Selected Equations and Data

CHAPTER 1

\[
\text{Value} = \frac{\text{FCF}_1}{(1 + \text{WACC})^1} + \frac{\text{FCF}_2}{(1 + \text{WACC})^2} + \frac{\text{FCF}_3}{(1 + \text{WACC})^3} + \cdots + \frac{\text{FCF}_\infty}{(1 + \text{WACC})^\infty}
\]

CHAPTER 2

EBIT = Earnings before interest and taxes = Sales revenues − Operating costs

EBITDA = Earnings before interest, taxes, depreciation and amortization

\[= \text{EBIT} + \text{Depreciation} + \text{Amortization}\]

Net cash flow = Net income + Depreciation and amortization

NOWC = Net operating working capital

\[= \text{Operating current assets} - \text{Operating current liabilities}\]

\[= \left(\text{Cash} + \text{Accounts receivable} + \text{Inventories} \right) - \left(\text{Accounts payable} + \text{Accruals} \right)\]

Total net operating capital = Net operating working capital + Operating long-term assets

NOPAT = Net operating profit after taxes = EBIT(1 − Tax rate)

Free cash flow (FCF) = NOPAT − Net investment in operating capital

\[= \text{NOPAT} - \left(\frac{\text{Current year's total net operating capital} - \text{Previous year's total net operating capital}}{\text{Current year's total net operating capital}} \right)\]

Operating cash flow = NOPAT + Depreciation and amortization

Gross investment in operating capital = Net investment in operating capital + Depreciation
\[FCF = \text{Operating cash flow} - \text{Gross investment in operating capital} \]

\[\text{Return on invested capital (ROIC)} = \frac{\text{NOPAT}}{\text{Total net operating capital}} \]

\[\text{MVA} = \text{Market value of stock} - \text{Equity capital supplied by shareholders} \]
\[= (\text{Shares outstanding})\text{(Stock price)} - \text{Total common equity} \]

\[\text{MVA} = \text{Total market value} - \text{Total investor-supplied capital} \]
\[= \left(\frac{\text{Market value of stock}}{+ \text{Market value of debt}} \right) - \text{Total investor-supplied capital} \]

\[\text{EVA} = \left(\frac{\text{Net operating profit after taxes}}{\text{(NOPAT)}} \right) - \left(\frac{\text{After-tax dollar cost of capital used to support operations}}{\text{WACC}} \right) \]
\[= \text{EBIT(1−Tax rate)} - \left(\frac{\text{Total net operating capital}}{\text{(WACC)}} \right) \]
\[\text{EVA} = \left(\frac{\text{Total net operating capital}}{\text{(ROIC − WACC)}} \right) \]

CHAPTER 3

Current ratio = \[\frac{\text{Current assets}}{\text{Current liabilities}} \]

Quick, or acid test, ratio = \[\frac{\text{Current assets} - \text{Inventories}}{\text{Current liabilities}} \]

Inventory turnover ratio = \[\frac{\text{Sales}}{\text{Inventories}} \]

DSO = Days sales outstanding = \[\frac{\text{Receivables}}{\text{Average sales per day}} = \frac{\text{Receivables}}{\text{Annual sales/365}} \]

Fixed assets turnover ratio = \[\frac{\text{Sales}}{\text{Net fixed assets}} \]

Total assets turnover ratio = \[\frac{\text{Sales}}{\text{Total assets}} \]

Debt ratio = \[\frac{\text{Total liabilities}}{\text{Total assets}} \]

Market debt ratio = \[\frac{\text{Total liabilities}}{\text{Total liabilities + Market value of equity}} \]

Debt-to-equity ratio = \[\frac{\text{Total liabilities}}{\text{Total assets} - \text{Total liabilities}} \]

Debt-to-equity = \[\frac{\text{Debt ratio}}{1 - \text{Debt ratio}} \quad \text{and} \quad \text{Debt ratio} = \frac{\text{Debt-to-equity}}{1 + \text{Debt-to-equity}} \]

Equity multiplier = \[\frac{\text{Total assets}}{\text{Common equity}} \]
Debt ratio = 1 - \frac{1}{Equity multiplier}

Times-interest-earned (TIE) ratio = \frac{EBIT}{Interest charges}

EBITDA coverage ratio = \frac{EBITDA + Lease payments}{Interest + Principal payments + Lease payments}

Net profit margin = \frac{Net income available to common stockholders}{Sales}

Operating profit margin = \frac{EBIT}{Sales}

Gross profit margin = \frac{Sales - Cost of goods sold}{Sales}

Return on total assets (ROA) = \frac{Net income available to common stockholders}{Total assets}

Basic earning power (BEP) ratio = \frac{EBIT}{Total assets}

ROA = Profit margin \times Total assets turnover = \frac{Net income}{Sales} \times \frac{Sales}{Total assets}

Return on common equity (ROE) = \frac{Net income available to common stockholders}{Common equity}

ROE = ROA \times Equity multiplier
\quad = Profit margin \times Total assets turnover \times Equity multiplier
\quad = \frac{Net income}{Sales} \times \frac{Sales}{Total assets} \times \frac{Total assets}{Common equity}

Price/earnings (P/E) ratio = \frac{Price per share}{Earnings per share}

Price/cash flow ratio = \frac{Price per share}{Cash flow per share}

Book value per share = \frac{Common equity}{Shares outstanding}

Market/book (M/B) ratio = \frac{Market price per share}{Book value per share}

\textbf{CHAPTER 4}

\text{FVN} = PV(1 + I)^N

\text{PV} = \frac{\text{FVN}}{(1 + I)^N}
\[FV_{AN} = PMT \left(\frac{(1 + I)^N - 1}{I} \right) = PMT \left(\frac{(1 + I)^N - 1}{I} \right) \]

\[FV_{Due} = FVA_{ordinary} (1 + I) \]

\[PV_{AN} = PMT \left(\frac{1 - \frac{1}{I(1 + I)^N}}{I} \right) = PMT \left(\frac{1 - \frac{1}{(1 + I)^N}}{I} \right) \]

\[PV_{Due} = PV_{Ordinary} (1 + I) \]

PV of a perpetuity = \(\frac{PMT}{I} \)

\[PV_{Uneven\ stream} = \sum_{t=1}^{N} \frac{CF_t}{(1 + I)^t} \]

\[FV_{Uneven\ stream} = \sum_{t=1}^{N} CF_t (1 + I)^{N-t} \]

\[I_{PER} = \frac{I_{NOM}}{M} \]

\[APR = (I_{PER})M \]

Number of periods = NM

\[F V_{N} = PV (1 + I_{PER})^{Number\ of\ periods} = PV \left(\frac{1 + \frac{I_{NOM}}{M}}{M} \right)^{MN} \]

\[EFF\% = \left(1 + \frac{I_{NOM}}{M} \right)^{M} - 1.0 \]

\section*{Chapter 5}

\[V_B = \sum_{t=1}^{N} \frac{INT}{(1 + r_d)^t} + \frac{M}{(1 + r_d)^N} \]

Semiannual payments: \(V_B = \sum_{t=1}^{2N} \frac{INT/2}{(1 + r_d/2)^t} + \frac{M}{(1 + r_d/2)^{2N}} \)

Yield to maturity: Bond price = \(\sum_{t=1}^{N} \frac{INT}{(1 + YTM)^t} + \frac{M}{(1 + YTM)^N} \)

Price of callable bond (if called at \(N \)) = \(\sum_{t=1}^{N} \frac{INT}{(1 + r_d)^t} + \frac{Call\ price}{(1 + r_d)^N} \)

Current yield = \(\frac{\text{Annual interest}}{\text{Bond's current price}} \)

Current yield + Capital gains yield = Yield to maturity

\[r_d = r^* + IP + DRP + LP + MRP \]

\[r_{RF} = r^* + IP \]

\[r_d = r_{RF} + DRP + LP + MRP \]

\[I_{PN} = I_1 + I_2 + \cdots + I_N \]

\[N \]
CHAPTER 6

Expected rate of return \(\hat{r} = \sum_{i=1}^{n} P_i r_i \)

Historical average, \(\bar{r}_{\text{Avg}} = \frac{\sum_{t=1}^{n} \bar{r}_t}{n} \)

Variance = \(\sigma^2 = \sum_{i=1}^{n} (r_i - \hat{r})^2 p_i \)

Standard deviation = \(\sigma = \sqrt{\sum_{i=1}^{n} (r_i - \hat{r})^2 p_i} \)

Historical estimated \(\sigma = S = \sqrt{\frac{\sum_{t=1}^{n} (\bar{r}_t - \bar{r}_{\text{Avg}})^2}{n-1}} \)

CV = \(\frac{\hat{r}}{\sigma} \)

\(\hat{r}_p = \sum_{i=1}^{n} w_i \hat{r}_i \)

\(\sigma_p = \sqrt{\sum_{i=1}^{n} (r_{pi} - \hat{r}_p)^2 p_i} \)

Estimated \(\rho = R = \frac{\sum_{t=1}^{n} (\bar{r}_{iT} - \bar{r}_{I,\text{Avg}})(\bar{r}_{jT} - \bar{r}_{j,\text{Avg}})}{\sqrt{\sum_{t=1}^{n} (\bar{r}_{iT} - \bar{r}_{I,\text{Avg}})^2 \sum_{t=1}^{n} (\bar{r}_{jT} - \bar{r}_{j,\text{Avg}})^2}} \)

\(\text{COV}_{iM} = \rho_{iM} \sigma_i \sigma_M \)

\(b_i = \left(\frac{\sigma_i}{\sigma_M} \right) \rho_{iM} = \frac{\text{COV}_{iM}}{\sigma_M^2} \)

\(b_p = \sum_{i=1}^{n} w_i b_i \)

Required return on stock market = \(r_M \)

Market risk premium = \(\text{RP}_M = r_M - r_{RF} \)

\(\text{RP}_i = (r_M - r_{RF}) b_i = (\text{RP}_M) b_i \)

\(\text{SML} = r_i = r_{RF} + (r_M - r_{RF}) b_i = r_{RF} + \text{RP}_M b_i \)

CHAPTER 7

\(\hat{P}_0 = \text{PV of expected future dividends} = \sum_{t=1}^{\infty} \frac{D_t}{(1 + r_s)^t} \)

Constant growth: \(\hat{P}_0 = \frac{D_0 (1 + g)}{r_s - g} = \frac{D_1}{r_s - g} \)
\[r_s = \frac{D_1}{P_0} + g \]

Capital gains yield = \[\frac{\hat{P}_1 - P_0}{P_0} \]

Dividend yield = \[\frac{D_1}{P_0} \]

For a zero growth stock, \[\hat{P}_0 = \frac{D}{r_s} \]

Horizon value = Terminal value = \[\hat{P}_N = \frac{D_{N+1}}{r_s - g} \]

\[V_{ps} = \frac{D_{ps}}{r_{ps}} \]

\[\hat{r}_{ps} = \frac{D_{ps}}{V_{ps}} \]

\[r_{ps} = \text{Actual dividend yield + Actual capital gains yield} \]

Chapter 8

Exercise value = MAX[Current price of stock – Strike price, 0]

Number of stock shares in hedged portfolio = \[N = \frac{C_u - C_d}{P_u - P_d} \]

\[V_C = P[N(d_1)] - Xe^{-r_{RF}t}[N(d_2)] \]

\[d_1 = \frac{\ln(P/X) + \left[r_{RF} + \frac{\sigma^2}{2} \right]t}{\sigma \sqrt{t}} \]

\[d_2 = d_1 - \sigma \sqrt{t} \]

Put–call parity: Put option = \[V_C - P + Xe^{-r_{RF}t} \]

V of put = \[P[N(d_1) - 1] - Xe^{-r_{RF}t}[N(d_2) - 1] \]

Chapter 9

After-tax component cost of debt = \[r_d(1 - T) \]

\[M(1-F) = \sum_{t=1}^{N} \frac{\text{INT}(1 - T)}{[1 + r_d(1 - T)]^t} + \frac{M}{[1 + r_d(1 - T)]^N} \]

\[r_{ps} = \frac{D_{ps}}{P_{ps}(1 - F)} \]

Market equilibrium: Expected rate of return = \[\hat{r}_M = \frac{D_1}{P_0} + g = r_{RF} + R P_M = r_M = \text{Required rate of return} \]

where \[D_1, P_0, \text{and } g \] are for the market, not an individual company
Rep/Div = ratio of payouts via repurchases to payouts via dividends

\[r_M = \frac{\text{Rep}}{\text{Div}} = \left(1 + \frac{\text{Rep}}{\text{Div}}\right) \frac{D_1}{P_0} + g, \] where \(g \) is long-term growth rate in total payouts for the market and

where \(D_1 \) and \(P_0 \) are for the market, not an individual company

CAPM: \(r_s = r_{RF} + b_i(RP_M) \)

DCF: \(r_s = \frac{\text{D_1}}{P_0} + \text{Expected g in dividends per share} \)

\[r_s = \text{Company’s own bond yield} + \text{Judgmental risk premium} \]

\(g = (\text{Retention rate})(\text{ROE}) = (1.0 - \text{Payout rate})(\text{ROE}) \)

\[r_e = \frac{\text{D_1}}{P_0(1-F)} + g \]

WACC = \(w_{dr_d}(1 - T) + w_{psrps} + w_s r_s \)

Chapter 10

\[\text{NPV} = CF_0 + \frac{CF_1}{(1 + r)^1} + \frac{CF_2}{(1 + r)^2} + \cdots + \frac{CF_N}{(1 + r)^N} \]

\[= \sum_{t=0}^{N} \frac{CF_t}{(1 + r)^t} \]

IRR: \[\text{CF_0} + \frac{CF_1}{(1 + IRR)^1} + \frac{CF_2}{(1 + IRR)^2} + \cdots + \frac{CF_N}{(1 + IRR)^N} = 0 \]

\[\text{NPV} = \sum_{t=0}^{N} \frac{CF_t}{(1 + IRR)^t} = 0 \]

MIRR: PV of costs = PV of terminal value

\[\sum_{t=0}^{N} \frac{\text{COF}_t}{(1 + r)^t} = \sum_{t=0}^{N} \frac{\text{CF}_t(1 + r)^{N-t}}{(1 + \text{MIRR})^N} \]

\[\text{PV of costs} = \frac{\text{Terminal value}}{(1 + \text{MIRR})^N} \]

\[\text{PI} = \frac{\text{PV of future cash flows}}{\text{Initial cost}} = \frac{\sum_{t=1}^{N} \frac{CF_t}{(1 + r)^t}}{CF_0} \]

\[\text{Payback} = \frac{\text{Number of years prior to full recovery} + \text{Unrecovered cost at start of year}}{\text{Cash flow during full recovery year}} \]
CHAPTER 11

Project cash flow = FCF = Investment outlay cash flow + Operating cash flow + NOWC cash flow + Salvage cash flow

Expected NPV = \[\sum_{i=1}^{n} P_i(NPV_i) \]

\[\sigma_{NPV} = \sqrt{\sum_{i=1}^{n} P_i(NPV_i - \text{Expected NPV})^2} \]

\[CV_{NPV} = \frac{\sigma_{NPV}}{E(NPV)} \]

CHAPTER 12

Additional funds needed = Required asset increase - Spontaneous liability increase - Increase in retained earnings

AFN = \((A^*/S_0)\Delta S - (L^*/S_0)\Delta S - MS_t(1 - \text{Payout ratio}) \)

Full capacity sales = \(\frac{\text{Actual sales}}{\text{Percentage of capacity at which fixed assets were operated}} \)

Target fixed assets/Sales = \(\frac{\text{Actual fixed assets}}{\text{Full capacity sales}} \)

Required level of fixed assets = \((\text{Target fixed assets/Sales})(\text{Projected sales}) \)

CHAPTER 13

\(V_{op} = \text{Value of operations} = \text{PV of expected future free cash flows} \)

\[= \sum_{i=1}^{m} \frac{FCF_i}{(1 + WACC)^t} \]

Horizon value: \(V_{op(\text{at time } N)} = \frac{FCF_{N+1}}{WACC - g} = \frac{FCF_N(1 + g)}{WACC - g} \)

Total value = \(V_{op} + \text{Value of nonoperating assets} \)

Value of equity = Total value – Preferred stock – Debt

Operating profitability (OP) = NOPAT/Sales

Capital requirements (CR) = Operating capital/Sales
EROIC_t = Expected return on invested capital
= NOPAT_{t+1}/Capital_t
= NOPAT_t(1 + g)/Capital_t
= OP_{t+1}/CR_t

For constant growth:

\[V_{op(\text{at time N})} = \text{Capital}_N + \left[\frac{\text{Sales}_N(1 + g)}{\text{WACC} - g} \right] \left[\frac{\text{OP} - \text{WACC} \left(\frac{\text{CR}}{1 + g} \right)}{\text{WACC} - g} \right] \]

\[= \text{Capital}_N + \frac{\text{Capital}_N(\text{EROIC}_N - \text{WACC})}{\text{WACC} - g} \]

\[= \text{Capital}_N + \frac{\text{Capital}_N \left(\frac{\text{OP}_{N+1}}{\text{CR}_N} - \text{WACC} \right)}{\text{WACC} - g} \]

CHAPTER 14

Residual distribution = Net income − [(Target equity ratio)(Total capital budget)]

Number of shares repurchased = \(n_{\text{Prior}} - n_{\text{Post}} = \frac{\text{Cash}_{\text{Rep}}}{P_{\text{Prior}}} \)

\[n_{\text{Post}} = n_{\text{Prior}} - \frac{\text{Cash}_{\text{Rep}}}{P_{\text{Prior}}} = n_{\text{Prior}} - \frac{\text{Cash}_{\text{Rep}}}{S_{\text{Prior}}/n_{\text{Prior}}} = n_{\text{Prior}} \left(1 - \frac{\text{Cash}_{\text{Rep}}}{S_{\text{Prior}}} \right) \]

CHAPTER 15

\[V_{op} = \sum_{t=1}^{\infty} \frac{\text{FCF}_t}{(1 + \text{WACC})^t} \]

\[\text{WACC} = w_d(1 - T)r_d + w_s r_s \]

\[\text{ROIC} = \frac{\text{NOPAT}}{\text{Capital}} = \frac{\text{EBIT}(1 - T)}{\text{Capital}} \]

\[\text{EBIT} = PQ - VQ - F \]

\[Q_{BE} = \frac{F}{P - V} \]

\[V_L = D + S \]

MM, no taxes: \(V_L = V_U \)

MM, corporate taxes: \(V_L = V_U + TD \)

Miller, corporate and personal taxes: \(V_L = V_U + \left[1 - \frac{(1 - T_c)(1 - T_s)}{(1 - T_d)} \right] D \)

\[b = b_U[1 + (1 - T)(D/S)] \]

\[b_U = b/[1 + (1 - T)(D/S)] \]

\[r_s = r_{RF} + RP_M(b) \]
\[r_s = r_{RF} + \text{Premium for business risk} + \text{Premium for financial risk} \]

If \(g = 0 \):
\[V_{op} = \frac{FCF}{WACC} = \frac{NOPAT}{WACC} = \frac{EBIT(1 - T)}{WACC} \]

Total corporate value = \(V_{op} \) + Value of short-term investments

\(S = \) Total corporate value – Value of all debt

\(D = w_d V_{op} \)

Cash raised by issuing debt = \(D - D_0 \)

\[P_{Prior} = \frac{S_{Prior}}{n_{Prior}} \]

\[P_{Post} = P_{Prior} \]

\[n_{Post} = n_{Prior} \left[\frac{V_{opNew} - D_{New}}{V_{opNew} - D_{Old}} \right] \]

\[n_{Post} = n_{Prior} - \frac{(D_{New} - D_{Old})}{P_{Prior}} \]

\[P_{Post} = \frac{V_{opNew} - D_{Old}}{n_{Prior}} \]

\[NI = (EBIT - r_d D)(1 - T) \]

\[EPS = \frac{NI}{n} \]

CHAPTER 16

Inventory conversion period = \(\frac{\text{Inventory}}{(\text{Cost of goods sold})/365} \)

Receivables collection period = DSO = \(\frac{\text{Receivables}}{\text{Sales}/365} \)

Payables deferral period = \(\frac{\text{Payables}}{(\text{Cost of goods sold})/365} \)

Cash conversion cycle = Inventory conversion + Average collection – Payables deferral period

Accounts receivable = Credit sales per day \(\times \) Length of collection period

\[ADS = \frac{(\text{Units sold})(\text{Sales price})}{365} = \frac{\text{Annual sales}}{365} \]

Receivables = (ADS)(DSO)

Nominal annual cost of trade credit = \(\frac{\text{Discount percentage}}{100 - \text{Discount percentage}} \times \frac{365}{\text{Days credit is outstanding} - \text{Discount period}} \)
CHAPTER 17

Single-period interest rate parity:
- Forward exchange rate
- Spot exchange rate

\[\text{Forward exchange rate} \cdot \frac{1 + r_h}{1 + r_f} \]

Expected t-year forward exchange rate

\[\text{Expected t-year forward exchange rate} = (\text{Spot rate}) \left(\frac{1 + r_h}{1 + r_f} \right)^t \]

\[P_h = (P_d)(\text{Spot rate}) \]

Spot rate \(\frac{P_h}{P_f} \)

CHAPTER 18

NAL = PV cost of owning − PV cost of leasing

CHAPTER 19

Price paid for bond with warrants

\[\text{Price paid for bond with warrants} = \text{Straight-debt value of bond} + \text{Value of warrants} \]

Conversion price

\[P_c = \frac{\text{Par value of bond given up}}{\text{Shares received}} = \frac{\text{Par value of bond given up}}{\text{Conversion ratio}} = \frac{\text{Par value of bond given up}}{P_c} \]

Conversion ratio

\[\text{Conversion ratio} = CR = \frac{\text{Par value of bond given up}}{P_c} \]

CHAPTER 20

Amount left on table

\[\text{Amount left on table} = (\text{Closing price} - \text{Offer price})(\text{Number of shares}) \]

CHAPTER 21

\[r_{sL} = r_{sU} + (r_{sU} - r_d)(D/S) \]

\[r_{sU} = w_s r_{sL} + w_d r_d \]

Tax savings = (Interest expense)(Tax rate)

Horizon value of unlevered firm

\[\text{Horizon value of unlevered firm} = HV_{U,N} = \frac{\text{FCF}_{N+1}}{r_{sU} - g} = \frac{\text{FCF}_N(1 + g)}{r_{sU} - g} \]

Horizon value of tax shield

\[\text{Horizon value of tax shield} = HV_{TS,N} = \frac{\text{TS}_{N+1}}{r_{sU} - g} = \frac{\text{TS}_N(1 + g)}{r_{sU} - g} \]

\[V_{\text{Unlevered}} = \sum_{t=1}^{N} \frac{\text{FCF}_t}{(1 + r_{sU})^t} + \frac{HV_{U,N}}{(1 + r_{sU})^N} \]
\[V_{\text{Tax shield}} = \sum_{t=1}^{N} \frac{TS_t}{(1 + r_{U})^t} + \frac{HV_{TS,N}}{(1 + r_{U})^N} \]

Value of operations: \[V_{\text{op}} = V_{\text{Unlevered}} + V_{\text{Tax shield}} \]

FCFE = \[\text{Free cash flow} - \text{After-tax interest expense} - \text{Principal payments} + \text{Newly issued debt} \]

FCFE = \[\text{Net income} - \text{Net investment in operating capital} + \text{Net change in debt} \]

HV_{\text{FCFE,N}} = \frac{FCFE_{N+1}}{r_{L} - g} = \frac{FCFE_{N}(1 + g)}{r_{L} - g}

\[V_{\text{FCFE}} = \sum_{t=1}^{N} \frac{FCFE_t}{(1 + r_{L})^t} + \frac{HV_{\text{FCFE,N}}}{(1 + r_{L})^N} \]

\[S = V_{\text{FCFE}} + \text{Nonoperating assets} \]

\[\frac{\text{Total value of shares to target shareholders}}{\text{Total post-merger value of equity}} = \frac{\text{Percent required by target stockholders}}{n_{\text{New}} + n_{\text{Old}}} \]

Chapter 24

\[\hat{r}_p = w_A \hat{r}_A + (1 - w_A) \hat{r}_B \]

Portfolio SD: \[\sigma_p = \sqrt{w_A^2 \sigma_A^2 + (1 - w_A)^2 \sigma_B^2 + 2w_A(1 - w_A)\rho_{AB}\sigma_A\sigma_B} \]

Minimum-risk portfolio: \[w_A = \frac{\sigma_B(\sigma_B - \rho_{AB}\sigma_A)}{\sigma_A^2 + \sigma_B^2 - 2\rho_{AB}\sigma_A\sigma_B} \]

\[\hat{r}_p = \sum_{i=1}^{N} (w_i \hat{r}_i) \]

\[\sigma_p^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} (w_i w_j \sigma_i \sigma_j \rho_{ij}) \]

\[\sigma_p^2 = \sum_{i=1}^{N} w_i^2 \sigma_i^2 + \sum_{i=1}^{N} \sum_{j=i+1}^{N} w_i \sigma_i w_j \sigma_j \sigma_{ij} \]

\[\sigma_p = \sqrt{(1 - w_{RF})^2 \sigma_M^2 + (1 - w_{RF})\sigma_M} \]

CML: \[\hat{r}_p = r_{RF} + \left(\frac{\hat{r}_M - r_{RF}}{\sigma_M} \right) \sigma_p \]
\[r_i = r_{RF} + \frac{(r_M - r_{RF})}{\sigma_M} (\frac{\text{Cov}(r_i, r_M)}{\sigma_M^2}) = r_{RF} + (r_M - r_{RF}) \left(\frac{\text{Cov}(r_i, r_M)}{\sigma_M^2} \right) \]

\[b_i = \frac{\text{Covariance between Stock } i \text{ and the market}}{\text{Variance of market returns}} = \frac{\text{Cov}(r_i, r_M)}{\sigma_M^2} = \frac{\rho_{iM} \sigma_i \sigma_M}{\sigma_M^2} = \rho_{iM} \left(\frac{\sigma_i}{\sigma_M} \right) \]

SML: \[r_i = r_{RF} + (r_M - r_{RF}) b_i = r_{RF} + (RPM_i) b_i \]

\[\sigma_i^2 = b_i^2 \sigma_M^2 + \sigma_e^2 \]

APT: \[r_i = r_{RF} + (r_1 - r_{RF}) b_{i1} + \cdots + (r_j - r_{RF}) b_{ij} \]

Fama-French: \[r_i = r_{RF} + a_i + b_i(r_M - r_{RF}) + c_i(r_{SMB}) + d_i(r_{HML}) \]

CHAPTER 25

\[CV = \frac{\sigma(\text{PV of future CF})}{E(\text{PV of future CF})} \]

Variance of project’s rate of return: \[\sigma^2 = \frac{\ln(CV^2 + 1)}{t} \]

CHAPTER 26

MM, no taxes:

\[V_L = V_U = \frac{\text{EBIT}}{\text{WACC}} = \frac{\text{EBIT}}{r_{sU}} \]

\[r_{sL} = r_{sU} + \text{Risk premium} = r_{sU} + (r_{sU} - r_d)(D/S) \]

MM, corporate taxes:

\[V_L = V_U + TD \]

\[V_U = S = \frac{\text{EBIT} (1 - T)}{r_{sU}} \]

\[r_{sL} = r_{sU} + (r_{sU} - r_d)(1 - T)(D/S) \]

Miller, personal taxes:

\[V_U = \frac{\text{EBIT}(1 - T_c)}{r_{sU}} = \frac{\text{EBIT}(1 - T_c)(1 - T_s)}{r_{sU}(1 - T_s)} \]

\[CF_L = (\text{EBIT} - I)(1 - T_c)(1 - T_s) + I(1 - T_d) \]

\[V_L = V_U + \left[1 - \frac{(1 - T_c)(1 - T_s)}{1 - T_d} \right]D \]
Ehrhardt & Daves, impact of growth:

\[V_U = \frac{FCF}{r_{SU} - g} \]

General case:

\[V_L = V_U + V_{\text{Tax shield}} \]
\[V_{\text{Tax shield}} = \frac{r_d TD}{r_{TS} - g} \]
\[V_L = V_U + \left(\frac{r_d}{r_{TS} - g} \right) TD \]

Case for \(r_{TS} = r_{SU} \):

\[V_L = V_U + \left(\frac{r_d TD}{r_{SU} - g} \right) \]

\[r_{dL} = r_{SU} + (r_{SU} - r_d) \frac{D}{S} \]

\[b = b_U + (b_U - b_D) \frac{D}{S} \]