preliminary discounted cash flow analysis along the lines we described in the previous chapter. We carefully identify the relevant cash flows, avoiding such things as sunk costs, and we remember to consider working capital requirements. We add back any depreciation; we account for possible erosion; and we pay attention to opportunity costs. Finally, we double-check our calculations; when all is said and done, the bottom line is that the estimated NPV is positive.

Now what? Do we stop here and move on to the next proposal? Probably not. The fact that the estimated NPV is positive is definitely a good sign; but, more than anything, this tells us that we need to take a closer look.

If you think about it, there are two circumstances under which a DCF analysis could lead us to conclude that a project has a positive NPV. The first possibility is that the project really does have a positive NPV. That’s the good news. The bad news is the second possibility: A project may appear to have a positive NPV because our estimate is inaccurate.

Notice that we could also err in the opposite way. If we conclude that a project has a negative NPV when the true NPV is positive, we lose a valuable opportunity.

PROJECTED VERSUS ACTUAL CASH FLOWS

There is a somewhat subtle point we need to make here. When we say something like “The projected cash flow in year 4 is $700,” what exactly do we mean? Does this mean that we think the cash flow will actually be $700? Not really. It could happen, of course, but we would be surprised to see it turn out exactly that way. The reason is that the $700 projection is based on only what we know today. Almost anything could happen between now and then to change that cash flow.

Loosely speaking, we really mean that if we took all the possible cash flows that could occur in four years and averaged them, the result would be $700. So, we don’t really expect a projected cash flow to be exactly right in any one case. What we do expect is that if we evaluate a large number of projects, our projections will be right on average.

FORECASTING RISK

The key inputs into a DCF analysis are projected future cash flows. If the projections are seriously in error, then we have a classic GIGO (garbage in, garbage out) system. In such a case, no matter how carefully we arrange the numbers and manipulate them, the resulting answer can still be grossly misleading. This is the danger in using a relatively sophisticated technique like DCF. It is sometimes easy to get caught up in number crunching and forget the underlying nuts-and-bolts economic reality.

The possibility that we will make a bad decision because of errors in the projected cash flows is called forecasting risk (or estimation risk). Because of forecasting risk, there is...
the danger that we will think a project has a positive NPV when it really does not. How is
this possible? It happens if we are overly optimistic about the future, and, as a result, our
projected cash flows don’t realistically reflect the possible future cash flows.

Forecasting risk can take many forms. For example, Microsoft spent several billion
dollars developing and bringing the Xbox game console to market. Technologically more
sophisticated, the Xbox was the best way to play against competitors over the Internet.
Unfortunately, Microsoft sold only 9 million Xboxes in the first 14 months of sales, at the
low end of Microsoft’s expected range. The Xbox was arguably the best available game
console at the time, so why didn’t it sell better? The reason given by analysts was that there
were far fewer games made for the Xbox. For example, the Playstation enjoyed a 2-to-1
edge in the number of games made for it.

So far, we have not explicitly considered what to do about the possibility of errors in
our forecasts; so one of our goals in this chapter is to develop some tools that are useful in
identifying areas where potential errors exist and where they might be especially damag-
ing. In one form or another, we will be trying to assess the economic “reasonableness” of
our estimates. We will also be wondering how much damage will be done by errors in those
estimates.

SOURCES OF VALUE

The first line of defense against forecasting risk is simply to ask, “What is it about this
investment that leads to a positive NPV?” We should be able to point to something specific
as the source of value. For example, if the proposal under consideration involved a new
product, then we might ask questions such as the following: Are we certain that our new
product is significantly better than that of the competition? Can we truly manufacture at
lower cost, or distribute more effectively, or identify undeveloped market niches, or gain
control of a market?

These are just a few of the potential sources of value. There are many others. For exam-
ple, in 2004, Google announced a new, free e-mail service: gmail. Why? Free e-mail service
is widely available from big hitters like Microsoft and Yahoo! and, obviously, it’s free! The
answer is that Google’s mail service is integrated with its acclaimed search engine, thereby
giving it an edge. Also, offering e-mail lets Google expand its lucrative keyword-based
advertising delivery. So, Google’s source of value is leveraging its proprietary Web search
and ad delivery technologies.

A key factor to keep in mind is the degree of competition in the market. A basic prin-
ciple of economics is that positive NPV investments will be rare in a highly competitive
environment. Therefore, proposals that appear to show significant value in the face of stiff
competition are particularly troublesome, and the likely reaction of the competition to any
innovations must be closely examined.

To give an example, in 2006, demand for flat screen LCD televisions was high, prices
were high, and profit margins were fat for retailers. But, also in 2006, manufacturers of the
screens were projected to pour several billion dollars into new production facilities. Thus,
anyone thinking of entering this highly profitable market would do well to reflect on what
the supply (and profit margin) situation will look like in just a few years.

It is also necessary to think about potential competition. For example, suppose home
improvement retailer Lowe’s identifies an area that is underserved and is thinking about
opening a store. If the store is successful, what will happen? The answer is that Home
Depot (or another competitor) will likely also build a store, thereby driving down vol-
ume and profits. So, we always need to keep in mind that success attracts imitators and
competitors.
The point to remember is that positive NPV investments are probably not all that common, and the number of positive NPV projects is almost certainly limited for any given firm. If we can’t articulate some sound economic basis for thinking ahead of time that we have found something special, then the conclusion that our project has a positive NPV should be viewed with some suspicion.

11.1a What is forecasting risk? Why is it a concern for the financial manager?
11.1b What are some potential sources of value in a new project?

11.2 Scenario and Other What-If Analyses

Our basic approach to evaluating cash flow and NPV estimates involves asking what-if questions. Accordingly, we discuss some organized ways of going about a what-if analysis. Our goal in performing such an analysis is to assess the degree of forecasting risk and to identify the most critical components of the success or failure of an investment.

GETTING STARTED

We are investigating a new project. Naturally, the first thing we do is estimate NPV based on our projected cash flows. We will call this initial set of projections the base case. Now, however, we recognize the possibility of error in these cash flow projections. After completing the base case, we thus wish to investigate the impact of different assumptions about the future on our estimates.

One way to organize this investigation is to put upper and lower bounds on the various components of the project. For example, suppose we forecast sales at 100 units per year. We know this estimate may be high or low, but we are relatively certain it is not off by more than 10 units in either direction. We thus pick a lower bound of 90 and an upper bound of 110. We go on to assign such bounds to any other cash flow components we are unsure about.

When we pick these upper and lower bounds, we are not ruling out the possibility that the actual values could be outside this range. What we are saying, again loosely speaking, is that it is unlikely that the true average (as opposed to our estimated average) of the possible values is outside this range.

An example is useful to illustrate the idea here. The project under consideration costs $200,000, has a five-year life, and has no salvage value. Depreciation is straight-line to zero. The required return is 12 percent, and the tax rate is 34 percent. In addition, we have compiled the following information:

<table>
<thead>
<tr>
<th>Component</th>
<th>Base Case</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit sales</td>
<td>6,000</td>
<td>5,500</td>
<td>6,500</td>
</tr>
<tr>
<td>Price per unit</td>
<td>$80</td>
<td>$75</td>
<td>$85</td>
</tr>
<tr>
<td>Variable costs per unit</td>
<td>$60</td>
<td>$58</td>
<td>$62</td>
</tr>
<tr>
<td>Fixed costs per year</td>
<td>$50,000</td>
<td>$45,000</td>
<td>$55,000</td>
</tr>
</tbody>
</table>
With this information, we can calculate the base-case NPV by first calculating net income:

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>$480,000</td>
</tr>
<tr>
<td>Variable costs</td>
<td>360,000</td>
</tr>
<tr>
<td>Fixed costs</td>
<td>50,000</td>
</tr>
<tr>
<td>Depreciation</td>
<td>40,000</td>
</tr>
<tr>
<td>EBIT</td>
<td>$30,000</td>
</tr>
<tr>
<td>Taxes (34%)</td>
<td>10,200</td>
</tr>
<tr>
<td>Net income</td>
<td>$19,800</td>
</tr>
</tbody>
</table>

Operating cash flow is thus $30,000 + 40,000 − 10,200 = $59,800 per year. At 12 percent, the five-year annuity factor is 3.6048, so the base-case NPV is:

\[
\text{Base-case NPV} = - \text{Net income} \times \text{Annuity factor} = 15,567
\]

Thus, the project looks good so far.

SCENARIO ANALYSIS

The basic form of what-if analysis is called **scenario analysis**. What we do is investigate the changes in our NPV estimates that result from asking questions like, What if unit sales realistically should be projected at 5,500 units instead of 6,000?

Once we start looking at alternative scenarios, we might find that most of the plausible ones result in positive NPVs. In this case, we have some confidence in proceeding with the project. If a substantial percentage of the scenarios look bad, the degree of forecasting risk is high and further investigation is in order.

We can consider a number of possible scenarios. A good place to start is with the worst-case scenario. This will tell us the minimum NPV of the project. If this turns out to be positive, we will be in good shape. While we are at it, we will go ahead and determine the other extreme, the best case. This puts an upper bound on our NPV.

To get the worst case, we assign the least favorable value to each item. This means low values for items like units sold and price per unit and high values for costs. We do the reverse for the best case. For our project, these values would be the following:

<table>
<thead>
<tr>
<th>Item</th>
<th>Worst Case</th>
<th>Best Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit sales</td>
<td>5,500</td>
<td>6,500</td>
</tr>
<tr>
<td>Price per unit</td>
<td>$75</td>
<td>$85</td>
</tr>
<tr>
<td>Variable costs</td>
<td>$62</td>
<td>$58</td>
</tr>
<tr>
<td>Fixed costs per year</td>
<td>$55,000</td>
<td>$45,000</td>
</tr>
</tbody>
</table>

With this information, we can calculate the net income and cash flows under each scenario (check these for yourself):

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Net Income</th>
<th>Cash Flow</th>
<th>Net Present Value</th>
<th>IRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>$19,800</td>
<td>$59,800</td>
<td>$15,567</td>
<td>15.1%</td>
</tr>
<tr>
<td>Worst case*</td>
<td>15,510</td>
<td>24,490</td>
<td>−111,719</td>
<td>−14.4</td>
</tr>
<tr>
<td>Best case</td>
<td>59,730</td>
<td>99,730</td>
<td>159,504</td>
<td>40.9</td>
</tr>
</tbody>
</table>

*We assume a tax credit is created in our worst-case scenario.

What we learn is that under the worst scenario, the cash flow is still positive at $24,490. That’s good news. The bad news is that the return is −14.4 percent in this case, and the
NPV is $111,719. Because the project costs $200,000, we stand to lose a little more than half of the original investment under the worst possible scenario. The best case offers an attractive 41 percent return.

The terms best case and worst case are commonly used, and we will stick with them; but they are somewhat misleading. The absolutely best thing that could happen would be something absurdly unlikely, such as launching a new diet soda and subsequently learning that our (patented) formulation also just happens to cure the common cold. Similarly, the true worst case would involve some incredibly remote possibility of total disaster. We’re not claiming that these things don’t happen; once in a while they do. Some products, such as personal computers, succeed beyond the wildest expectations; and some, such as asbestos, turn out to be absolute catastrophes. Our point is that in assessing the reasonableness of an NPV estimate, we need to stick to cases that are reasonably likely to occur.

Instead of best and worst, then, it is probably more accurate to use the words optimistic and pessimistic. In broad terms, if we were thinking about a reasonable range for, say, unit sales, then what we call the best case would correspond to something near the upper end of that range. The worst case would simply correspond to the lower end.

Depending on the project, the best- and worst-case estimates can vary greatly. For example, in February 2004, Ivanhoe Mines discussed its assessment report of a copper and gold mine in Mongolia. The company used base metal prices of $400 an ounce for gold and $0.90 an ounce for copper. Their report also used average life-of-mine recovery rates for both of the deposits. However, the company also reported that the base-case numbers were considered accurate only to within plus or minus 35 percent, so this 35 percent range could be used as the basis for developing best-case and worst-case scenarios.

As we have mentioned, there are an unlimited number of different scenarios that we could examine. At a minimum, we might want to investigate two intermediate cases by going halfway between the base amounts and the extreme amounts. This would give us five scenarios in all, including the base case.

Beyond this point, it is hard to know when to stop. As we generate more and more possibilities, we run the risk of experiencing “paralysis of analysis.” The difficulty is that no matter how many scenarios we run, all we can learn are possibilities—some good and some bad. Beyond that, we don’t get any guidance as to what to do. Scenario analysis is thus useful in telling us what can happen and in helping us gauge the potential for disaster, but it does not tell us whether to take a project.

Unfortunately, in practice, even the worst-case scenarios may not be low enough. Two recent examples show what we mean. The Eurotunnel, or Chunnel, may be one of the new wonders of the world. The tunnel under the English Channel connects England to France and covers 24 miles. It took 8,000 workers eight years to remove 9.8 million cubic yards of rock. When the tunnel was finally built, it cost $17.9 billion, or slightly more than twice the original estimate of $8.8 billion. And things got worse. Forecasts called for 16.8 million passengers in the first year, but only 4 million actually used it. Revenue estimates for 2003 were $2.88 billion, but actual revenue was only about one-third of that. The major problems faced by the Eurotunnel were increased competition from ferry services, which dropped their prices, and the rise of low-cost airlines. In 2006, things got so bad that the company operating the Eurotunnel was forced into negotiations with creditors to chop its $11.1 billion debt in half to avoid bankruptcy.

Another example is the human transporter, or Segway. Trumpeted by inventor Dean Kamen as the replacement for automobiles in cities, the Segway came to market with great expectations. At the end of September 2003, the company recalled all of the transporters due to a mandatory software upgrade. Worse, the company had projected sales of 50,000 to 100,000 units in the first five months of production; but, two and a half years later, only about 16,000 had been sold.
SENSITIVITY ANALYSIS

Sensitivity analysis is a variation on scenario analysis that is useful in pinpointing the areas where forecasting risk is especially severe. The basic idea with a sensitivity analysis is to freeze all of the variables except one and then see how sensitive our estimate of NPV is to changes in that one variable. If our NPV estimate turns out to be very sensitive to relatively small changes in the projected value of some component of project cash flow, then the forecasting risk associated with that variable is high.

To illustrate how sensitivity analysis works, we go back to our base case for every item except unit sales. We can then calculate cash flow and NPV using the largest and smallest unit sales figures.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Unit Sales</th>
<th>Cash Flow</th>
<th>Net Present Value</th>
<th>IRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>6,000</td>
<td>$59,800</td>
<td>$15,567</td>
<td>15.1%</td>
</tr>
<tr>
<td>Worst case</td>
<td>5,500</td>
<td>53,200</td>
<td>-8,226</td>
<td>10.3</td>
</tr>
<tr>
<td>Best case</td>
<td>6,500</td>
<td>66,400</td>
<td>39,357</td>
<td>19.7</td>
</tr>
</tbody>
</table>

For comparison, we now freeze everything except fixed costs and repeat the analysis:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Fixed Costs</th>
<th>Cash Flow</th>
<th>Net Present Value</th>
<th>IRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>$50,000</td>
<td>$59,800</td>
<td>$15,567</td>
<td>15.1%</td>
</tr>
<tr>
<td>Worst case</td>
<td>55,000</td>
<td>56,500</td>
<td>3,670</td>
<td>12.7</td>
</tr>
<tr>
<td>Best case</td>
<td>45,000</td>
<td>63,100</td>
<td>27,461</td>
<td>17.4</td>
</tr>
</tbody>
</table>

What we see here is that given our ranges, the estimated NPV of this project is more sensitive to changes in projected unit sales than it is to changes in projected fixed costs. In fact, under the worst case for fixed costs, the NPV is still positive.

The results of our sensitivity analysis for unit sales can be illustrated graphically as in Figure 11.1. Here we place NPV on the vertical axis and unit sales on the horizontal axis. When we plot the combinations of unit sales versus NPV, we see that all possible combinations fall on a straight line. The steeper the resulting line is, the greater the sensitivity of the estimated NPV to changes in the projected value of the variable being investigated.

FIGURE 11.1
Sensitivity Analysis for Unit Sales
As we have illustrated, sensitivity analysis is useful in pinpointing which variables deserve the most attention. If we find that our estimated NPV is especially sensitive to changes in a variable that is difficult to forecast (such as unit sales), then the degree of forecasting risk is high. We might decide that further market research would be a good idea in this case.

Because sensitivity analysis is a form of scenario analysis, it suffers from the same drawbacks. Sensitivity analysis is useful for pointing out where forecasting errors will do the most damage, but it does not tell us what to do about possible errors.

SIMULATION ANALYSIS

Scenario analysis and sensitivity analysis are widely used. With scenario analysis, we let all the different variables change, but we let them take on only a few values. With sensitivity analysis, we let only one variable change, but we let it take on many values. If we combine the two approaches, the result is a crude form of simulation analysis.

If we want to let all the items vary at the same time, we have to consider a very large number of scenarios, and computer assistance is almost certainly needed. In the simplest case, we start with unit sales and assume that any value in our 5,500 to 6,500 range is equally likely. We start by randomly picking one value (or by instructing a computer to do so). We then randomly pick a price, a variable cost, and so on.

Once we have values for all the relevant components, we calculate an NPV. We repeat this sequence as much as we desire, probably several thousand times. The result is many NPV estimates that we summarize by calculating the average value and some measure of how spread out the different possibilities are. For example, it would be of some interest to know what percentage of the possible scenarios result in negative estimated NPVs.

Because simulation analysis (or simulation) is an extended form of scenario analysis, it has the same problems. Once we have the results, no simple decision rule tells us what to do. Also, we have described a relatively simple form of simulation. To really do it right, we would have to consider the interrelationships between the different cash flow components. Furthermore, we assumed that the possible values were equally likely to occur. It is probably more realistic to assume that values near the base case are more likely than extreme values, but coming up with the probabilities is difficult, to say the least.

For these reasons, the use of simulation is somewhat limited in practice. However, recent advances in computer software and hardware (and user sophistication) lead us to believe it may become more common in the future, particularly for large-scale projects.

Concept Questions

11.2a What are scenario, sensitivity, and simulation analysis?
11.2b What are the drawbacks to the various types of what-if analysis?

11.3 Break-Even Analysis

It will frequently turn out that the crucial variable for a project is sales volume. If we are thinking of creating a new product or entering a new market, for example, the hardest thing to forecast accurately is how much we can sell. For this reason, sales volume is usually analyzed more closely than other variables.

Break-even analysis is a popular and commonly used tool for analyzing the relationship between sales volume and profitability. There are a variety of different break-even measures, and
we have already seen several types. For example, we discussed (in Chapter 9) how the payback period can be interpreted as the length of time until a project breaks even, ignoring time value. All break-even measures have a similar goal. Loosely speaking, we will always be asking, “How bad do sales have to get before we actually begin to lose money?” Implicitly, we will also be asking, “Is it likely that things will get that bad?” To get started on this subject, we first discuss fixed and variable costs.

FIXED AND VARIABLE COSTS

In discussing break-even, the difference between fixed and variable costs becomes very important. As a result, we need to be a little more explicit about the difference than we have been so far.

Variable Costs
By definition, *variable costs* change as the quantity of output changes, and they are zero when production is zero. For example, direct labor costs and raw material costs are usually considered variable. This makes sense because if we shut down operations tomorrow, there will be no future costs for labor or raw materials.

We will assume that variable costs are a constant amount per unit of output. This simply means that total variable cost is equal to the cost per unit multiplied by the number of units. In other words, the relationship between total variable cost (V_C), cost per unit of output (v), and total quantity of output (Q) can be written simply as:

$$V_C = Q \times v$$

For example, suppose variable costs (v) are $2 per unit. If total output (Q) is 1,000 units, what will total variable costs (V_C) be?

$$V_C = Q \times v = 1,000 \times 2 = 2,000$$

Similarly, if Q is 5,000 units, then V_C will be $5,000 \times 2 = 10,000$. Figure 11.2 illustrates the relationship between output level and variable costs in this case. In Figure 11.2, notice that increasing output by one unit results in variable costs rising by $2, so “the rise over the run” (the slope of the line) is given by $2/1 = 2$.

Variable Costs

The Blume Corporation is a manufacturer of pencils. It has received an order for 5,000 pencils, and the company has to decide whether to accept the order. From recent experience, the company knows that each pencil requires 5 cents in raw materials and 50 cents in direct labor costs. These variable costs are expected to continue to apply in the future. What will Blume’s total variable costs be if it accepts the order?

In this case, the cost per unit is 50 cents in labor plus 5 cents in material for a total of 55 cents per unit. At 5,000 units of output, we have:

$$V_C = Q \times v = 5,000 \times 0.55 = 2,750$$

Therefore, total variable costs will be $2,750.
Fixed Costs. Fixed costs, by definition, do not change during a specified time period. So, unlike variable costs, they do not depend on the amount of goods or services produced during a period (at least within some range of production). For example, the lease payment on a production facility and the company president’s salary are fixed costs, at least over some period.

Naturally, fixed costs are not fixed forever. They are fixed only during some particular time, say, a quarter or a year. Beyond that time, leases can be terminated and executives “retired.” More to the point, any fixed cost can be modified or eliminated given enough time; so, in the long run, all costs are variable.

Notice that when a cost is fixed, that cost is effectively a sunk cost because we are going to have to pay it no matter what.

Total Costs. Total costs (TC) for a given level of output are the sum of variable costs (VC) and fixed costs (FC):

\[TC = VC + FC = v \times Q + FC \]

So, for example, if we have variable costs of $3 per unit and fixed costs of $8,000 per year, our total cost is:

\[TC = 3 \times Q + 8,000 \]

If we produce 6,000 units, our total production cost will be $3 \times 6,000 + 8,000 = 26,000.

At other production levels, we have the following:

<table>
<thead>
<tr>
<th>Quantity Produced</th>
<th>Total Variable Costs</th>
<th>Fixed Costs</th>
<th>Total Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$0</td>
<td>$8,000</td>
<td>$8,000</td>
</tr>
<tr>
<td>1,000</td>
<td>3,000</td>
<td>8,000</td>
<td>11,000</td>
</tr>
<tr>
<td>5,000</td>
<td>15,000</td>
<td>8,000</td>
<td>23,000</td>
</tr>
<tr>
<td>10,000</td>
<td>30,000</td>
<td>8,000</td>
<td>38,000</td>
</tr>
</tbody>
</table>
By plotting these points in Figure 11.3, we see that the relationship between quantity produced and total costs is given by a straight line. In Figure 11.3, notice that total costs equal fixed costs when sales are zero. Beyond that point, every one-unit increase in production leads to a $3 increase in total costs, so the slope of the line is 3. In other words, the marginal, or incremental, cost of producing one more unit is $3.

Average Cost versus Marginal Cost

Suppose the Blume Corporation has a variable cost per pencil of 55 cents. The lease payment on the production facility runs $5,000 per month. If Blume produces 100,000 pencils per year, what are the total costs of production? What is the average cost per pencil?

The fixed costs are $5,000 per month, or $60,000 per year. The variable cost is $.55 per pencil. So the total cost for the year, assuming that Blume produces 100,000 pencils, is:

\[
\text{Total cost} = \text{FC} + \text{VC} \\
= 60,000 + 55 \times 100,000 \\
= 57,500,000
\]

The average cost per pencil is $115,000/100,000 = $1.15.

Now suppose that Blume has received a special, one-shot order for 5,000 pencils. Blume has sufficient capacity to manufacture the 5,000 pencils on top of the 100,000 already produced, so no additional fixed costs will be incurred. Also, there will be no effect on existing orders. If Blume can get 75 cents per pencil for this order, should the order be accepted?

What this boils down to is a simple proposition. It costs 55 cents to make another pencil. Anything Blume can get for this pencil in excess of the 55-cent incremental cost contributes in a positive way toward covering fixed costs. The 75-cent marginal, or incremental, revenue exceeds the 55-cent marginal cost, so Blume should take the order.

The fixed cost of $60,000 is not relevant to this decision because it is effectively sunk, at least for the current period. In the same way, the fact that the average cost is $1.15 is irrelevant because this average reflects the fixed cost. As long as producing the extra 5,000 pencils truly does not cost anything beyond the 55 cents per pencil, then Blume should accept anything over that 55 cents.
ACCOUNTING BREAK-EVEN

The most widely used measure of break-even is accounting break-even. The accounting break-even point is simply the sales level that results in a zero project net income.

To determine a project’s accounting break-even, we start off with some common sense. Suppose we retail one-petabyte computer disks for $5 apiece. We can buy disks from a wholesale supplier for $3 apiece. We have accounting expenses of $600 in fixed costs and $300 in depreciation. How many disks do we have to sell to break even—that is, for net income to be zero?

For every disk we sell, we pick up $5 – 3 = $2 toward covering our other expenses (this $2 difference between the selling price and the variable cost is often called the contribution margin per unit). We have to cover a total of $600 + 300 = $900 in accounting expenses, so we obviously need to sell $900/2 = 450 disks. We can check this by noting that at a sales level of 450 units, our revenues are $5 × 450 = $2,250 and our variable costs are $3 × 450 = $1,350. Thus, here is the income statement:

<table>
<thead>
<tr>
<th>Sales</th>
<th>$2,250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable costs</td>
<td>1,350</td>
</tr>
<tr>
<td>Fixed costs</td>
<td>600</td>
</tr>
<tr>
<td>Depreciation</td>
<td>300</td>
</tr>
<tr>
<td>EBIT</td>
<td>$0</td>
</tr>
<tr>
<td>Taxes (34%)</td>
<td>0</td>
</tr>
<tr>
<td>Net income</td>
<td>$0</td>
</tr>
</tbody>
</table>

Remember, because we are discussing a proposed new project, we do not consider any interest expense in calculating net income or cash flow from the project. Also, notice that we include depreciation in calculating expenses here, even though depreciation is not a cash outflow. That is why we call it an accounting break-even. Finally, notice that when net income is zero, so are pretax income and, of course, taxes. In accounting terms, our revenues are equal to our costs, so there is no profit to tax.

Figure 11.4 presents another way to see what is happening. This figure looks a lot like Figure 11.3 except that we add a line for revenues. As indicated, total revenues are zero when output is zero. Beyond that, each unit sold brings in another $5, so the slope of the revenue line is 5.

From our preceding discussion, we know that we break even when revenues are equal to total costs. The line for revenues and the line for total costs cross right where output is at 450 units. As illustrated, at any level of output below 450, our accounting profit is negative, and at any level above 450, we have a positive net income.

ACCOUNTING BREAK-EVEN: A CLOSER LOOK

In our numerical example, notice that the break-even level is equal to the sum of fixed costs and depreciation, divided by price per unit less variable costs per unit. This is always true. To see why, we recall all of the following variables:

- \(P \) = Selling price per unit
- \(v \) = Variable cost per unit
- \(Q \) = Total units sold
- \(S \) = Total sales = \(P \times Q \)
- \(VC \) = Total variable costs = \(v \times Q \)
Project net income is given by:

Net income = (Sales - Variable costs - Fixed costs - Depreciation) \times (1 - T)
= (S - VC - FC - D) \times (1 - T)

From here, it is not difficult to calculate the break-even point. If we set this net income equal to zero, we get:

Net income \equiv 0 = (S - VC - FC - D) \times (1 - T)

Divide both sides by (1 - T) to get:

S - VC - FC - D = 0

As we have seen, this says that when net income is zero, so is pretax income. If we recall that \(S = P \times Q \) and \(VC = v \times Q \), then we can rearrange the equation to solve for the break-even level:

\[
S - VC = FC + D
\]
\[
P \times Q - v \times Q = FC + D
\]
\[
(P - v) \times Q = FC + D
\]
\[
Q = (FC + D)/(P - v) \tag{11.1}
\]

This is the same result we described earlier.
USES FOR THE ACCOUNTING BREAK-EVEN

Why would anyone be interested in knowing the accounting break-even point? To illustrate how it can be useful, suppose we are a small specialty ice cream manufacturer with a strictly local distribution. We are thinking about expanding into new markets. Based on the estimated cash flows, we find that the expansion has a positive NPV.

Going back to our discussion of forecasting risk, we know that it is likely that what will make or break our expansion is sales volume. The reason is that, in this case at least, we probably have a fairly good idea of what we can charge for the ice cream. Further, we know relevant production and distribution costs reasonably well because we are already in the business. What we do not know with any real precision is how much ice cream we can sell.

Given the costs and selling price, however, we can immediately calculate the break-even point. Once we have done so, we might find that we need to get 30 percent of the market just to break even. If we think that this is unlikely to occur, because, for example, we have only 10 percent of our current market, then we know our forecast is questionable and there is a real possibility that the true NPV is negative. On the other hand, we might find that we already have firm commitments from buyers for about the break-even amount, so we are almost certain we can sell more. In this case, the forecasting risk is much lower, and we have greater confidence in our estimates.

There are several other reasons why knowing the accounting break-even can be useful. First, as we will discuss in more detail later, accounting break-even and payback period are similar measures. Like payback period, accounting break even is relatively easy to calculate and explain.

Second, managers are often concerned with the contribution a project will make to the firm’s total accounting earnings. A project that does not break even in an accounting sense actually reduces total earnings.

Third, a project that just breaks even on an accounting basis loses money in a financial or opportunity cost sense. This is true because we could have earned more by investing elsewhere. Such a project does not lose money in an out-of-pocket sense. As described in the following pages, we get back exactly what we put in. For noneconomic reasons, opportunity losses may be easier to live with than out-of-pocket losses.

Concept Questions

11.3a How are fixed costs similar to sunk costs?
11.3b What is net income at the accounting break-even point? What about taxes?
11.3c Why might a financial manager be interested in the accounting break-even point?

11.4 Operating Cash Flow, Sales Volume, and Break-Even

Accounting break-even is one tool that is useful for project analysis. Ultimately, however, we are more interested in cash flow than accounting income. So, for example, if sales volume is the critical variable, then we need to know more about the relationship between sales volume and cash flow than just the accounting break-even.
Our goal in this section is to illustrate the relationship between operating cash flow and sales volume. We also discuss some other break-even measures. To simplify matters somewhat, we will ignore the effect of taxes. We start off by looking at the relationship between accounting break-even and cash flow.

ACCOUNTING BREAK-EVEN AND CASH FLOW

Now that we know how to find the accounting break-even, it is natural to wonder what happens with cash flow. To illustrate, suppose the Wettway Sailboat Corporation is considering whether to launch its new Margo-class sailboat. The selling price will be $40,000 per boat. The variable costs will be about half that, or $20,000 per boat, and fixed costs will be $500,000 per year.

The Base Case

The total investment needed to undertake the project is $3,500,000. This amount will be depreciated straight-line to zero over the five-year life of the equipment. The salvage value is zero, and there are no working capital consequences. Wettway has a 20 percent required return on new projects. Based on market surveys and historical experience, Wettway projects total sales for the five years at 425 boats, or about 85 boats per year. Ignoring taxes, should this project be launched?

To begin, ignoring taxes, the operating cash flow at 85 boats per year is:

\[
\text{Operating cash flow} = \text{EBIT} + \text{Depreciation} - \text{Taxes} \\
\quad = (S - VC - FC - D) + D - 0 \\
\quad = 85 \times ($40,000 - 20,000) - 500,000 \\
\quad = $1,200,000 \text{ per year}
\]

At 20 percent, the five-year annuity factor is 2.9906, so the NPV is:

\[
\text{NPV} = -3,500,000 + 1,200,000 \times 2.9906 \\
\quad = -3,500,000 + 3,588,720 \\
\quad = $88,720
\]

In the absence of additional information, the project should be launched.

Calculating the Break-Even Level

To begin looking a little closer at this project, you might ask a series of questions. For example, how many new boats does Wettway need to sell for the project to break even on an accounting basis? If Wettway does break even, what will be the annual cash flow from the project? What will be the return on the investment in this case?

Before fixed costs and depreciation are considered, Wettway generates $40,000 - 20,000 = $20,000 per boat (this is revenue less variable cost). Depreciation is $3,500,000/5 = $700,000 per year. Fixed costs and depreciation together total $1.2 million, so Wettway needs to sell \((FC + D)/(P - v) = 1.2 \text{ million}/20,000 = 60\) boats per year to break even on an accounting basis. This is 25 boats less than projected sales; so, assuming that Wettway is confident its projection is accurate to within, say, 15 boats, it appears unlikely that the new investment will fail to at least break even on an accounting basis.

To calculate Wettway’s cash flow in this case, we note that if 60 boats are sold, net income will be exactly zero. Recalling from the previous chapter that operating cash flow for a project can be written as net income plus depreciation (the bottom-up definition), we can see that the operating cash flow is equal to the depreciation, or $700,000 in this case. The internal rate of return is exactly zero (why?).
Payback and Break-Even As our example illustrates, whenever a project breaks even on an accounting basis, the cash flow for that period will equal the depreciation. This result makes perfect accounting sense. For example, suppose we invest $100,000 in a five-year project. The depreciation is straight-line to a zero salvage, or $20,000 per year. If the project exactly breaks even every period, then the cash flow will be $20,000 per period.

The sum of the cash flows for the life of this project is $5 \times $20,000 = $100,000, the original investment. What this shows is that a project's break-even point is exactly equal to its life if the project breaks even every period. Similarly, a project that does better than break even has a payback that is shorter than the life of the project and has a positive rate of return.

The bad news is that a project that just breaks even on an accounting basis has a negative NPV and a zero return. For our sailboat project, the fact that Wettway will almost surely break even on an accounting basis is partially comforting because it means that the firm's "downside" risk (its potential loss) is limited, but we still don't know if the project is truly profitable. More work is needed.

SALES VOLUME AND OPERATING CASH FLOW
At this point, we can generalize our example and introduce some other break-even measures. From our discussion in the previous section, we know that, ignoring taxes, a project's operating cash flow, OCF, can be written simply as EBIT plus depreciation:

$$\text{OCF} = ([P - v] \times Q - FC - D) + D$$
$$= (P - v) \times Q - FC$$

[11.2]

For the Wettway sailboat project, the general relationship (in thousands of dollars) between operating cash flow and sales volume is thus:

$$\text{OCF} = (P - v) \times Q - FC$$
$$= ($40 - 20) \times Q - 500$$
$$= -$500 + 20 \times Q$$

What this tells us is that the relationship between operating cash flow and sales volume is given by a straight line with a slope of $20 and a y-intercept of $-500. If we calculate some different values, we get:

<table>
<thead>
<tr>
<th>Quantity Sold</th>
<th>Operating Cash Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$-500</td>
</tr>
<tr>
<td>15</td>
<td>$-200</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>500</td>
</tr>
<tr>
<td>75</td>
<td>1,000</td>
</tr>
</tbody>
</table>

These points are plotted in Figure 11.5, where we have indicated three different break-even points. We discuss these next.

CASH FLOW, ACCOUNTING, AND FINANCIAL BREAK-EVEN POINTS
We know from the preceding discussion that the relationship between operating cash flow and sales volume (ignoring taxes) is:

$$\text{OCF} = (P - v) \times Q - FC$$

If we rearrange this and solve for Q, we get:

$$Q = (FC + OCF)/(P - v)$$

[11.3]
This tells us what sales volume \(Q \) is necessary to achieve any given OCF, so this result is more general than the accounting break-even. We use it to find the various break-even points in Figure 11.5.

Accounting Break-Even Revisited Looking at Figure 11.5, suppose operating cash flow is equal to depreciation \(D \). Recall that this situation corresponds to our break-even point on an accounting basis. To find the sales volume, we substitute the $700 depreciation amount for OCF in our general expression:

\[
Q = \frac{FC + OCF}{P - v} = \frac{$500 + 700}{20} = 60
\]

This is the same quantity we had before.

Cash Break-Even We have seen that a project that breaks even on an accounting basis has a net income of zero, but it still has a positive cash flow. At some sales level below the accounting break-even, the operating cash flow actually goes negative. This is a particularly unpleasant occurrence. If it happens, we actually have to supply additional cash to the project just to keep it afloat.

To calculate the **cash break-even** (the point where operating cash flow is equal to zero), we put in a zero for OCF:

\[
Q = \frac{FC + 0}{P - v} = \frac{$500}{20} = 25
\]

Wettway must therefore sell 25 boats to cover the $500 in fixed costs. As we show in Figure 11.5, this point occurs right where the operating cash flow line crosses the horizontal axis.

Notice that a project that just breaks even on a cash flow basis can cover its own fixed operating costs, but that is all. It never pays back anything, so the original investment is a complete loss (the IRR is \(-100\%\)).
Financial Break-Even The last case we consider is that of financial break-even, the sales level that results in a zero NPV. To the financial manager, this is the most interesting case. What we do is first determine what operating cash flow has to be for the NPV to be zero. We then use this amount to determine the sales volume.

To illustrate, recall that Wettway requires a 20 percent return on its $3,500 (in thousands) investment. How many sailboats does Wettway have to sell to break even once we account for the 20 percent per year opportunity cost?

The sailboat project has a five-year life. The project has a zero NPV when the present value of the operating cash flows equals the $3,500 investment. Because the cash flow is the same each year, we can solve for the unknown amount by viewing it as an ordinary annuity. The five-year annuity factor at 20 percent is 2.9906, and the OCF can be determined as follows:

\[
3,500 = OCF \times 2.9906 \\
OCF = \frac{3,500}{2.9906} = 1,170
\]

Wettway thus needs an operating cash flow of $1,170 each year to break even. We can now plug this OCF into the equation for sales volume:

\[
Q = \frac{($500 + 1,170)}{20} = 83.5
\]

So, Wettway needs to sell about 84 boats per year. This is not good news.

As indicated in Figure 11.5, the financial break-even is substantially higher than the accounting break-even. This will often be the case. Moreover, what we have discovered is that the sailboat project has a substantial degree of forecasting risk. We project sales of 85 boats per year, but it takes 84 just to earn the required return.

Conclusion Overall, it seems unlikely that the Wettway sailboat project would fail to break even on an accounting basis. However, there appears to be a very good chance that the true NPV is negative. This illustrates the danger in looking at just the accounting break-even.

What should Wettway do? Is the new project all wet? The decision at this point is essentially a managerial issue—a judgment call. The crucial questions are these:

1. How much confidence do we have in our projections?
2. How important is the project to the future of the company?
3. How badly will the company be hurt if sales turn out to be low? What options are available to the company in this case?

We will consider questions such as these in a later section. For future reference, our discussion of the different break-even measures is summarized in Table 11.1.

Concept Questions

11.4a If a project breaks even on an accounting basis, what is its operating cash flow?

11.4b If a project breaks even on a cash basis, what is its operating cash flow?

11.4c If a project breaks even on a financial basis, what do you know about its discounted payback?
Operating Leverage

We have discussed how to calculate and interpret various measures of break-even for a proposed project. What we have not explicitly discussed is what determines these points and how they might be changed. We now turn to this subject.

THE BASIC IDEA

Operating leverage is the degree to which a project or firm is committed to fixed production costs. A firm with low operating leverage will have low fixed costs compared to a firm with high operating leverage. Generally speaking, projects with a relatively heavy investment in plant and equipment will have a relatively high degree of operating leverage. Such projects are said to be capital intensive.

At some point, we are thinking about a new venture, there will normally be alternative ways of producing and delivering the product. For example, Wetway Corporation can purchase the necessary equipment and build all of the components for its sailboats in-house. Alternatively, some of the work could be farmed out to other firms. The first option involves a greater

TABLE 11.1
Summary of Break-Even Measures

<table>
<thead>
<tr>
<th>I. The General Break-Even Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignoring taxes, the relation between operating cash flow (OCF) and quantity of output or sales volume (Q) is:</td>
</tr>
<tr>
<td>$Q = \frac{FC + OCF}{P - v}$</td>
</tr>
<tr>
<td>where</td>
</tr>
<tr>
<td>FC = Total fixed costs</td>
</tr>
<tr>
<td>P = Price per unit</td>
</tr>
<tr>
<td>v = Variable cost per unit</td>
</tr>
<tr>
<td>As shown next, this relation can be used to determine the accounting, cash, and financial break-even points.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. The Accounting Break-Even Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting break-even occurs when net income is zero. Operating cash flow is equal to depreciation when net income is zero, so the accounting break-even point is:</td>
</tr>
<tr>
<td>$Q = \frac{FC + D}{P - v}$</td>
</tr>
<tr>
<td>A project that always just breaks even on an accounting basis has a payback exactly equal to its life, a negative NPV, and an IRR of zero.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III. The Cash Break-Even Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash break-even occurs when operating cash flow is zero. The cash break-even point is thus:</td>
</tr>
<tr>
<td>$Q = \frac{FC}{P - v}$</td>
</tr>
<tr>
<td>A project that always just breaks even on a cash basis never pays back, has an NPV that is negative and equal to the initial outlay, and has an IRR of −100 percent.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV. The Financial Break-Even Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial break-even occurs when the NPV of the project is zero. The financial break-even point is thus:</td>
</tr>
<tr>
<td>$Q = \frac{FC + OCF^*}{P - v}$</td>
</tr>
<tr>
<td>where OCF* is the level of OCF that results in a zero NPV. A project that breaks even on a financial basis has a discounted payback equal to its life, a zero NPV, and an IRR just equal to the required return.</td>
</tr>
</tbody>
</table>
investment in plant and equipment, greater fixed costs and depreciation, and, as a result, a higher degree of operating leverage.

IMPLICATIONS OF OPERATING LEVERAGE

Regardless of how it is measured, operating leverage has important implications for project evaluation. Fixed costs act like a lever in the sense that a small percentage change in operating revenue can be magnified into a large percentage change in operating cash flow and NPV. This explains why we call it operating “leverage.”

The higher the degree of operating leverage, the greater is the potential danger from forecasting risk. The reason is that relatively small errors in forecasting sales volume can get magnified, or “levered up,” into large errors in cash flow projections.

From a managerial perspective, one way of coping with highly uncertain projects is to keep the degree of operating leverage as low as possible. This will generally have the effect of keeping the break-even point (however measured) at its minimum level. We will illustrate this point in a bit, but first we need to discuss how to measure operating leverage.

MEASURING OPERATING LEVERAGE

One way of measuring operating leverage is to ask: If quantity sold rises by 5 percent, what will be the percentage change in operating cash flow? In other words, the degree of operating leverage (DOL) is defined such that:

\[
\text{Percentage change in OCF} = \text{DOL} \times \text{Percentage change in } Q
\]

Based on the relationship between OCF and Q, DOL can be written as:

\[
\text{DOL} = 1 + \frac{\text{FC}}{\text{OCF}}
\]

[11.4]

The ratio FC/OCF simply measures fixed costs as a percentage of total operating cash flow. Notice that zero fixed costs would result in a DOL of 1, implying that percentage changes in quantity sold would show up one for one in operating cash flow. In other words, no magnification, or leverage, effect would exist.

To illustrate this measure of operating leverage, we go back to the Wettway sailboat project. Fixed costs were $500 and \((P - v)\) was $20, so OCF was:

\[
\text{OCF} = -500 + 20 \times Q
\]

Suppose \(Q\) is currently 50 boats. At this level of output, OCF is \(-500 + 1,000 = 500\).

If \(Q\) rises by 1 unit to 51, then the percentage change in \(Q\) is \((51 - 50)/50 = .02\), or 2%. OCF rises to $520, a change of \(P - v = 20\). The percentage change in OCF is \((520 - 500)/500 = .04\), or 4%. So a 2 percent increase in the number of boats sold leads to a 4 percent increase in operating cash flow. The degree of operating leverage

\[\text{DOL} = \frac{\text{OCF} + \text{FC}}{\text{OCF}} = 1 + \frac{\text{FC}}{\text{OCF}}\]

\(^1\)To see this, note that if \(Q\) goes up by one unit, OCF will go up by \((P - v)\). In this case, the percentage change in \(Q\) is \(1/Q\), and the percentage change in OCF is \((P - v)/OCF\). Given this, we have:

\[
\begin{align*}
\text{Percentage change in OCF} &= \text{DOL} \times \text{Percentage change in } Q \\
(P - v)/\text{OCF} &= \text{DOL} \times 1/Q \\
\text{DOL} &= (P - v) \times Q/\text{OCF}
\end{align*}
\]

Also, based on our definitions of OCF:

\[
\text{OCF} + \text{FC} = (P - v) \times Q
\]

Thus, DOL can be written as:

\[
\text{DOL} = (\text{OCF} + \text{FC})/\text{OCF} = 1 + \text{FC}/\text{OCF}
\]
must be exactly 2.00. We can check this by noting that:
\[
DOL = 1 + \frac{FC}{OCF} = 1 + \frac{500}{500} = 2
\]
This verifies our previous calculations.

Our formulation of DOL depends on the current output level, \(Q \). However, it can handle changes from the current level of any size, not just one unit. For example, suppose \(Q \) rises from 50 to 75, a 50 percent increase. With DOL equal to 2, operating cash flow should increase by 100 percent, or exactly double. Does it? The answer is yes, because, at a \(Q \) of 75, OCF is:
\[
OCF = -500 + 20 \times 75 = 1,000
\]
Notice that operating leverage declines as output (\(Q \)) rises. For example, at an output level of 75, we have:
\[
DOL = 1 + \frac{500}{1,000} = 1.50
\]
The reason DOL declines is that fixed costs, considered as a percentage of operating cash flow, get smaller and smaller, so the leverage effect diminishes.

Operating Leverage

The Sasha Corp. currently sells gourmet dog food for $1.20 per can. The variable cost is 80 cents per can, and the packaging and marketing operations have fixed costs of $360,000 per year. Depreciation is $60,000 per year. What is the accounting break-even? Ignoring taxes, what will be the increase in operating cash flow if the quantity sold rises to 10 percent above the break-even point?

The accounting break-even is $420,000 / .40 = 1,050,000 cans. As we know, the operating cash flow is equal to the $60,000 depreciation at this level of production, so the degree of operating leverage is:
\[
DOL = 1 + \frac{FC}{OCF} = 1 + \frac{360,000}{60,000} = 7
\]
Given this, a 10 percent increase in the number of cans of dog food sold will increase operating cash flow by a substantial 70 percent.

To check this answer, we note that if sales rise by 10 percent, then the quantity sold will rise to 1,050,000 \(\times 1.1 = 1,155,000 \). Ignoring taxes, the operating cash flow will be 1,155,000 \(\times .40 = 360,000 \). Compared to the $60,000 cash flow we had, this is exactly 70 percent more: $102,000 / 60,000 = 1.70.

OPERATING LEVERAGE AND BREAK-EVEN

We illustrate why operating leverage is an important consideration by examining the Wetway sailboat project under an alternative scenario. At a \(Q \) of 85 boats, the degree of operating leverage for the sailboat project under the original scenario is:
\[
DOL = 1 + \frac{FC}{OCF} = 1 + \frac{500}{1,200} = 1.42
\]
Aiso, recall that the NPV at a sales level of 85 boats was $88,720, and that the accounting break-even was 60 boats.

An option available to Wettway is to subcontract production of the boat hull assemblies. If the company does this, the necessary investment falls to $3,200,000 and the fixed operating costs fall to $180,000. However, variable costs will rise to $25,000 per boat because subcontracting is more expensive than producing in-house. Ignoring taxes, evaluate this option.

For practice, see if you don’t agree with the following:

\[
\text{NPV at 20% (85 units)} = \$74,720 \\
\text{Accounting break-even} = 55 \text{ boats} \\
\text{Degree of operating leverage} = 1.16
\]

What has happened? This option results in a slightly lower estimated net present value, and the accounting break-even point falls to 55 boats from 60 boats.

Given that this alternative has the lower NPV, is there any reason to consider it further? Maybe there is. The degree of operating leverage is substantially lower in the second case. If Wettway is worried about the possibility of an overly optimistic projection, then it might prefer to subcontract.

There is another reason why Wettway might consider the second arrangement. If sales turned out to be better than expected, the company would always have the option of starting to produce in-house at a later date. As a practical matter, it is much easier to increase operating leverage (by purchasing equipment) than to decrease it (by selling off equipment). As we discuss in a later chapter, one of the drawbacks to discounted cash flow analysis is that it is difficult to explicitly include options of this sort in the analysis, even though they may be quite important.

Concept Questions

11.5a What is operating leverage?
11.5b How is operating leverage measured?
11.5c What are the implications of operating leverage for the financial manager?

Capital Rationing

Capital rationing is said to exist when we have profitable (positive NPV) investments available but we can’t get the funds needed to undertake them. For example, as division managers for a large corporation, we might identify $5 million in excellent projects, but find that, for whatever reason, we can spend only $2 million. Now what? Unfortunately, for reasons we will discuss, there may be no truly satisfactory answer.

SOFT RATIONING

The situation we have just described is called **soft rationing**. This occurs when, for example, different units in a business are allocated some fixed amount of money each year for capital spending. Such an allocation is primarily a means of controlling and keeping track of overall spending. The important thing to note about soft rationing is that the corporation as a whole isn’t short of capital; more can be raised on ordinary terms if management so desires.
If we face soft rationing, the first thing to do is to try to get a larger allocation. Failing that, one common suggestion is to generate as large a net present value as possible within the existing budget. This amounts to choosing projects with the largest benefit–cost ratio (profitability index).

Strictly speaking, this is the correct thing to do only if the soft rationing is a one-time event—that is, it won’t exist next year. If the soft rationing is a chronic problem, then something is amiss. The reason goes all the way back to Chapter 1. Ongoing soft rationing means we are constantly bypassing positive NPV investments. This contradicts our goal of the firm. If we are not trying to maximize value, then the question of which projects to take becomes ambiguous because we no longer have an objective goal in the first place.

HARD RATIONING

With hard rationing, a business cannot raise capital for a project under any circumstances. For large, healthy corporations, this situation probably does not occur very often. This is fortunate because, with hard rationing, our DCF analysis breaks down, and the best course of action is ambiguous.

The reason DCF analysis breaks down has to do with the required return. Suppose we say our required return is 20 percent. Implicitly, we are saying we will take a project with a return that exceeds this. However, if we face hard rationing, then we are not going to take a new project no matter what the return on that project is, so the whole concept of a required return is ambiguous. About the only interpretation we can give this situation is that the required return is so large that no project has a positive NPV in the first place.

Hard rationing can occur when a company experiences financial distress, meaning that bankruptcy is a possibility. Also, a firm may not be able to raise capital without violating a preexisting contractual agreement. We discuss these situations in greater detail in a later chapter.

Concept Questions

11.6a What is capital rationing? What types are there?
11.6b What problems does capital rationing create for discounted cash flow analysis?

Summary and Conclusions

In this chapter, we looked at some ways of evaluating the results of a discounted cash flow analysis; we also touched on some of the problems that can come up in practice:

1. Net present value estimates depend on projected future cash flows. If there are errors in those projections, then our estimated NPVs can be misleading. We called this possibility forecasting risk.
2. Scenario and sensitivity analysis are useful tools for identifying which variables are critical to the success of a project and where forecasting problems can do the most damage.
3. Break-even analysis in its various forms is a particularly common type of scenario analysis that is useful for identifying critical levels of sales.
4. Operating leverage is a key determinant of break-even levels. It reflects the degree to which a project or a firm is committed to fixed costs. The degree of operating leverage tells us the sensitivity of operating cash flow to changes in sales volume.

5. Projects usually have future managerial options associated with them. These options may be important, but standard discounted cash flow analysis tends to ignore them.

6. Capital rationing occurs when apparently profitable projects cannot be funded. Standard discounted cash flow analysis is troublesome in this case because NPV is not necessarily the appropriate criterion.

The most important thing to carry away from reading this chapter is that estimated NPV's or returns should not be taken at face value. They depend critically on projected cash flows. If there is room for significant disagreement about those projected cash flows, the results from the analysis have to be taken with a grain of salt.

Despite the problems we have discussed, discounted cash flow analysis is still the way of attacking problems because it forces us to ask the right questions. What we have learned in this chapter is that knowing the questions to ask does not guarantee we will get all the answers.

CHAPTER REVIEW AND SELF-TEST PROBLEMS

Use the following base-case information to work the self-test problems:

A project under consideration costs $750,000, has a five-year life, and has no salvage value. Depreciation is straight-line to zero. The required return is 17 percent, and the tax rate is 34 percent. Sales are projected at 500 units per year. Price per unit is $2,500, variable cost per unit is $1,500, and fixed costs are $200,000 per year.

11.1 Scenario Analysis
Suppose you think that the unit sales, price, variable cost, and fixed cost projections given here are accurate to within 5 percent. What are the upper and lower bounds for these projections? What is the base-case NPV? What are the best- and worst-case scenario NPV's?

11.2 Break-Even Analysis
Given the base-case projections in the previous problem, what are the cash, accounting, and financial break-even sales levels for this project? Ignore taxes in answering.

ANSWERS TO CHAPTER REVIEW AND SELF-TEST PROBLEMS

11.1
We can summarize the relevant information as follows:

<table>
<thead>
<tr>
<th></th>
<th>Base Case</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit sales</td>
<td>500</td>
<td>475</td>
<td>525</td>
</tr>
<tr>
<td>Price per unit</td>
<td>$2,500</td>
<td>$2,375</td>
<td>$2,625</td>
</tr>
<tr>
<td>Variable cost per unit</td>
<td>$1,500</td>
<td>$1,425</td>
<td>$1,575</td>
</tr>
<tr>
<td>Fixed cost per year</td>
<td>$200,000</td>
<td>$190,000</td>
<td>$210,000</td>
</tr>
</tbody>
</table>

Depreciation is $150,000 per year; knowing this, we can calculate the cash flows under each scenario. Remember that we assign high costs and low prices and volume for the worst case and just the opposite for the best case.
At 17 percent, the five-year annuity factor is 3.19935, so the NPVs are:

Base-case NPV = \(-750,000 + 3.19935 \times 249,000\) = \(46,638\)

Best-case NPV = \(-750,000 + 3.19935 \times 341,400\) = \(342,258\)

Worst-case NPV = \(-750,000 + 3.19935 \times 163,200\) = \(-227,866\)

11.2 In this case, we have $200,000 in cash fixed costs to cover. Each unit contributes $2,500 - 1,500 = $1,000 toward covering fixed costs. The cash break-even is thus $200,000/$1,000 = 200 units. We have another $150,000 in depreciation, so the accounting break-even is ($200,000 + 150,000)/$1,000 = 350 units.

To get the financial break-even, we need to find the OCF such that the project has a zero NPV. As we have seen, the five-year annuity factor is 3.19935 and the project costs $750,000, so the OCF must be such that:

\(750,000 = OCF \times 3.19935\)

So, for the project to break even on a financial basis, the project’s cash flow must be $750,000/3.19935, or $234,423 per year. If we add this to the $200,000 in cash fixed costs, we get a total of $434,423 that we have to cover. At $1,000 per unit, we need to sell $434,423/$1,000 = 435 units.

CONCEPTS REVIEW AND CRITICAL THINKING QUESTIONS

1. **Forecasting Risk** What is forecasting risk? In general, would the degree of forecasting risk be greater for a new product or a cost-cutting proposal? Why?

2. **Sensitivity Analysis and Scenario Analysis** What is the essential difference between sensitivity analysis and scenario analysis?

3. **Marginal Cash Flows** A coworker claims that looking at all this marginal this and incremental that is just a bunch of nonsense, saying, “Listen, if our average revenue doesn’t exceed our average cost, then we will have a negative cash flow, and we will go broke!” How do you respond?

4. **Operating Leverage** At one time at least, many Japanese companies had a “no-layoff” policy (for that matter, so did IBM). What are the implications of such a policy for the degree of operating leverage a company faces?

5. **Operating Leverage** Airlines offer an example of an industry in which the degree of operating leverage is fairly high. Why?

6. **Break-Even** As a shareholder of a firm that is contemplating a new project, would you be more concerned with the accounting break-even point, the cash break-even point, or the financial break-even point? Why?

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Unit Sales</th>
<th>Unit Price</th>
<th>Unit Variable Cost</th>
<th>Fixed Costs</th>
<th>Cash Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>500</td>
<td>2,500</td>
<td>1,500</td>
<td>200,000</td>
<td>249,000</td>
</tr>
<tr>
<td>Best case</td>
<td>525</td>
<td>2,625</td>
<td>1,425</td>
<td>190,000</td>
<td>341,400</td>
</tr>
<tr>
<td>Worst case</td>
<td>475</td>
<td>2,375</td>
<td>1,575</td>
<td>210,000</td>
<td>163,200</td>
</tr>
</tbody>
</table>
7. **Break-Even** Assume a firm is considering a new project that requires an initial investment and has equal sales and costs over its life. Will the project reach the accounting, cash, or financial break-even point first? Which will it reach next? Last? Will this ordering always apply?

8. **Capital Rationing** How are soft rationing and hard rationing different? What are the implications if a firm is experiencing soft rationing? Hard rationing?

9. **Capital Rationing** Going all the way back to Chapter 1, recall that we saw that partnerships and proprietorships can face difficulties when it comes to raising capital. In the context of this chapter, the implication is that small businesses will generally face what problem?

QUESTIONS AND PROBLEMS

BASIC

(Questions 1–15)

1. **Calculating Costs and Break-Even** Night Shades Inc. (NSI) manufactures biotech sunglasses. The variable materials cost is $4.68 per unit, and the variable labor cost is $2.27 per unit.
 a. What is the variable cost per unit?
 b. Suppose NSI incurs fixed costs of $650,000 during a year in which total production is 320,000 units. What are the total costs for the year?
 c. If the selling price is $11.99 per unit, does NSI break even on a cash basis? If depreciation is $190,000 per year, what is the accounting break-even point?

2. **Computing Average Cost** Everest Everwear Corporation can manufacture mountain climbing shoes for $17.82 per pair in variable raw material costs and $12.05 per pair in variable labor expense. The shoes sell for $95 per pair. Last year, production was 150,000 pairs. Fixed costs were $950,000. What were total production costs? What is the marginal cost per pair? What is the average cost? If the company is considering a one-time order for an extra 10,000 pairs, what is the minimum acceptable total revenue from the order? Explain.

3. **Scenario Analysis** Rollo Transmissions, Inc., has the following estimates for its new gear assembly project: price = $1,600 per unit; variable costs = $180 per unit; fixed costs = $5.5 million; quantity = 110,000 units. Suppose the company believes all of its estimates are accurate only to within ±15 percent. What values should the company use for the four variables given here when it performs its best-case scenario analysis? What about the worst-case scenario?

4. **Sensitivity Analysis** For the company in the previous problem, suppose management is most concerned about the impact of its price estimate on the project’s profitability. How could you address this concern? Describe how you would calculate your answer. What values would you use for the other forecast variables?

5. **Sensitivity Analysis and Break-Even** We are evaluating a project that costs $936,000, has an eight-year life, and has no salvage value. Assume that depreciation is straight-line to zero over the life of the project. Sales are projected at 100,000 units per year. Price per unit is $41, variable cost per unit is $26, and fixed costs are $850,000 per year. The tax rate is 35 percent, and we require a 15 percent return on this project.
a. Calculate the accounting break-even point. What is the degree of operating leverage at the accounting break-even point?

b. Calculate the base-case cash flow and NPV. What is the sensitivity of NPV to changes in the sales figure? Explain what your answer tells you about a 500-unit decrease in projected sales.

c. What is the sensitivity of OCF to changes in the variable cost figure? Explain what your answer tells you about a $1 decrease in estimated variable costs.

6. Scenario Analysis In the previous problem, suppose the projections given for price, quantity, variable costs, and fixed costs are all accurate to within ±10 percent. Calculate the best-case and worst-case NPV figures.

7. Calculating Break-Even In each of the following cases, calculate the accounting break-even and the cash break-even points. Ignore any tax effects in calculating the cash break-even.

<table>
<thead>
<tr>
<th>Unit Price</th>
<th>Unit Variable Cost</th>
<th>Fixed Costs</th>
<th>Depreciation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$3,000</td>
<td>$2,275</td>
<td>$14,000,000</td>
<td>$6,500,000</td>
</tr>
<tr>
<td>39</td>
<td>27</td>
<td>73,000</td>
<td>150,000</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>1,200</td>
<td>840</td>
</tr>
</tbody>
</table>

8. Calculating Break-Even In each of the following cases, find the unknown variable:

<table>
<thead>
<tr>
<th>Accounting Break-Even</th>
<th>Unit Price</th>
<th>Unit Variable Cost</th>
<th>Fixed Costs</th>
<th>Depreciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>127,500</td>
<td>$41</td>
<td>$30</td>
<td>$820,000</td>
<td>?</td>
</tr>
<tr>
<td>135,000</td>
<td>?</td>
<td>43</td>
<td>3,200,000</td>
<td>$1,150,000</td>
</tr>
<tr>
<td>5,478</td>
<td>98</td>
<td>?</td>
<td>160,000</td>
<td>105,000</td>
</tr>
</tbody>
</table>

9. Calculating Break-Even A project has the following estimated data: price = $68 per unit; variable costs = $41 per unit; fixed costs = $8,000; required return = 15 percent; initial investment = $12,000; life = four years. Ignoring the effect of taxes, what is the accounting break-even quantity? The cash break-even quantity? The financial break-even quantity? What is the degree of operating leverage at the financial break-even level of output?

10. Using Break-Even Analysis Consider a project with the following data: accounting break-even quantity = 17,000 units; cash break-even quantity = 12,000 units; life = five years; fixed costs = $130,000; variable costs = $23 per unit; required return = 16 percent. Ignoring the effect of taxes, find the financial break-even quantity.

11. Calculating Operating Leverage At an output level of 55,000 units, you calculate that the degree of operating leverage is 3.25. If output rises to 64,000 units, what will the percentage change in operating cash flow be? Will the new level of operating leverage be higher or lower? Explain.

12. Leverage In the previous problem, suppose fixed costs are $150,000. What is the operating cash flow at 48,000 units? The degree of operating leverage?

13. Operating Cash Flow and Leverage A proposed project has fixed costs of $43,000 per year. The operating cash flow at 8,000 units is $79,000. Ignoring the effect of taxes, what is the degree of operating leverage? If units sold rise from
14. **Cash Flow and Leverage** At a output level of 10,000 units, you have calculated that the degree of operating leverage is 2.15. The operating cash flow is $28,000 in this case. Ignoring the effect of taxes, what are fixed costs? What will be the operating cash flow be if output rises to 11,000 units? If output falls to 9,000 units?

15. **Leverage** In the previous problem, what will be the new degree of operating leverage in each case?

16. **Break-Even Intuition** Consider a project with a required return of R% that costs $1 and will last for N years. The project uses straight-line depreciation to zero over the N-year life; there is no salvage value or net working capital requirements.

 a. At the accounting break-even level of output, what is the IRR of this project? The payback period? The NPV?

 b. At the cash break-even level of output, what is the IRR of this project? The payback period? The NPV?

 c. At the financial break-even level of output, what is the IRR of this project? The payback period? The NPV?

17. **Sensitivity Analysis** Consider a four-year project with the following information:

 - Initial fixed asset investment = $460,000; straight-line depreciation to zero over the four-year life; zero salvage value; price = $26; variable costs = $18; fixed costs = $190,000; quantity sold = 110,000 units; tax rate = 34 percent. How sensitive is OCF to changes in quantity sold?

18. **Operating Leverage** In the previous problem, what is the degree of operating leverage at the given level of output? What is the degree of operating leverage at the accounting break-even level of output?

19. **Project Analysis** You are considering a new product launch. The project will cost $1,400,000, have a four-year life, and have no salvage value; depreciation is straight-line to zero. Sales are projected at 170 units per year; price per unit will be $17,000, variable cost per unit will be $10,500, and fixed costs will be $380,000 per year. The required return on the project is 12 percent, and the relevant tax rate is 35 percent.

 a. Based on your experience, you think the unit sales, variable cost, and fixed cost projections given here are probably accurate to within ±10 percent. What are the upper and lower bounds for these projections? What is the base-case NPV? What are the best-case and worst-case scenarios?

 b. Evaluate the sensitivity of your base-case NPV to changes in fixed costs.

 c. What is the cash break-even level of output for this project (ignoring taxes)?

 d. What is the accounting break-even level of output for this project? What is the degree of operating leverage at the accounting break-even point? How do you interpret this number?

20. **Project Analysis** McGilla Golf has decided to sell a new line of golf clubs. The clubs will sell for $700 per set and have a variable cost of $320 per set. The company has spent $150,000 for a marketing study that determined the company will sell 48,000 sets per year for seven years. The marketing study also determined that the company will lose sales of 11,000 sets of its high-priced clubs. The high-priced clubs sell at $1,100 and have variable costs of $600. The company will also increase sales of its cheap clubs by 9,000 sets. The cheap clubs sell for $400 and have variable costs of $180 per set. The fixed costs each year will be $7,500,000.
The company has also spent $1,000,000 on research and development for the new clubs. The plant and equipment required will cost $18,200,000 and will be depreciated on a straight-line basis. The new clubs will also require an increase in net working capital of $950,000 that will be returned at the end of the project. The tax rate is 40 percent, and the cost of capital is 10 percent. Calculate the payback period, the NPV, and the IRR.

21. **Scenario Analysis** In the previous problem, you feel that the values are accurate to within only ±10 percent. What are the best-case and worst-case NPVs? (Hint: The price and variable costs for the two existing sets of clubs are known with certainty; only the sales gained or lost are uncertain.)

22. **Sensitivity Analysis** McGilla Golf would like to know the sensitivity of NPV to changes in the price of the new clubs and the quantity of new clubs sold. What is the sensitivity of the NPV to each of these variables?

23. **Break-Even Analysis** Hybrid cars are touted as a “green” alternative; however, the financial aspects of hybrid ownership are not as clear. Consider the 2006 Honda Accord Hybrid, which had a list price of $5,450 (including tax consequences) more than a Honda Accord EX sedan. Additionally, the annual ownership costs (other than fuel) for the hybrid were expected to be $400 more than the traditional sedan. The EPA mileage estimate was 25 mpg for the hybrid and 23 mpg for the EX sedan.
 a. Assume that gasoline costs $2.80 per gallon and you plan to keep either car for six years. How many miles per year would you need to drive to make the decision to buy the hybrid worthwhile, ignoring the time value of money?
 b. If you drive 15,000 miles per year and keep either car for six years, what price per gallon would make the decision to buy the hybrid worthwhile, ignoring the time value of money?
 c. Rework parts (a) and (b) assuming the appropriate interest rate is 10 percent and all cash flows occur at the end of the year.
 d. What assumption did the analysis in the previous parts make about the resale value of each car?

24. **Break-Even Analysis** In an effort to capture the large jet market, Airbus invested $13 billion developing its A380, which is capable of carrying 800 passengers. The plane has a list price of $280 million. In discussing the plane, Airbus stated that the company would break even when 249 A380s were sold.
 a. Assuming the break-even sales figure given is the cash flow break-even, what is the cash flow per plane?
 b. Airbus promised its shareholders a 20 percent rate of return on the investment. If sales of the plane continue in perpetuity, how many planes must the company sell per year to deliver on this promise?
 c. Suppose instead that the sales of the A380 last for only 10 years. How many planes must Airbus sell per year to deliver the same rate of return?

25. **Break-Even and Taxes** This problem concerns the effect of taxes on the various break-even measures.
 a. Show that, when we consider taxes, the general relationship between operating cash flow, OCF, and sales volume, Q, can be written as:

 \[Q = \frac{FC + \frac{OCF - T \times D}{1 - T}}{p - v} \]
b. Use the expression in part (a) to find the cash, accounting, and financial break-even points for the Wetway sailboat example in the chapter. Assume a 38 percent tax rate.
c. In part (b), the accounting break-even should be the same as before. Why? Verify this algebraically.

26. **Operating Leverage and Taxes** Show that if we consider the effect of taxes, the degree of operating leverage can be written as:

\[
DOL = 1 + \frac{FC \times (1 - T) - T \times D}{OCF}
\]

Notice that this reduces to our previous result if \(T = 0 \). Can you interpret this in words?

27. **Scenario Analysis** Consider a project to supply Detroit with 45,000 tons of machine screws annually for automobile production. You will need an initial \$1,900,000 investment in threading equipment to get the project started; the project will last for five years. The accounting department estimates that annual fixed costs will be \$450,000 and that variable costs should be \$210 per ton; accounting will depreciate the initial fixed asset investment straight-line to zero over the five-year project life. It also estimates a salvage value of \$500,000 after dismantling costs. The marketing department estimates that the automakers will let the contract at a selling price of \$245 per ton. The engineering department estimates you will need an initial net working capital investment of \$450,000. You require a 13 percent return and face a marginal tax rate of 38 percent on this project.

a. What is the estimated OCF for this project? The NPV? Should you pursue this project?
b. Suppose you believe that the accounting department’s initial cost and salvage value projections are accurate only to within ±15 percent; the marketing department’s price estimate is accurate only to within ±10 percent; and the engineering department’s net working capital estimate is accurate only to within ±5 percent. What is your worst-case scenario for this project? Your best-case scenario? Do you still want to pursue the project?

28. **Sensitivity Analysis** In Problem 27, suppose you’re confident about your own projections, but you’re a little unsure about Detroit’s actual machine screw requirement. What is the sensitivity of the project OCF to changes in the quantity supplied? What about the sensitivity of NPV to changes in quantity supplied? Given the sensitivity number you calculated, is there some minimum level of output below which you wouldn’t want to operate? Why?

29. **Break-Even Analysis** Use the results of Problem 25 to find the accounting, cash, and financial break-even quantities for the company in Problem 27.

30. **Operating Leverage** Use the results of Problem 26 to find the degree of operating leverage for the company in Problem 27 at the base-case output level of 45,000 units. How does this number compare to the sensitivity figure you found in Problem 28? Verify that either approach will give you the same OCF figure at any new quantity level.
Conch Republic Electronics, Part 2

Shelley Couts, the owner of Conch Republic Electronics, had received the capital budgeting analysis from Jay McCanless for the new PDA the company is considering. Shelley was pleased with the results, but she still had concerns about the new PDA. Conch Republic had used a small market research firm for the past 20 years, but recently the founder of that firm retired. Because of this, she was not convinced the sales projections presented by the market research firm were entirely accurate. Additionally, because of rapid changes in technology, she was concerned that a competitor could enter the market. This would likely force Conch Republic to lower the sales price of its new PDA. For these reasons, she has asked Jay to analyze how changes in the price of the new PDA and changes in the quantity sold will affect the NPV of the project.

Shelley has asked Jay to prepare a memo answering the following questions:
1. How sensitive is the NPV to changes in the price of the new PDA?
2. How sensitive is the NPV to changes in the quantity sold of the new PDA?