Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>xvii</td>
</tr>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td></td>
</tr>
<tr>
<td>Financial Risk in a Crisis-Prone World</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Some History: Why Is Risk a Separate Discipline Today?</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 The Financial Industry Since the 1960s</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 The “Shadow Banking System”</td>
<td>9</td>
</tr>
<tr>
<td>1.1.3 Changes in Public Policy Toward the Financial System</td>
<td>15</td>
</tr>
<tr>
<td>1.1.4 The Rise of Large Capital Pools</td>
<td>17</td>
</tr>
<tr>
<td>1.1.5 Macroeconomic Developments Since the 1960s: From the Unraveling of Bretton Woods to the Great Moderation</td>
<td>20</td>
</tr>
<tr>
<td>1.2 The Scope of Financial Risk</td>
<td>34</td>
</tr>
<tr>
<td>1.2.1 Risk Management in Other Fields</td>
<td>34</td>
</tr>
<tr>
<td>Further Reading</td>
<td>41</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td></td>
</tr>
<tr>
<td>Market Risk Basics</td>
<td>43</td>
</tr>
<tr>
<td>2.1 Arithmetic, Geometric, and Logarithmic Security Returns</td>
<td>44</td>
</tr>
<tr>
<td>2.2 Risk and Securities Prices: The Standard Asset Pricing Model</td>
<td>49</td>
</tr>
<tr>
<td>2.2.1 Defining Risk: States, Security Payoffs, and Preferences</td>
<td>50</td>
</tr>
<tr>
<td>2.2.2 Optimal Portfolio Selection</td>
<td>54</td>
</tr>
<tr>
<td>2.2.3 Equilibrium Asset Prices and Returns</td>
<td>56</td>
</tr>
<tr>
<td>2.2.4 Risk-Neutral Probabilities</td>
<td>61</td>
</tr>
<tr>
<td>Chapter</td>
<td>Section</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>2.3</td>
<td>2.3.1</td>
</tr>
<tr>
<td></td>
<td>2.3.2</td>
</tr>
<tr>
<td></td>
<td>2.3.3</td>
</tr>
<tr>
<td>2.4</td>
<td>2.4.1</td>
</tr>
<tr>
<td></td>
<td>2.4.2</td>
</tr>
<tr>
<td></td>
<td>2.4.3</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

Further Reading 91

CHAPTER 3

Value-at-Risk

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Definition of Value-at-Risk 94</td>
</tr>
<tr>
<td></td>
<td>3.1.1</td>
</tr>
<tr>
<td></td>
<td>3.1.2</td>
</tr>
<tr>
<td>3.2</td>
<td>Volatility Estimation 99</td>
</tr>
<tr>
<td></td>
<td>3.2.1</td>
</tr>
<tr>
<td></td>
<td>3.2.2</td>
</tr>
<tr>
<td></td>
<td>3.2.3</td>
</tr>
<tr>
<td>3.3</td>
<td>Modes of Computation 108</td>
</tr>
<tr>
<td></td>
<td>3.3.1</td>
</tr>
<tr>
<td></td>
<td>3.3.2</td>
</tr>
<tr>
<td></td>
<td>3.3.3</td>
</tr>
<tr>
<td>3.4</td>
<td>Short Positions 113</td>
</tr>
<tr>
<td>3.5</td>
<td>Expected Shortfall 114</td>
</tr>
</tbody>
</table>

Further Reading 116

CHAPTER 4

Nonlinear Risks and the Treatment of Bonds and Options

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Nonlinear Risk Measurement and Options 121</td>
</tr>
<tr>
<td></td>
<td>4.1.1</td>
</tr>
<tr>
<td></td>
<td>4.1.2</td>
</tr>
<tr>
<td></td>
<td>4.1.3</td>
</tr>
<tr>
<td></td>
<td>4.1.4</td>
</tr>
<tr>
<td>4.2</td>
<td>Yield Curve Risk 136</td>
</tr>
<tr>
<td></td>
<td>4.2.1</td>
</tr>
<tr>
<td></td>
<td>4.2.2</td>
</tr>
<tr>
<td></td>
<td>4.2.3</td>
</tr>
</tbody>
</table>
Contents

4.3 VaR for Default-Free Fixed Income Securities Using
 The Duration and Convexity Mapping 148
 4.3.1 Duration 149
 4.3.2 Interest-Rate Volatility and Bond Price Volatility 150
 4.3.3 Duration-Only VaR 152
 4.3.4 Convexity 154
 4.3.5 VaR Using Duration and Convexity 155
 Further Reading 156

CHAPTER 5
Portfolio VaR for Market Risk 159
5.1 The Covariance and Correlation Matrices 160
5.2 Mapping and Treatment of Bonds and Options 162
5.3 Delta-Normal VaR 163
 5.3.1 The Delta-Normal Approach for a Single
 Position Exposed to a Single Risk Factor 164
 5.3.2 The Delta-Normal Approach for a Single
 Position Exposed to Several Risk Factors 166
 5.3.3 The Delta-Normal Approach for a Portfolio
 of Securities 168
5.4 Portfolio VAR via Monte Carlo simulation 174
5.5 Option Vega Risk 175
 5.5.1 Vega Risk and the Black-Scholes Anomalies 176
 5.5.2 The Option Implied Volatility Surface 180
 5.5.3 Measuring Vega Risk 183
 Further Reading 190

CHAPTER 6
Credit and Counterparty Risk 191
6.1 Defining Credit Risk 192
6.2 Credit-Risky Securities 193
 6.2.1 The Economic Balance Sheet of the Firm 193
 6.2.2 Capital Structure 194
 6.2.3 Security, Collateral, and Priority 195
 6.2.4 Credit Derivatives 196
6.3 Transaction Cost Problems in Credit Contracts 196
6.4 Default and Recovery: Analytic Concepts 199
 6.4.1 Default 199
 6.4.2 Probability of Default 200
 6.4.3 Credit Exposure 201
CONTENTS

6.4.4 Loss Given Default 201
6.4.5 Expected Loss 202
6.4.6 Credit Risk and Market Risk 204
6.5 Assessing creditworthiness 204
 6.5.1 Credit Ratings and Rating Migration 204
 6.5.2 Internal Ratings 207
 6.5.3 Credit Risk Models 207
6.6 Counterparty Risk 207
 6.6.1 Netting and Clearinghouses 209
 6.6.2 Measuring Counterparty Risk for Derivatives Positions 209
 6.6.3 Double Default Risk 211
 6.6.4 Custodial Risk 211
 6.6.5 Mitigation of Counterparty Risk 212
6.7 The Merton model 213
6.8 Credit Factor Models 222
6.9 Credit Risk Measures 226
 6.9.1 Expected and Unexpected Loss 228
 6.9.2 Jump-to-Default Risk 229
Further Reading 229

CHAPTER 7 Spread Risk and Default Intensity Models 231
7.1 Credit Spreads 231
 7.1.1 Spread Mark-to-Market 233
7.2 Default Curve Analytics 235
 7.2.1 The Hazard Rate 237
 7.2.2 Default Time Distribution Function 239
 7.2.3 Default Time Density Function 239
 7.2.4 Conditional Default Probability 240
7.3 Risk-Neutral Estimates of Default Probabilities 241
 7.3.1 Basic Analytics of Risk-Neutral Default Rates 242
 7.3.2 Time Scaling of Default Probabilities 245
 7.3.3 Credit Default Swaps 246
 7.3.4 Building Default Probability Curves 250
 7.3.5 The Slope of Default Probability Curves 259
7.4 Spread Risk 261
 7.4.1 Mark-to-Market of a CDS 261
 7.4.2 Spread Volatility 262
Further Reading 264
Contents

CHAPTER 8
Portfolio Credit Risk 265

8.1 Default Correlation 266
 8.1.1 Defining Default Correlation 266
 8.1.2 The Order of Magnitude of Default Correlation 270

8.2 Credit Portfolio Risk Measurement 270
 8.2.1 Granularity and Portfolio Credit Value-at-Risk 270

8.3 Default Distributions and Credit VaR with the
 Single-Factor Model 275
 8.3.1 Conditional Default Distributions 275
 8.3.2 Asset and Default Correlation 279
 8.3.3 Credit VaR Using the Single-Factor Model 281

8.4 Using Simulation and Copulas to Estimate Portfolio
 Credit Risk 284
 8.4.1 Simulating Single-Credit Risk 286
 8.4.2 Simulating Joint Defaults with a Copula 288
 Further Reading 295

CHAPTER 9
Structured Credit Risk 297

9.1 Structured Credit Basics 297
 9.1.1 Capital Structure and Credit Losses in a
 Securitization 301
 9.1.2 Waterfall 305
 9.1.3 Issuance Process 307

9.2 Credit Scenario Analysis of a Securitization 309
 9.2.1 Tracking the Interim Cash Flows 309
 9.2.2 Tracking the Final-Year Cash Flows 314

9.3 Measuring Structured Credit Risk via Simulation 318
 9.3.1 The Simulation Procedure and the Role of
 Correlation 318
 9.3.2 Means of the Distributions 323
 9.3.3 Distribution of Losses and Credit VaR 327
 9.3.4 Default Sensitivities of the Tranches 333
 9.3.5 Summary of Tranche Risks 336

9.4 Standard Tranches and Implied Credit Correlation 337
 9.4.1 Credit Index Default Swaps and Standard
 Tranches 338
 9.4.2 Implied Correlation 340
 9.4.3 Summary of Default Correlation Concepts 341
CONTENTS

9.5 Issuer and Investor Motivations for Structured Credit 342
9.5.1 Incentives of Issuers 343
9.5.2 Incentives of Investors 345
Further Reading 346

CHAPTER 10

Alternatives to the Standard Market Risk Model 349
10.1 Real-World Asset Price Behavior 349
10.2 Alternative Modeling Approaches 363
10.2.1 Jump-Diffusion Models 363
10.2.2 Extreme Value Theory 365
10.3 The Evidence on Non-Normality in Derivatives Prices 372
10.3.1 Option-Based Risk-Neutral Distributions 372
10.3.2 Risk-Neutral Asset Price Probability Distributions 380
10.3.3 Implied Correlations 387
Further Reading 390

CHAPTER 11

Assessing the Quality of Risk Measures 393
11.1 Model Risk 393
11.1.1 Valuation Risk 395
11.1.2 Variability of VaR Estimates 395
11.1.3 Mapping Issues 397
11.1.4 Case Study: The 2005 Credit Correlation Episode 399
11.1.5 Case Study: Subprime Default Models 405
11.2 Backtesting of VaR 407
11.3 Coherence of VaR Estimates 414
Further Reading 419

CHAPTER 12

Liquidity and Leverage 421
12.1 Funding Liquidity Risk 422
12.1.1 Maturity Transformation 422
12.1.2 Liquidity Transformation 423
12.1.3 Bank Liquidity 425
12.1.4 Structured Credit and Off-Balance-Sheet Funding 429
12.1.5 Funding Liquidity of Other Intermediaries 432
12.1.6 Systematic Funding Liquidity Risk 434
Contents

12.2 Markets for Collateral 437
 12.2.1 Structure of Markets for Collateral 438
 12.2.2 Economic Function of Markets for Collateral 441
 12.2.3 Prime Brokerage and Hedge Funds 443
 12.2.4 Risks in Markets for Collateral 445
12.3 Leverage and Forms of Credit in Contemporary Finance 448
 12.3.1 Defining and Measuring Leverage 448
 12.3.2 Margin Loans and Leverage 454
 12.3.3 Short Positions 455
 12.3.4 Derivatives 456
 12.3.5 Structured Credit 460
 12.3.6 Asset Volatility and Leverage 460
12.4 Transactions Liquidity Risk 461
 12.4.1 Causes of Transactions Liquidity Risk 461
 12.4.2 Characteristics of Market Liquidity 463
12.5 Liquidity Risk Measurement 464
 12.5.1 Measuring Funding Liquidity Risk 464
 12.5.2 Measuring Transactions Liquidity Risk 466
12.6 Liquidity and Systemic Risk 469
 12.6.1 Funding Liquidity and Solvency 469
 12.6.2 Funding and Market Liquidity 471
 12.6.3 Systemic Risk and the “Plumbing” 471
 12.6.4 “Interconnectedness” 473
Further Reading 474

CHAPTER 13
Risk Control and Mitigation 477
13.1 Defining Risk Capital 478
13.2 Risk Contributions 480
 13.2.1 Risk Contributions in a Long-Only Portfolio 481
 13.2.2 Risk Contributions Using Delta Equivalents 485
 13.2.3 Risk Capital Measurement for Quantitative Strategies 490
13.3 Stress Testing 499
 13.3.1 An Example of Stress Testing 501
 13.3.2 Types of Stress Tests 504
13.4 Sizing Positions 506
 13.4.1 Diversification 506
 13.4.2 Optimization and Implied Views 507
13.5 Risk Reporting 509
13.6 Hedging and Basis Risk 512
Further Reading 516
CHAPTER 14
Financial Crises

- **14.1 Panics, Runs, and Crashes**
 - 14.1.1 Monetary and Credit Contraction
 - 14.1.2 Panics
 - 14.1.3 Rising Insolvencies
 - 14.1.4 Impairment of Market Functioning

- **14.2 Self-Reinforcing Mechanisms**
 - 14.2.1 Net Worth and Asset Price Declines
 - 14.2.2 Collateral Devaluation
 - 14.2.3 Risk Triggers
 - 14.2.4 Accounting Triggers

- **14.3 Behavior of Asset Prices During Crises**
 - 14.3.1 Credit Spreads
 - 14.3.2 Extreme Volatility
 - 14.3.3 Correlations

- **14.4 Causes of Financial Crises**
 - 14.4.1 Debt, International Payments, and Crises
 - 14.4.2 Interest Rates and Credit Expansion
 - 14.4.3 Procyclicality: Financial Causes of Crises
 - 14.4.4 Models of Bubbles and Crashes

- **14.5 Anticipating Financial Crises**
 - 14.5.1 Identifying Financial Fragility
 - 14.5.2 Macroeconomic Predictors of Financial Crises
 - 14.5.3 Asset-Price Predictors of Financial Crises

Further Reading

CHAPTER 15
Financial Regulation

- **15.1 Scope and Structure of Regulation**
 - 15.1.1 The Rationale of Regulation
 - 15.1.2 Regulatory Authorities

- **15.2 Methods of Regulation**
 - 15.2.1 Deposit Insurance
 - 15.2.2 Capital Standards
 - 15.2.3 Bank Examinations and Resolution

- **15.3 Public Policy Toward Financial Crises**
 - 15.3.1 Financial Stability Policies
 - 15.3.2 Lender of Last Resort
Contents

15.4 Pitfalls in Regulation 635
 15.4.1 Moral Hazard and Risk Shifting 636
 15.4.2 Regulatory Evasion 643
 15.4.3 Unintended Consequences 645
Further Reading 647

APPENDIX A
Technical Notes 653
 A.1 Binomial Distribution 653
 A.2 Quantiles and Quantile Transformations 654
 A.3 Normal and Lognormal Distributions 656
 A.3.1 Relationship between Asset Price Levels and Returns 656
 A.3.2 The Black-Scholes Distribution Function 657
 A.4 Hypothesis Testing 661
 A.5 Monte Carlo Simulation 662
 A.5.1 Fooled by Nonrandomness: Random Variable Generation 663
 A.5.2 Generating Nonuniform Random Variates 664
 A.6 Homogeneous Functions 664
Further Reading 666

APPENDIX B
Abbreviations 667

APPENDIX C
References 671

Index 701
List of Figures

1.1 Disintermediation in the U.S. Financial System 1980–2010 4
1.2 Share of Financial Services Industry in U.S. Output 5
1.3 OTC Derivatives Markets 1998–2010 9
1.4 Intermediation by Sector 1959–2008 12
1.5 Traditional and Innovative Intermediation 1951–2010 13
1.6 Securitization of Commercial Real Estate Lending 1960–2010 14
1.7 Hedge Fund Assets under Management 18
1.8 Growth of World Income 1950–2006 21
1.9 Growth of World International Trade 1971–2009 22
1.10 U.S. Labor Productivity 1947–2010 23
1.13 Growth of International Monetary Reserves 26
1.14 Real Fed Funds Rate 1971–2009 27
1.15 U.S. Growth Rate and Its Volatility 1947–2009 28
1.16 U.S. Savings Rate 1946–2010 29
1.17 Corporate Leverage in the United States 29
2.1 Approximating Logarithmic by Arithmetic Returns 48
2.2 Sample Path of a Random Walk 66
2.3 Convergence of a Random Walk to a Brownian Motion 67
2.4 Convergence of a Random Walk to a Brownian Motion 69
2.5 Geometric Brownian Motion: Asset Price Level 73
2.6 Geometric Brownian Motion: Daily Returns 74
2.7 Joint Distribution of EUR and JPY Returns 78
2.8 Correlation and Beta 79
2.9 Volatility and Beta 80
2.10 Diversification, Volatility, and Correlation 84
2.11 Minimum-Variance and Efficient Portfolios 87
3.1 Definition of VaR 96
3.2 The EWMA Weighting Scheme 105
3.3 Comparison of Volatility Estimators 107
3.4 Comparison of Simulation Approaches 112
4.1 Monotonicity and Option Risk Measurement 124
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Delta-Gamma and VaR for an Unhedged Long Call</td>
<td>130</td>
</tr>
<tr>
<td>4.3</td>
<td>Delta-Gamma and VaR for a Hedged Call</td>
<td>132</td>
</tr>
<tr>
<td>4.4</td>
<td>Option Combinations</td>
<td>133</td>
</tr>
<tr>
<td>4.5</td>
<td>Delta-Gamma and Full-Repricing VaR for a Risk Reversal</td>
<td>135</td>
</tr>
<tr>
<td>4.6</td>
<td>Spot, Forward, and Discount Curves</td>
<td>145</td>
</tr>
<tr>
<td>4.7</td>
<td>Bond Price and Yield Volatility</td>
<td>152</td>
</tr>
<tr>
<td>4.8</td>
<td>Approximating the Bond Price-Yield Relationship</td>
<td>155</td>
</tr>
<tr>
<td>5.1</td>
<td>Time Variation of Implied Volatility</td>
<td>176</td>
</tr>
<tr>
<td>5.2</td>
<td>Option Vega</td>
<td>178</td>
</tr>
<tr>
<td>5.3</td>
<td>S&P 500 Implied Volatility Smile</td>
<td>181</td>
</tr>
<tr>
<td>5.4</td>
<td>EUR-USD Volatility Surface</td>
<td>182</td>
</tr>
<tr>
<td>5.5</td>
<td>Impact of Vega Risk</td>
<td>184</td>
</tr>
<tr>
<td>5.6</td>
<td>Euro Foreign Exchange Implied Volatilities</td>
<td>186</td>
</tr>
<tr>
<td>5.7</td>
<td>Vega and the Smile</td>
<td>188</td>
</tr>
<tr>
<td>5.8</td>
<td>Euro Implied Volatilities, Risk Reversals, and Strangle Prices</td>
<td>189</td>
</tr>
<tr>
<td>6.1</td>
<td>Default Rates 1920–2010</td>
<td>206</td>
</tr>
<tr>
<td>6.2</td>
<td>Merton Model</td>
<td>220</td>
</tr>
<tr>
<td>6.3</td>
<td>Asset and Market Index Returns in the Single-Factor Model</td>
<td>225</td>
</tr>
<tr>
<td>6.4</td>
<td>Distribution of Bond Value in the Merton Model</td>
<td>227</td>
</tr>
<tr>
<td>6.5</td>
<td>Credit VaR in the Merton Model</td>
<td>228</td>
</tr>
<tr>
<td>7.1</td>
<td>Computing Spread01 for a Fixed-Rate Bond</td>
<td>234</td>
</tr>
<tr>
<td>7.2</td>
<td>Spread01 a Declining Function of Spread Level</td>
<td>235</td>
</tr>
<tr>
<td>7.3</td>
<td>Intensity Model of Default Timing</td>
<td>238</td>
</tr>
<tr>
<td>7.4</td>
<td>CDS Curves</td>
<td>247</td>
</tr>
<tr>
<td>7.5</td>
<td>Estimation of Default Curves</td>
<td>258</td>
</tr>
<tr>
<td>7.6</td>
<td>Spread Curve Slope and Default Distribution</td>
<td>260</td>
</tr>
<tr>
<td>7.7</td>
<td>Morgan Stanley CDS Curves, select dates</td>
<td>261</td>
</tr>
<tr>
<td>7.8</td>
<td>Measuring Spread Volatility: Citigroup Spreads 2006–2010</td>
<td>263</td>
</tr>
<tr>
<td>8.1</td>
<td>Distribution of Defaults in an Uncorrelated Credit Portfolio</td>
<td>272</td>
</tr>
<tr>
<td>8.2</td>
<td>Distribution of Losses in an Uncorrelated Credit Portfolio</td>
<td>274</td>
</tr>
<tr>
<td>8.3</td>
<td>Default Probabilities in the Single-Factor Model</td>
<td>277</td>
</tr>
<tr>
<td>8.4</td>
<td>Single-Factor Default Probability Distribution</td>
<td>279</td>
</tr>
<tr>
<td>8.5</td>
<td>Conditional Default Density Function in the Single-Factor Model</td>
<td>280</td>
</tr>
<tr>
<td>8.6</td>
<td>Distribution of Losses in the Single-Factor Model</td>
<td>285</td>
</tr>
<tr>
<td>8.7</td>
<td>Density Function of Portfolio Losses in the Single-Factor Model</td>
<td>286</td>
</tr>
<tr>
<td>8.8</td>
<td>Estimated Single-Credit Default Risk by Simulation</td>
<td>287</td>
</tr>
<tr>
<td>8.9</td>
<td>Shifting from Uniform to Normal Distribution Simulations</td>
<td>288</td>
</tr>
<tr>
<td>8.10</td>
<td>Distribution of Losses in the Single-Factor Model</td>
<td>292</td>
</tr>
<tr>
<td>8.11</td>
<td>Simulating Multiple Defaults</td>
<td>294</td>
</tr>
<tr>
<td>9.1</td>
<td>Values of CLO Tranches</td>
<td>326</td>
</tr>
</tbody>
</table>
List of Figures

9.2 Distribution of Simulated Equity Tranche Values 328
9.3 Distribution of Simulated Mezzanine Bond Tranche Losses 328
9.4 Distribution of Simulated Senior Bond Tranche Losses 329
9.5 Default Sensitivities of CLO Tranches 335
10.1 Normal and Non-Normal Distributions 351
10.3 Statistical Properties of Exchange Rates 356
10.4 Kernel Estimate of the Distribution of VIX Returns 360
10.5 QQ Plot of the S&P 500 367
10.6 Jump-Diffusion Process: Asset Price Level 364
10.7 Jump-Diffusion: Daily Returns 365
10.8 Elan Corporation Stock Price 366
10.9 QQ Plot of the S&P 500 367
10.10 Constructing a Long Butterfly 378
10.11 State Prices and the Risk Neutral Density 379
10.12 Fitted Implied Volatility Smile 384
10.13 Estimated Risk-Neutral Density 385
10.14 Risk-Neutral Implied Equity Correlation 389
11.1 Convexity of CLO Liabilities 401
11.2 Correlation Risk of the Convexity Trade 404
11.3 Implied Correlation in the 2005 Credit Episode 405
11.4 ABX Index of RMBS Prices 407
11.5 Chi-Square Distribution 410
11.6 Backtest of a Normal Distribution 411
11.7 Likelihood-Ratio Test 412
11.8 Historical Backtesting 413
11.9 Failure of Subadditivity 417
12.1 Short-Term Commercial Paper of Financial Institutions 430
12.2 Convertible Bond Cheapness 437
12.3 U.S. Broker-Dealer Repo 1980–2010 444
12.4 Repo Rates and Spreads 2006–2009 447
13.1 Risk Contributions in a Long-Only Strategy 486
13.2 Allocation, Volatility, and Constant Risk Contribution 487
13.3 Simulated Hedge Fund Strategy Returns 494
13.4 Citigroup CDS Basis 2007–2010 514
14.1 Net Borrowing in U.S. Credit Markets 1946–2010 520
14.3 Tightening of Credit Terms 1990–2011 523
14.4 U.S. Bank Lending during the Subprime Crisis 2006–2011 524
14.5 Outstanding Volume of Commercial Paper 2001–2011 527
14.6 U.S. Bond Issuance 1996–2010 527
LIST OF FIGURES

14.7 Institutional Investor Assets in MMMFs 2008–2010 529
14.8 Citigroup Credit Spreads during the Subprime Crisis 532
14.9 Three-Month TED Spread 1985–2011 533
14.10 Libor-OIS Spread 2006–2011 534
14.16 S&P 500 Prices 1927–2011 552
14.18 Equity Volatility Dispersion 554
14.20 On- vs. Off-the-Run Rate Correlation 558
14.21 Changing Equity Betas during the Subprime Crisis 559
14.22 Implied Credit Correlation 2004–2010 561
14.23 Gold and the U.S. Dollar at the End of Bretton Woods 568
14.24 Sterling in the European Monetary System 569
14.25 U.S. Leverage 1947–2010 583
14.26 Behavior of Implied and Historical Volatility in Crises 589
15.1 U.S. House Prices and Homeownership 1987–2011 623
15.2 Citigroup Credit Spreads during the Subprime Crisis 641
A.1 Convergence of Binomial to Normal Distribution 654
A.2 The Black-Scholes Probability Density Function 660
A.3 Transforming Uniform into Normal Variates 665